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Abstract

In this paper, we present a generative sketch model for human hair analysis and synthesis. We treat hair

images as 2D piecewisely smooth vector (flow) fields, and thus our representation is view-based in contrast

to the physically based 3D hair models in graphics. The generative model has three levels. The bottom

level is the high frequency band of the hair image. The middle level is a piecewisely smooth vector field

for the hair orientation, gradient strength, and growth directions. The top level is an attribute sketch graph

for representing the discontinuities in the vector field. A sketch graph typically has a number of sketch

curves which are divided into 11 types of directed primitives. Each primitive is a small window (say5× 7

pixels) where the orientations and growth directions are defined in parametric forms. For example, hair

boundaries, occluding lines between hair strands, dividing lines on top of the hair etc. Besides the three

level representation, we model the shading effects, i.e. the low-frequency band of the hair image, by a

linear superposition of some Gaussian image bases, and we encode the hair color by a color map. The

inference algorithm is divided into two stages. (i) We compute the undirected orientation field and sketch

graph from an input image, and (ii) we compute the hair grow direction for the sketch curves and the

orientation field using a Swendsen-Wang cut algorithm. Both steps maximize a joint Bayesian posterior

probability. The generative model provides a straightforward way for synthesizing realistic hair images

and stylistic drawings (rendering) from a sketch graph and a few Gaussian bases. The latter can be either

inferred from a real hair image or input (edited) manually using a simple sketching interface. We test our

algorithm on a large data set of hair images with diverse hair styles. Both analysis, synthesis, and rendering

results are reported in the experiments.

Keywords: Hair Modeling, Hair Analysis and Synthesis, Flow Patterns, Generative Models, Orientation Field,

Texture, Non-Photorealistic Rendering.
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I. I NTRODUCTION

Human hair is a very complex visual pattern where hundreds of thousands of hairs are

grouped into strands and wisps in diverse hair styles. Modeling hair appearance is an important

and challenging problem in graphics, digital human animation, non-photorealistic rendering. It

is evident that hair style also plays a rather significant role in human recognition. For example,

it often takes longer time to recognize a friend in a meeting if that person has changed to a very

different hair style. In other case, if we keep somebody’s hair image and replace his/her face,

there is a good chance that the image is identified as the original subject by familiar people,

especially when the image is small.

In computer graphics, hair acquisition, modeling, and animation have attracted growing

interest in recent years [13], [14], [5], [7], [11], [22]. Hair models in graphics are three-

dimensional and have typicallyO(104 − 105) hair strands andO(106) line segments connected

to a scalp surface. These models often include hair dynamics, friction, lighting effects, and

occlusion relations, which are either input through user interfaces [7], [5], [14], [13] or acquired

from multiple (say30 to 40) views using advanced computer vision techniques [17], [22]. Editing

and rendering such a complex 3D model typically take many hours in a computer.

In computer vision, hair is studied as an oriented (flow) field [12], [26] among other texture

patterns, such as, wood grain, flows, and fingerprints. To our knowledge, there has been no

explicit model dedicated to human hair in the vision literature. As each element in the orientation

field is a periodic angle in[0, π] (a Riemannian space), in contrast to image intensities (Euclidian

space) in conventional Markov random field, special metrics are needed in designing filters and

computing the diffusion equations [18], [4]. Some other vision work [20] have studied the

structure characteristics in the orientation (flow) field analysis, such as node, saddle, star-node,

etc.
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In this paper, we present a generative sketch model for human hair analysis and synthesis.

Our sketch model is a view-based, two-dimensional, symbolic representation which can be

encoded totally in the order ofO(100) bytes. It is extremely parsimonious in comparison with

the physically based 3D hair models in graphics. This sketch representation can be inferred from

real hair images rapidly (in a few minutes in a PC), and realistic hair images can be synthesized

or reconstructed from the sketch representation in a few seconds (see Fig. 9 and Fig. 15). We

also provide a user interface to edit the sketch and to generate different hair styles (see Fig.16).

Fig. 1. Three examples of hair sketches drawn by artists.

Our representation is motivated by the following observations and applications.

1) Although the number of hairs is huge (O(106)), many hairs are occluded and the visible

hairs are often thinner than a pixel. It is neither practical nor necessary to infer the

position of each individual hair for general vision purposes. As it was argued in texture

modeling [2] and the information scaling theory [23], human vision perhaps only perceives

a general impression of the whole hair style without paying attention to the exact shape

of an individual hair. In other words, two hair images are perceptually equivalent if they

share some common structural and statistical properties.

2) Artists/painters can capture the essential characteristics of a hair style by a sketch with

only a small number (10 to 20) of strokes (See Fig. 1). In this paper, we demonstrate that

realistic hair images can be rendered from simple sketches. The reconstructed images (see

Fig. 8.(g) and Fig. 15) are different from the original image, but bear similar perceivable
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structures.

3) Our compact representation is aimed at a number of vision applications: (i) extremely

low bit image/video compression for telecommunication and video phones, (ii) hair style

recognition and understanding in human-computer interface, (iii) non-photorealistic ren-

dering or cartoon animation from video images, and (iv) human portrait [6].

Fig. 2 shows our generative model for both hair analysis and synthesis with an optional

user interface for hair input and editing. The generative model has three levels. The bottom

level is the high frequency band of the hair image. The middle level is a piecewise smooth

vector field for the hair orientation, gradient strength, and growth directions. The top level is

an attribute sketch graph for the discontinuities and features in the vector field. Both the vector

field and the sketch graph are directed in the hair growth directions. The curves in the sketch

graph are divided into five categories of flow primitives in parametric form. Fig. 4 shows some

examples for hair boundaries, occluding lines between hair strands, dividing lines on top of

the hair etc. These parametric primitives are essential for generating clear sharp discontinuities

for the orientation field (See Fig.8.(d) for example). The shading effects are represented in the

low-frequency band of the hair image which is modeled as a linear superposition of Gaussian

image bases. The color is represented by a color map after a Luv transform. The color map is

a mapping from the grey intensity[0, 255] to a color.

The vector field and sketch graph are computed in a Bayesian framework which maximizes a

posterior probability in two steps. The first step includes a greedy sketch pursuit algorithm for

constructing the undirected sketch and a diffusion algorithm for computing the orientation field

conditional on the sketch graph. The second step infers the growth directions of the sketches

and augments the orientation field to a vector field. The hair directions cannot be decided locally

and often need global information. We adopt a Swendson-Wang cut algorithm [1] to compute
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the directions of the sketch graph. We test our algorithm on a large data set of hair images with

diverse hair styles. Both analysis, synthesis, editing, and rendering results are reported in the

experiments.

Our representation is inspired by the primal sketch model in [10] and the human portrait

application in [6]. The latter [6] computes a stylistic cartoon sketch of human face and hair

using an example-based learning method similar to the image analogy work in graphics.

The paper is organized as follows. Section II presents the three-level hair model. Section III

demonstrates that hair images can be synthesized using this generative model. Section IV dis-

cusses the inference algorithm. Section V shows some experimental results in both hair analysis,

synthesis, editing and cartoon rendering. Section VI concludes the work with a discussion of

limitations and future work.

II. A GENERATIVE SKETCH MODEL OF HAIR

The generative model for both analysis and synthesis is illustrated in Fig. 2. There are three

factors contributing to the appearance of hair: (i) hair color, (ii) shading effects, and (iii) texture.

Therefore a hair image is first decomposed into these three components.

Let Iobs denote an observed color hair image. By a Luv transform, we obtain an intensity

imageIobs
Y and a color channel imageIobs

UV. The color channelIobs
UV is discretized into a small

number of colors and represented by a color map from the intensity[0, 255] of Iobs
Y to a color.

The intensity imageIobs
Y is further decomposed into a low frequency bandIobs

L for illumination

and shading with a low-pass Gaussian filter, and the remaining high frequency band is the

texture for the hair patternIobs
H . The low frequency band is simply represented by a linear

superposition of Gaussian image bases plus a mean intensityµ,

Iobs
L (x, y) = µ +

KL∑

i=1

αiG(x− xi, y − yi; θi, σxi, σyi) + noise. (1)
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Fig. 2. Overview of our model and algorithm which consists of three modules: (i) analysis, (ii) synthesis, reconstruction or

rendering, and (iii) an optional editing interface. For an input imageIobs, we decouple it into a gray imageIobs
Y and a color

channelIobs
UV represented by a color map. The gray image is decomposed into a texture partIobs

H and shadingIobs
L by a low-pass

Gaussian filter. FromIobs
H we compute the vector fieldV and the sketchS with direction dS . The synthesis goes from the

sketchS to the vector fieldVsyn and to the hair imageIsyn
H . The latter is combined with the shadingIsyn

L and colorIsyn
UV to

produce the final resultIsyn. We can render the cartoon sketch in some artistic styleJrnd. The sketch can be input or edited

through an interface before entering the synthesis process.

Usually KL = O(10) and each Gaussian base is represented symbolically by an ellipses for

editing (see Fig.9) and it has five parameters for the center, orientation, and standard deviation

along the two axes. The coefficients{αi} can be positive or negative for highlights and shadows

respectively. The Matching Pursuit algorithm is used to automatically extract the coefficients

from the input image. In the editing interface, a user can change the shading by editing the

number of ellipses and changing their parameters.

Our study is focused on the texture appearanceIobs
H with a three level generative model. A

hair textureIH on a latticeΛ is generated by a hidden layerV – the vector field for hair growth
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flow, and V is in turn generated by an attribute hair sketchS which is a number of sketch

curves representing the boundaries of hair strands and wisps with directiondS.

Sketch (S,dS)
∆sk−→ Vector field V −→ hair image IH

∆sk is a dictionary of sketch primitives shown in Fig. 3. Each primitive is a rectangular window

(say5× 7 pixels) and some examples are shown in Fig. 4 and Fig. 5.

In the following, we present the three level model in the top-down order as it is shown in

the right panel of Fig.2.
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Fig. 3. Five primitives for the orientation fieldΘ, and eleven primitives for the directed vector fieldV in a dictionary∆sk.

(a) Side boundary. (b) Source (origin) or sink (end) of hair strands. (c) Occluding boundary. (d) Dividing line. (e) Stream

line. The line segments and arrows in the primitive windows show the canonical orientations, and the angles may change in

[−π/6, π/6]. See Fig.5.

A. Top level representation: the hair sketchS

The hair sketchS consists of a number of curves denoted byCi, and each curve represents

a long stroke with certain width,

S = (NC , {Ci : i = 1, 2, ...., NC}).

These curves are undirected and represent the noticeable structures such as the discontinuities

in the hair flow. They consist of a consecutive aligned windows called sketch ”primitives”.
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Fig. 4. (a) Windows A-F are 6 primitive examples. (b) Zoomed-in views of the six windows.

We define5 categories of undirected primitives which make11 types of directed primitives

for the vector fieldV, and they are shown in Fig. 3. Each primitive specifies the orientations

θl, θr ∈ [0, π) and directionsdl, dr ∈ {−1, +1} of the hair flow on the left and right sides

of the primitive window. Six examples of the primitives are shown in Fig.4. These primitives

are represented in parametric form for the flow directions and angles on both sides and they

are important for generating sharp discontinuities in the vector fields. The five categories of

primitives are the following.

1) Side boundary: the hair flows along one side and the other side is non-hair. See window

E in Fig. 4. Thus it has only one directiondl. Fig. 5(a) shows an example with a window

of 5× 7 pixels.

2) Source and sink: the origin or ending of hair flow. See windows B and F in Fig. 4.

3) Occluding boundary: the boundary of two hair strands of different orientations. It often

occurs at the places where one hair cluster covers the other. See window A in Fig. 4.

Fig. 5.(b) shows its window in the vector field.

4) Dividing line: hair grows in the same orientation but opposite directions, it often occurs

at the top the head. See window D in Fig. 4 and Fig. 5.(c) . Note that the directionsdl, dr

are decided in a dividing line and it has a middle section for the white scalp.
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5) Stream line: hair strands with the same orientation and direction but strong contrast in

appearance, for example, different dye. See window C in Fig. 4.

�� � ��� � ��
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Fig. 5. The windows of three directed primitives. (a) A window of5× 7 pixels for a side boundary primitive. (b) A window

of 5× 7 pixels for an occluding boundary primitive. (c) A window of6× 7 pixels for an dividing line primitive. Each window

has a center(x, y) and a main axis with orientationθ. The left and right side vector fields are specified by the parameters

τl = (θl, dl) andτr = (θr, dr) respectively. The dividing line primitive is special because its left and right vector fields must

grow in opposite directions and there is a middle vector field for the scalp.

Each primitive is represented by a number of variables (or parameters) denoted by

B = (`, x, y, θ, ρ, (θl, θr)), (2)

where` ∈ {a, b, c, d, e} indexes the five primitive type,(x, y) is the center position,θ is the axis

orientation in[0, 2π), ρ is the strength of the intensity gradient perpendicular to the axis, and

(θl, θr) are the relative orientation angles at the left and right side vector fields. We discretize

the angles so thatθ has12−16 orientations andθl, θr ∈ {π
3
, π

2
, 2π

3
} if the orientation is supposed

to be perpendicular to the axis. We setθl and θr to 0 if the orientation should be along the

primitive axis. Thus we obtain a dictionary for the undirected primitives.

∆B = {(`, x, y, θ, ρ, (θl, θr) : ` ∈ {a, b, c, d, e}, (x, y) ∈ Λ, θ ∈ {0, ..., 11π

12
}, ∀θl, θr}}. (3)

The hair growth directions are important for hair understanding and stylistic rendering. It

is studied separately from the orientation because the directions have to be inferred from the
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Fig. 6. Pixels along a curveC. C consists ofNB primitives whose windows overlap with neighbors so that the pixels along

the curve are covered seamlessly.

global image and cannot be decided within local windows. We augment the primitiveB with

a direction (dl, dr) specifying the flow directions on the two sides. Thus we have a sketch

primitive dictionary

∆sk = {(B, dl, dr) : B ∈ ∆B, dl, dr ∈ {−1, 1}}. (4)

As Fig. 3 shows, the primitive types (a), (b) and (e) have only one direction variable, the

primitive type (d) (the dividing line) is deterministic and thus it no direction variables, and only

primitive type (c) has two direction variables. For clarity of discussion, we use the uniform

notation above.

We denote the direction of the sketch by

dS = {(dli, dri) : i = 1, ..., NC}.

We request that all primitives in a sketch curveC have the same typè and same directions

d = (dl, dr). Therefore we denote a directed curve ofNB primitives by,

(C,d) = (`,NB, {Bj : j = 1, 2, ..., NB},d = (dl, dr)).

Fig. 6 shows a curve with a sequence of primitive windows overlapping each other so that the

pixels along the curve are covered seamlessly by the primitives.

Suppose the sketch levelS has a total ofK primitives B1, ...,BK and each primitiveBk

covers a windowΛk. The image latticeΛ is divided into two disjoint areas.

Λ = Λsk ∪ Λnsk, Λsk ∩ Λnsk = ∅.
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Pixels in Λsk are said to be sketchable or on the sketch, and the remaining pixels inΛnsk are

non-sketchable or off the sketch, according to the terminology used in [10]. The sketchable part

is divided as

Λsk = ∪K
k=1Λk.

(a) (b)

psk

pnsk

Fig. 7. (a) The empirical point-wise prior probability in the image fieldpdir(x, y, θ, d) for the flow vector (orientation and

direction) (θ, d) at each pixel(x, y). Longer arrows mean higher probabilities. (b) The empirical prior probabilitypsk(ρ) and

pnsk(ρ) for the intensity gradient perpendicular to the orientationθ for pixels on and off the sketch respectively. The pixels on

the sketch have generally higher intensity gradients and thus the histogram has much heavier tail on the right side.

To learn a prior probability model for the sketch level, we collect a set of hair images which

are centered in position and normalized in size with manual sketches and vector fields. Then

we compute two types of empirical probabilities (histograms) shown in Fig. 7.

Fig. 7.(a) is a point-wise probabilityp(x, y, θ, d). At each point(x, y), we divide the vector

(θ, d) (whereθ ∈ [0, π) andd ∈ {−1, +1}) to 8 bins (i.e. 8 directions in[0, 2π)), and construct

the histogrampdir(x, y, θ, d). The length of the arrows shows how likely a vector flow will point

in a certain direction at a given point.
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Fig. 7.(b) shows two empirical probabilities for the intensity gradientρ perpendicular to the

sketch curves.psk(ρ) andpnsk(ρ) are the histograms for pixels on and off the sketch respectively.

Clearly, the gradients are generally larger on the sketch due to high intensity contrast, and

thereforepsk(ρ) has a much heavier tail thanpnsk(ρ) on the right side. We fit both histograms

by a mixture of two Gaussian distributions. For example,

psk(ρ) = ωskN(ρ; µsk1, σsk1) + (1− ωsk)N(ρ; µsk2, σsk2) (5)

We have the following prior probability for the sketch level representation.

p(S,dS)=p(Nc)
NC∏

i=1

{ ∏

Bj∈Ci

[pdir(xj,yj,θlj,dlj)pdir(xj,yj,θrj,drj)]
∏

<Bja,Bjb>

G(e(θja, θjb))}
∏

v∈Λsk

psk(ρ(v)).

(6)

In the above equation,p(NC) ∝ e−λNC penalizes the number of curves. For each primitive

Bj ∈ Ci, the intensity gradientρ(v) on the sketch follows the priorpsk, the flow directions

(θlj, dlj) and (θrj, drj) on both sides follow the priorpdir, and G() is a Gaussian probability

on the angle differencee(θja, θjb) (see definition in eqn.(11)) so that the any two consecutive

primitives have similar orientationsθja andθjb.

B. The middle level representation: the vector fieldV

The middle level vector field represents the directed flow of the hair, it includes three

componentsV = (Θ,ρ,dV ) on a latticeΛ.

1) An orientation fieldfor the local hair orientation (undirected) in[0, π),

Θ = {θ(v) : θ(v) ∈ [0, π), v ∈ Λ}.

2) A gradient strength fieldfor the intensity gradient perpendicular to the orientationθ(v),

ρ = {ρ(v) : ρ(v) = ∇⊥θ(v)IH, v ∈ Λ}.
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3) A direction fieldd for the growth direction of the hair at each pixel.

dV = {d(v) : d(v) ∈ {−1, +1}, v ∈ Λ}.

At each pointv, the orientation plus direction decides the flow vectorτ(v) ∈ [0, 2π) by

τ(v) = θ(v) + d(v)+1
2

π.

The vector field is divided by the sketch graph into two disjoint partsV = (Vsk,Vnsk) for

Λsk andΛnsk respectively. The generative model from(S,dS) to V is,

p(V|S,dS) = p(Vnsk|Vsk)p(Vsk|S,dS). (7)

p(Vsk|S,dS) is a Dirac delta function, asS,dS specifiesVsk deterministically. Each window

Λk has a left and a right sub-window withΛk = Λlk ∪Λrk where the vector field is decided by

the parameters of the primitiveBk and the directiondk = (dlk,drk). Examples are shown in

Fig. 5.

V(x, y) = (θlk, ρk, dlk), (x, y) ∈ Λlk, V(x, y) = (θrk, ρk, drk), (x, y) ∈ Λrk, k = 1, ..., K.

(8)

The remaining latticeΛnsk corresponds to smooth flow areas where the vector field is ”filled-in”

from Vsk in the following probability.

p(Vnsk|Vsk) = p(Θnsk,dVnsk
|Θsk,dVsk

) · ∏

v∈Λnsk

pnsk(ρ(v)), (9)

where pnsk() is the prior probability shown in Fig. 7.(b) for the gradient strength on pixels

off the sketch, andp(Θnsk,dVnsk
|Θsk,dVsk

) is a smoothness model of the flow field with the

sketchable part as its boundary condition.

p(Θnsk,dVnsk
|Θsk,dVsk

) ∝ exp{− ∑

v∈Λnsk

∑

u∈∂v

e(τ(v), τ(u))2

2λ2
θ

}, (10)
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where∂v is the 4-nearest-neighbor ofv, ande(τ(v), τ(u)) is the distance of adjacent flow vector

τ(v) andτ(u) defined on[0, 2π)× [0, 2π). We adopt the following distance in [18], [4].

e(τ(v), τ(u)) =
√

2(1− cos(τ(v)− τ(u)). (11)

Fig. 8 shows an example of the vector field. Fig. 8.(b) is a directed sketch level representation

(S,dS). Fig. 8.(c) shows the vector fieldVsk generated by the parameters of the sketch level

within the primitive windows. The overall vector fieldV is shown in Fig. 8.(d) after filling-in

Vnsk conditioning onVsk.

C. The bottom-level representation: the hair texture imageIH

The hair texture imageIH is generated by the vector fieldV in the following probability,

p(IH|Θ,ρ) ∝ exp{−∑

v∈Λ

(∇θ(v)IH)2

2σ2
θ

+
(||∇⊥θ(v)IH|| − ρ(v))2

2σ2
ρ

} (12)

Note that the image does not depend on the flow directiondV . Intuitively, a hair texture image

should have low intensity gradients along the flow orientationθ(v), v ∈ Λ, while the gradients

in the perpendicular direction⊥θ(v) should be close to the gradientρ(v) in V.

The probability above is an inhomogeneous Markov random field on the image intensityIH

modulated by a hidden vector fieldV. This inhomogeneous MRF model has a similar effect to

the line integral convolution (LLC) method in flow visualization [3].

Fig. 8.(e) shows an example of the synthesized texture image sampled from the above

probability using the vector field in Fig. 8.(d). With the shading image and color map, it produces

a hair imageIsyn in Fig. 8.(g).

To summarize the three-level model, we have the following joint probability for the overall

representation,

p(IH,V,S,dS) = p(IH|Θ, ρ)p(Θ,ρ,dV |S,dS)p(S,dS). (13)

The three probabilities represent the three level models in eqns.(12), (7), and (6) respectively.
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Fig. 8. Example of hair model and inference. (a) is an input color imageIobs, (b) is the computed sketchS with directionsdS.

(c) is the sketchable vector fieldVΛsk generated from(S,dS). (d) is the overall vector fieldV after filling-in non-sketchable

part. (e) is the high frequency hair texture imageIsyn
H generated from the vector field. (f) is the shading and lighting image.

(g) is the synthesized color imageIsyn after adding the shading and color. We render an artistic sketchJrnd in (h).

III. SYNTHESIZING HAIR IMAGES FROM THE GENERATIVE SKETCH MODEL

Following the spirit of analysis-by-synthesis in the texture modeling literature [2], [25], we

verify the probability models in the previous section by synthesizing hair images.

Our prior model on the sketch levelp(S,dS) is not strong enough for generating hair styles

through random sampling, therefore we assume that(S,dS) is either inferred from a hair

image in the next section or edited manually through a simple user interface. From(S,dS), we

synthesize a hair imageIsyn
H in three steps according to the generative model.

1. Synthesizing the vector field from the sketchVsyn ∼ p(V|S,d).
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2. Synthesizing the hair texture from the vector fieldIsyn
H ∼ p(IH|Vsyn).

3. Synthesizing color imageIsyn by adding a shading imageIsyn
L to Isyn

H and then transfer the

grey image to color by the color map. The shading image is either edited through the interface

or inferred from images. One can uses various color maps stored for different hairs.

In this section, we briefly mention the sampling processes for steps 1 and 2.

A. Synthesis of the vector field

Given the directed sketch(S,dS), the vector fieldVsk on Λsk is generated deterministically

from the parameters of the sketch primitives according to eqn.(8). ForVnsk on the non-sketchable

part Λnsk, the gradient strengths are sampled iid from the prior model

ρ(v) ∼ pnsk(ρ(v)), v ∈ Λnsk. (14)

The orientation and direction fields for non-sketch pixels are filled-in by a diffusion equation

derived from minimizing the energy of the smoothness prior in eqn.(10). For computational

efficiency, we run the diffusion equation at faster rate near the sketches and thus we assign a

confidence weightw(v) for each pixelv ∈ Λ to control the diffusion speed. At the beginning,

w(v) = 1 for v ∈ Λsk and w(v) = 0 for v ∈ Λnsk. Thus we modify the energy function in

eqn.(10) to

E(Θ,dV |S,dS) =
∑

v∈Λnsk

∑

u∈∂v

w(u)(1− cos(τ(u)− τ(v))). (15)

Minimizing the above energy leads to the following diffusion equations for the non-sketchable

part,

∂τ(v)

dt
=

∑

u∈∂v

w(u) sin(τ(u)− τ(v)), for v ∈ Λnsk. (16)

We compute the diffusion equations by nonlinear Gaussian-Seidel method as in [4] and raise

w(v) in the non-sketch part gradually at each iteration by a heat diffusion equation with fixed
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step size.

w(v) ← w(v) + 0.2(
1

4

∑

u∈∂v

w(u)− w(v)), for v ∈ Λnsk. (17)

The weights converge tow(v) = 1, ∀v ∈ Λ.

��� ��� ��� ���

Fig. 9. Three examples of hair drawing and synthesis. (a) Manually input hair sketchS with directionsdS . (b) Synthesized

vector fieldVsyn given (S,dS). (c) Edited shading maps with a small number of ellipses. (d) Synthesized color imagesIsyn.
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B. Synthesis of hair image

The probabilityp(IH|Θ,ρ) in the eqn. (12) has two energy terms. The first is a diffusion

term which reduces the gradients along the orientationθ(v), while the second is ”reaction”

term which forces the intensity gradient in the direction perpendicular toθ(v) to be close to the

expected gradientρ(v). ρ(v) is provided by the vector field. We can sampleIsyn
H ∼ p(IH|Θ, ρ)

by the Gibbs sampler, as in texture synthesis [25]. This is quite slow in practice, we therefore

adopt a much faster method which can generateIsyn
H in seconds.

To start with, we define the neighborhood of the inhomogeneous MRF modelp(IH|Θ,ρ). For

each pixelv ∈ Λ, we trace a 1D curve neighborhood of3− 5 pixels along the orientationθ(v)

in both ways. The first energy term inp(IH|Θ,ρ) enforces smoothness on the pixel intensities

along the 1D curve neighborhood. This is very similar to the flow visualization algorithm LLC

[3]. We initialize the image with white noise, and then iterate two steps. The first step is to

average the pixel intensities along its 1D curve neighborhood like in the LLC algorithm. And

the second step is to match the expected gradient strength along the perpendicular direction. We

calculate current gradient strength along the perpendicular direction for the synthesized result

of the first step. Then for each pixel, we scale the local contrast by the rate of the expected

gradient strength over current gradient strength.

Fig. 9 shows three examples of hair synthesis to verify the generative model. Fig. 9.(a)

displays the manually input and edited sketches with directions which produce the vector fields

in Fig. 9.(b). Fig. 9.(c) shows the shading image with the ellipses for highlight or dark regions

masked by the hair boundary in the sketch. Fig. 9.(d) is the final synthesized images after a

color map transform. Editing and rendering such hair images takes only a few minutes.
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IV. COMPUTATION AND INFERENCE

Given an input imageIobs, our goal is to compute the vector fieldV = (Θ,ρ,dV ) and the

directed sketch(S,dS) by maximizing the Bayesian posterior defined in Section II.

(S,dS,V)∗ = arg max p(Iobs
H |Θ, ρ)p(Θ, ρ,dV |S,dS)p(S,dS). (18)

We choose a two-step greedy algorithm for maximizing the above probability where the two

steps minimize different energy terms respectively.

1) Step I. Computing the orientation fieldΘ and the undirected sketchS. This step can be

accomplished by local computation.

2) Step II. Inferring the growth directionsdS and dV for the sketch and orientation field

respectively. The directions have to be inferred with global information on the sketchS

and it is important for hair understanding and cartoon rendering.

The gradient strength fieldρ is computed from the orientation fieldΘ and Iobs determinis-

tically with ρ(v) = ∇⊥θ(v)I
obs
H (v), ∀v ∈ Λ.

A. Step I. Computing the orientation fieldΘ and undirected sketchS

We transfer the probabilities in eqn.(18) into energy functions on the orientation field and

undirected sketch,

(Θ,S)∗ = arg min E(Θ,S) = arg min E1(I
obs
H |Θ) + E2(Θ, ρ|S) + E3(S). (19)

The three energy functionsE1, E2 andE3 are derived from the eqns.(12), (10), and (6) respec-

tively by omitting the terms involving the directionsdV ,dS.

E1(I
obs
H |Θ) =

∑

v∈Λ

(∇θ(v)I
obs
H )2

2σ2
θ

(20)

E2(Θ, ρ|S) =
∑

v∈Λnsk

∑

u∈∂v

e(θ(v), θ(u))2

2λ2
θ

− ∑

v∈Λnsk

log pnsk(ρ(v))− ∑

v∈Λsk

log psk(ρ(v)) (21)
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E3(S) = λNC
NC +

∑

Ci∈S

∑

<Bia,Bib>

e(θia, θib)
2

2λ2
θ

(22)

In energyE2(Θ,ρ, |S), as the orientations are in[0, π), we need to renormalize the metric in

eqn.(11) [18], [4].

e(θ(v), θ(u)) =

√
1

2
(1− cos(2θ(v)− 2θ(u)). (23)

The second and third terms inE2(Θ,ρ, |S) are responsible for pursuing the streamlines. The

streamline primitives are distinguished from the non-sketchable part not by their orientations

but for their relatively high gradientsρ(v). Drawing a sketch curve on the high gradient areas

will reduceE2.

We initializeS = ∅, then we add one sketch primitiveB+ at each iterationS+ = S∪ {B+},

and re-calculate the orientation field by updatingΘ to Θ+. The primitiveB+ either starts a new

curveC+ or extends an existing curveCi in S. B+ ∈ ∆B is selected from a set of primitives in

the dictionary∆B (see eqn. (3)) with various locations, orientation and types so that it achieves

a maximum reduction of the energyE(Θ,S), until the reduction amount is zero.

B∗
+ = arg max

B+∈∆B

E(Θ,S)− E(Θ+,S+), (24)

For the current sketchS and updated sketchS+ we need to compute the optimal orienta-

tion fields Θ and Θ+ respectively by diffusion equations in order to evaluateE(Θ,S) and

E(Θ+,S+). In the following, firstly we present the computation ofΘ given S. This is similar

to the diffusion of the vector field in the synthesis step, except that the orientation field is

influenced by both the sketch and the observed image. Secondly we present the algorithm for

adding the primitives in spirit similar to matching pursuit [15].

A.1. Computing the orientation field by diffusion

As the sketchS determines the orientation fieldΘsk in the sketch areaΛsk (eqn.(8)), we

only need to computeΘnsk by minimizingE1(I
obs
H |Θ)+E2(Θ|S) (we omitρ for clarity in this
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subsection). Therefore the orientation fieldΘnsk should achieve small image gradients∇θ(v)I
obs
H

and align smoothly withΘsk in the undirected primitives.

From the imageIobs
H , we calculate its intensity gradient

s(v) =
√
|∇xIobs

H |2 + |∇yIobs
H |2 θo(v) = arctan(

∇yI
obs
H

∇xIobs
H

), ∀v ∈ Λ.

We rewrite the gradient at directionθ in the following form.

(∇θ(v)IH)2 = (∇xIH cos θ(v) +∇yIH sin θ(v))2

= s(v)2(cos θo(v) cos θ(v) + sin θo(v) sin θ(v))2

= s2(v) sin2(θ(v)− θo(v))

=
s2(v)

2
(1− cos(2θ(v)− 2θo(v)).

Therefore the energy functionE1(I
obs
H |Θ) + E2(Θ|S) becomes,

∑

v∈Λnsk

s2(v)

4σ2
θ

(1− cos(2θo(v)− 2θ(v)) +
1

2

∑

v∈Λnsk

∑

u∈∂v

1

2
(1− cos(2θ(u)− 2θ(v)).

It can be minimized by the following diffusion equations,

dθ(v)

dt
= −s2(v)

4σ2
θ

sin(2θo(v)− 2θ(v))− 1

2

∑

u∈∂v

sin(2θ(u)− 2θ(v)), v ∈ Λnsk. (25)

We use the nonlinear Gauss-Seidel method [4] to solve forΘ. Once the diffusion equations

converge, the energyE(Θ,S) measures the goodness of the orientation fieldΘ and sketchS

and is used in the primitive pursuit algorithm below.

A.2. Pursuing the primitives

In the initial stageS = ∅, the orientation fieldΘ computed by the diffusion equation has

blurry hair boundaries. The sketchS plays an important role in computing the orientation field.

Fig. 10.(b-c) shows a contrast example of the orientation field computed with and without the

primitives.
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Fig. 10. Comparison of the orientation field computed by diffusion with or without the sketch. (a) The input image. (b)

Orientation fieldΘ computed withS = ∅. We visualize the angleθ ∈ [0, π) by color. (c) The zoomed-in view of the

orientation field within the dashed window in (b). The orientation field has blurred boundary. (d) Orientation fieldΘ computed

together with the sketchS. (e) The zoomed-in view of the orientation field within the dashed window in (d). The orientation

field has sharp discontinuities along the occluding hair boundary.

SupposeB+ ∈ ∆B is a candidate primitive with windowΛ+ andS the current sketch. The

fitness ofB+ is evaluated by three energy terms inE(Θ,S).

Firstly, B+ should fit well with the current sketch according to energyE3(S). If it starts a

new curve, the energy will be increased inλNC
, otherwise it extends a current curve with a

smoothness energye(θia, θib)
2.

Secondly, addingB+ will affect the overall orientation field in the non-sketch partΘnsk+

through the diffusion equation (25), which minimizesE1(I
obs
H |Θ+) + E2(Θ+, ρ+|S+) on Λnsk.

This is too expensive to compute it by running the diffusion equations for each new primitive.

So we simply copy the orientation fields of the primitive to current orientation fieldsΘ as the

approximation ofΘ+.

Thirdly, B+ should fit well with the image appearance in the local window. AsB+ determines

the orientation fieldΘ+ within its window Λ+, it should be aligned well with the minimum

image gradient directions, in terms of the energy term
∑

v∈Λ+

(∇θ(v)I
obs
H )2

2σ2
θ

. This energy is part of

E1(I
obs
H |Θ) (see eqn. (20)) over windowΛ+. In the following, we shall focus on the computation
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of
∑

v∈Λ+

(∇θ(v)I
obs
H )2

2σ2
θ

, as other energy terms have been discussed before.

As the dictionary∆B includes five types of primitives at all locations, orientation and

angle variations, directly computing the summation
∑

v∈Λ+

(∇θ(v)I
obs
H )2 for all possible windows

is quite expensive. We compute the following quantity once at the beginning and then use them

repeatedly in later computation.

At each point(x, y) ∈ Λ, we compute a matrix (tensor),

T (v) =



∇xI

obs
H ∇xI

obs
H ∇xI

obs
H ∇yI

obs
H

∇yI
obs
H ∇xI

obs
H ∇yI

obs
H ∇yI

obs
H
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Due to the properties of the tensor, for the windowΛ0 which has any constant orientationθ,

we can compute the summation of(∇θI
obs
H )2 by the summation of the tensor,

∑

v∈Λ0

(∇θI
obs
H )2 = (cos θ, sin θ)(

∑

v∈Λ0

T (v))(cos θ, sin θ)′. (27)

From the definition of the primitives, each primitive is composed by few (less than 3)

sub-windows with constant orientations. Therefore, we compute and store the summation of

the tensor for all kinds of sub-windows. Then the fitness of each primitive can be computed

efficiently by combining the fitness energy in the sub-windows.

To summarize step I, we have the following algorithm for computing the undirected sketch

S and the orientation fieldΘ from the hair texture imageIobs
H .

Step I: Algorithm for the undirected sketch S and orientation field Θ

0. Given hair texture imageIobs
H and primitive dictionary∆B.

1. Initialize S = ∅, Λsk ← ∅, NC ← 0, Λnsk ← Λ.

2. Compute the orientation fieldΘnsk by diffusion eqn.(25).

3. Compute the current total energy functionE(Θ,S) in eqn. (19).

3. Iterate the following steps.
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4. Birth of a new sketch

5. For anyB+ ∈ ∆B, computeδ(B+) = E(Θ,S)− E(Θ+,S ∪ {B+})

6. ChooseB∗
+ = arg max

B+∈∆B

δ(B+).

7. If δ(B∗
+) ≤ 0, exit. OutputS∗ andΘ∗.

8. UpdateCi = B∗
+, NC ← NC + 1, Λnsk ← Λnsk \ Λ∗+, Λsk ← Λsk ∪ Λ∗+.

9. Trace the sketch curveCNc:

10. ForB+ at the two ends ofCNC
, computeδ(B+) = E(Θ,S)− E(Θ+,S ∪ {B+}),

11. ChooseB∗
+ = arg max δ(B+).

12. If δ(B∗
+) ≤ 0, go to step 4.

13. UpdateCNC
← CNC

∪ {B∗
+}, Λnsk ← Λnsk \ Λ∗+, Λsk ← Λsk ∪ Λ∗+. Goto step 9.

The sketch pursuit algorithm above resembles the matching pursuit algorithm [15] in signal

decomposition with wavelets. The matching pursuit algorithm adds one wavelet base at a time

to achieve maximum reduction of reconstruction error. Our primitives are disjoint rather than

linear additive. Furthermore, the orientation field is a layer of hidden variables that have to be

computed iteratively. All these factors make the computation more complicated than matching

pursuit.

B. Step II: computing the hair growth directions

In the second step, we compute the hair growth directionsdS and dV for the sketchS

and orientation fieldΘ respectively. SupposeS = {Ci : i = 1, ..., NC} has a set ofNC

undirected sketch curves, and the primitives on each curve share the same direction labels. The

five primitives (a)-(e) have 1, 1, 2, 2, 1 direction variables respectively. For notation clarity, we

pool all the direction variables together and denote,

dS = (d1, d2, ..., dm) ∈ {−1, 1}m. (28)
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Fig. 11.(a) shows an example with a number of curves. We represent each variable by a node

and form an adjacency graph in Fig. 11.(b). Two nodesdi, dj are said to be adjacent if they

belong to two different curves and there is a straight line connecting the two curves without

intersecting other curves.
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(a) (b)
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Fig. 11. (a) A portion of a sketch with a number of curves, and each curve has 1-2 direction variables. (b) Each direction

variable in (a) is represented by a node/vertex in the adjacency graph. Two adjacent nodes (curves) have a weighted edge for

their direction compatibility constraints. The compatibility probabilityq(di, dj) is abbreviated byqij .

Therefore, the problem of inferring the direction becomes a binary Graph labeling/coloring

problem.

B.1. The energy terms related to directions

In the maximum posterior probability formulation in eqn. (18), the direction is not involved in

the image modelp(Iobs
H |Θ,ρ). Only two energy terms contribute to the hair directions. The first

term is included inp(V|S,dS) and it is the smoothness of vector flow fieldτ(v), v ∈ Λsk for

the non-sketch part conditioning on the sketch partτ(v), v ∈ Λnsk (see eqn. (10)). The second

term is included in the prior probabilityp(S,dS) where the directions within the primitive

windows follow a prior probabilitypdir(v, θ(v), d(v)). An additional source of information for

determining the directions comes from the dividing line primitives whose directions are known.
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Given Θ andS, we transfer eqn. (18) to the following energy minimization problem,

(dS,dV )∗ = arg min E(dS,dV |Θ,S) (29)

= arg min
∑

v∈Λnsk

∑

u∈∂v

(1− cos(τ(u)− τ(v)))− ∑

v∈Λsk

log pdir(v, θ(v), d(v)).(30)

d(v), v ∈ Λsk is determined bydS, and the non-sketch partd(v), v ∈ Λnsk is computed

through the diffusion equation (25) which minimizes the first energy term above. Therefore

the computation ofdS is the key anddS is evaluated by the smoothness of the vector fielddV

in the above equation.

There are several possible algorithms for solving the graph labeling problem. For example,

Belief propagation and graph cut are fast solutions and the Gibbs sampler [8] is a general

algorithm. However, in this problem, Belief propagation and Graph cut are not applicable to

the general energy functions above and the Gibbs sampler is inefficient because of the strong

coupling in the labels. In the following we adopt a Swendsen-Wang cut algorithm [1] which

can simultaneously flip the lables of several nodes.

B.2. The Swendsen-Wang cut algorithm for labeling the adjacent graph

For each linke =< di, dj > in the adjacency graph, we define a local compatibility probability

qij which represents how stronglydi anddj are correlated based on some local measurements.

Fig. 12 shows some examples for two streamline directions. These probabilitiesqij are used

for proposing clusters (connected components) in the Swendsen-Wang cut method [1]. As a

bottom-up proposal probability, the exact formula forqij does not matter too much, though a

good probability will lead to fast convergence.

Without loss of generality, supposedi and dj are the direction variables on the right and

left sides of two curvesCm and Cn respectively. We denote byΛ(di, dj) the neighborhood

between the two curves. One may use heuristic method for computingΛ(di, dj), and we define
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Fig. 12. Direction compatibility between two adjacent streamline curves. Row 1 shows the vector fields in color and row two

shows the energy tension in the vector fields with darker spots for high energy. Intuitively, the two curves in (a) and (b) have

compatible directions and thus lower energies. (b) and (d) are not compatible and have high energies.

the energy of directional compatibility as

E(di, dj) =
∑

v∈Λnsk∩Λ(di,dj)

∑

u∈∂v

(1− cos(τ(u)− τ(v))).

As the probability is the same if we flip bothdi, dj simultaneously, we normalize the proba-

bility,

qij = p(di = dj) =
exp(−E(di = 1, dj = 1))

exp(−E(di = −1, dj = 1)) + exp(−E(di = 1, dj = 1))
.

di anddj are highly correlated ifqij is close to1 or 0, and they are less correlated whenqij is

close to0.5.

In [1], the Swendsen-Wang cut algorithm generalizes the original Swendson-Wang algorithm

so that it can be applied for general probability models in vision task. It samples the posterior

probability p(dS,dV |Θ,S) ∝ e−E(dS ,dV |Θ,S), whereE(dS,dV |Θ,S) is defined in eqn.(29) In

our experiment, we do not use the simulated annealing schedule which is often needed in

optimization. The reason, in our opinion, is that the energy has already rather low temperature

and the Swendsen-Wang method is known to mix rapidly in low temperature.
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Step II: The Swendsen-Wang cut method for direction inference

0. Initialize a labelingdS = (d1, d2, ..., dm) randomly or uniformly.

1. Iterate the following steps for currentdS.

2. For each adjacency linke =< di, dj >,

Turn e off deterministically ifdi 6= dj

Turn e off with probability 1− qij if di = dj

3 Collect a set of connected componentsCP .

4. Select a connected componentV0 ∈ CP with probability q(V |CP ) (say uniformly).

5. Flip the direction labels in the connected componentV0 from ` to `′, `, `′ ∈ {−1, 1}

6. Compute the new labelingd′S and the correspondingd′V .

7. Accept the proposed flip with probabilityα((dS,dV ) → (d′S,d′V )) as

α((dS,dV ) → (d′S,d′V )) = min(1,

∏
e∈C(V0,V`′ \V0)

(1−qij)∏
e∈C(V0,V`\V0)

(1−qij)
· p(d′S ,d′V |Θ,S)

p(dS ,dV |Θ,S)
).

In the above acceptance probability,V` and V`′ are the subgraphs with direction labels` and

`′ respectively.C(V0, V` \ V0) is the cut betweenVo and V` \ V0, andC(V0, V`′ \ V0) is the cut

betweenVo andV`′ \ V0. We refer to [1] for more details of the Swendsen-Wang cut algorithm.

V. EXPERIMENTS

We collected a hair dataset containing 300 realistic human hair images extracted from a

cosmetic makeup software. The hairs are segmented from human images and pasted on a

background of constant color.

We manually labeled the sketches of 20 hair images with distinct styles as the training

examples. From these sketches we learn the primitives and compute the vector field through

diffusion. We learn the two prior probabilities shown in Fig.7. We also learned a number of

parameters such as the standard deviations used in the representation.
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Fig. 13. Sketch pursuit procedure. (a) Inferred sketch. It is null sketch at the first step; (b) The orientation field; (c) The

energy functionE1(I
obs
H |Θ) + E2(Θ,�|S) at each pixel.

Experiment 1: Hair sketching and synthesis. Fig. 8 illustrates the steps in inferring the

sketch and synthesis, and more results are shown in Fig. 15. A detailed sketch pursuit example

is shown in Fig. 13. From the figure, we can see that the energyE1(I
obs
H |Θ) + E2(Θ,ρ|S) is

reduced while the new curves are added into the sketch graph.

Our experiments reveal that the sketch level representation plays two important roles in

computing the vector field.

1. As Fig. 10 shows, the primitives correct the errors in the initial orientation field(ρ, θ) ,

especially around the discontinuities of flows. It is a well-known problem in filtering or feature

extraction in any random fields. On one hand, we need a large window to pool information

locally, but on the other hand large windows lose spatial resolution. This problem is resolved
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by fitting a number of parametric primitives in generative windows.

Fig. 14. Inference of hair growth directions. (a) The input image; (b) SketchS with directiondS computed with the point

wise prior pdir. Some hairs on the top run in opposite directions. (c) The vector fieldV generated by the directed sketch

(S,dS) in (b). The directions are wrong at some pixels and therefore the energy in the vector field is high. (d) Sketch with

directions inferred with curve compatibility constraints. (j) The vector field generated by the directed sketch(S,dS) in (d).

2. The sketch helps to determine the directions which cannot be determined locally. With

the sketch, we have the high level information of hair structure, such as the dividing line, the

source and sink boundary. Fig. 14 shows a comparison experiment where the compatibility

among curves plays an important role in computing the correct directions.

Experiment 2: Hair editing . Fig. 16 shows two examples of hair editing. For a given image

in Fig. 16.(a), we compute the sketch graph shown in Fig. 16.(b). Then we provide a user

interface to edit the sketches. The interface provides a number of operators such as adding/

moving/ deleting a curve, changing its directions, editing the shading effects, setting parameters

for the intensity contrast etc. Fig. 16.(c) shows examples of the edited sketch and Fig. 16.(d)

displays the novel hair style. These editing steps are more convenient and much faster than the

3D graphics interfaces.

Experiment 3: Hair rendering . Rendering cartoon hair is an application of the hair analysis
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Fig. 15. Experiments of hair sketching and synthesis on seven hair styles. (a) are the input images, (b) are the computed

sketches with growth directions, (c) are the vector fields, (d) are the synthesized images, and (e) are the cartoon rendering in

different stroke styles.



32

��� ��� ������ obsI S S' syn'I

Fig. 16. Examples of hair editing for hair images. (a) Original hair image; (b) Original hair sketchS; (c) Edited hair sketch;

(d) Novel hair styles after editing.

and it becomes extremely convenient for the generative models. All we need to do is to replace

the sketch curves by stylistic brush drawings.

In non-photorealistic animation and rendering (NPAR) [9], different drawing styles can be

achieved by different types of strokes. In our experiments, we use a simple brush shown in

Fig 17. We sample a number of key points on each sketch curveCi, and draw a smooth

Catmull-Rom spline passing these points as the skeleton of the brush. For each key point on

the skeleton, we define a width and get two points along its normal direction. These points

determine two Catmull-Rom splines which are the boundaries of the brush stroke. We assume

the brush has two narrowed ends. Some examples of hair rendering are shown asJrnd in Fig. 8

and Fig. 15. Other styles can be generated with more fancy brushes.
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Fig. 17. A brush example for the non-photorealistic hair rendering.

VI. L IMITATIONS AND FUTURE WORK

The three level generative hair model is extremely compact (O(100) bytes) and yet it is

shown to be effective in synthesizing realistic hair images with diverse hair styles. It also

supports convenient hair editing and rendering. The representation is aimed at applications such

as extremely low bit image compression in video phones, human hair recognition, and cartoon

animation etc.

The current model is still limited in the following aspects. (i) The model is 2D dimensional and

therefore its vector field does not work well for very curly hairs in Fig. 18.(a). This needs short

sketch curves with occluding relations in the sketch representation. Similar work was studied in

a curve process in [21]. (ii) It cannot work well for very short hairs growing forwards (see in

Fig. 18.(b)) or black hairs (see in Fig. 18.(c)). The latter have very weak textures for computing

the vector field reliably. (iii) We work on segmented hair images, and we shall integrate the hair

sketch with our face sketch work [24] and use the face as context to detect hair. (iv) We cannot

model more structured hair styles, such as, pigtail and braid which will need more sophisticated

primitives and sketch graphs.

ACKNOWLEDGEMENT

This work is supported by grants NIH 5R01-EY013875, NSF IIS-0222967, and a Microsoft

gift. The authors thank Dr. Alan Yuille, Dr. Harry Shum and Dr. Ying Qing Xu for their generous

support and many stimulating discussions.



34

(a) (b) (c)

Fig. 18. Some difficult cases for the current model and inference algorithm. (a) Curly hairs with heavy occlusions of hair

strands. (b) Short hairs growing forwards. (c) Black hair with weak flow texture.
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