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Abstract

In this paper, we present an algorithm for parsing natural images into middle level vision

representations – regions, curves, and curve groups (parallel curves and trees). The al-

gorithm is targeted for an integrated solution to image segmentation and curve grouping

through Bayesian inference. The paper makes the following contributions to the literature.

(1) It studies a layered (or 2.1D-sketch) representation integrating both regions and curves

models which compete to explain an input image in terms of maximizing a Bayesian Poste-

rior probability. The curve layer occludes the region layer and the curves observe a partial

order occlusion relation among themselves. (2) It studies a Markov chain search scheme

which consists of many pairs of reversible jumps to traverse the complex solution space. Six

Markov chain jumps are designed as Metropolized Gibbs Samplers (MGS). A MGS proposes

the next state within the jump scope of the current state according to a conditional prob-

ability like a Gibbs sampler and then accepts the proposal with a Metropolis-Hasting step.

One pair of jumps is designed by the Swendsen-Wang cut method for curve grouping. The

paper discusses systematic design strategies of devising reversible jumps for the complex

inference task. (3) The proposal probability ratios in jumps are factorized into ratios of

discriminative probabilities. The latter are computed in a bottom-up process and drive

the Markov chain dynamics in a Data-Driven Markov Chain Monte Carlo framework. We

demonstrate the performance of the algorithm in experiments with a number of natural

images.

Keywords: Image Segmentation, Perceptual Organization, Curve Grouping, Graph Partition,
Data-Driven Markov Chain Monte Carlo, Metropolized Gibbs Sampler.



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(a) input image (b) regions (c) curves            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(d) free curves (e) parallel curves (f) trees

Figure 1: An illustration of parsing an image into regions, curves, and curve groups. (a) is an input
image which is decomposed into two layers – (b) a layer of regions and (c) a layer of curves. The
curves are further divided into (d) free curves, (e) a parallel curve group for the fence, and (f) the
trees. The curves observe a partial order occlusion relation.

1 Introduction

1.1 Objectives and contributions

In this paper, we present an algorithm for parsing natural images into middle-level vision represen-

tations – regions, curves, and curve groups (parallel curves and trees). The algorithm is targeted

for an integrated solution to image segmentation and curve grouping through Bayesian inference.

We adopt a generative model in a layered (or 2.1D sketch) [30, 40] representation illustrated in

Fig. 1. A region is a two-dimensional compact area with coherent intensities. We specify two

types of coherence for regions, one is constant intensity with homogeneous texture, and the other

is smooth shading. Each type of coherence is specified by a family of probability models. A curve

is one-dimensional shape structure with smooth intensity profile at the cross section and along the

curve. It may be considered as a degenerated region. This is different from other works which

refer curves to the boundaries of 2D regions [23, 22, 27]. We are interested in three types of curve

structures in the paper. (1) free curves – independent and elongated 1D structures. (2) parallel

groups –curves that form a 1D Markov chain structure along their normal directions, such as railing
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and zebra stripes, and (3) trees – curves arranged Markov tree structures. All curve structures are

assumed to observe a partial-order occlusion relation and they all occlude the region layer.

While there are a wealthy body of work about image segmentation and curve detection and

grouping respectively, the two problems have not been studied together in explicit representations.

The integration is important for achieving improved results in either tasks since they jointly explain

the input image. On one side, conventional segmentation algorithms assume that images consist

of two-dimensional compact regions and thus produce degenerated results when they encounter

one-dimensional curve objects. For example, Fig. 2 shows a few examples of image segmentation

using a Data-Driven Markov Chain Monte Carlo (DDMCMC) method [37] and the curves make the

segmentation rather cluttered. For comparison Figures 14-23 demonstrate much improved results

when the curve structures are represented and computed separately. On the other side, for lack

of image models for background regions, curve detection and grouping algorithms often assume

uniform background, or as an alternative, they have to adopt discriminative curve models that

work on the differences between curves and background.

(a) (b) (c) (d)

Figure 2: Degraded results in image segmentation in the presence of curves. In comparison, Fig-
ures 14-23 show much improved results when the curve structures are represented and computed.

Given an input image, our objective is to infer an unknown number of regions, free curves, and

parallel groups and trees, with occlusion relation recovered and their probability models selected

and fitted – all in the process of maximizing (or simulating) a Bayesian posterior probability. The

algorithm searches for optimal solutions in a complex state space which contains a large number of
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subspaces of varying dimensions for the possible combinations of regions, curves, and curve groups.

The paper is mainly focused on studying a systematic search strategy in such complex state

spaces by Markov chain Monte Carlo (MCMC) methods. The Markov chain simulates (or draw

samples) from a posterior probability. The following are three basic considerations in our MCMC

design.

Firstly, the Markov chain should be irreducible so that it can traverse the entire solution space.

Our Markov chain consists of six pairs of ”simple jumps” and one pair of ”composite jumps” for

operating on the curves, together with a number of reversible jumps on the regions which are referred

to previous image segmentation paper [37]. These pairs of jumps are selected probabilistically and

the resulting Markov chain has a transition graph which connects all states in the search space.

The Markov chain can reach any states from an arbitrary initialization.

Secondly, each simple jump operates on 1− 2 curves or curve elements. We study the scopes of

the jumps within which the algorithm proposes the next state according to a conditional probability

like a Gibbs sampler. The proposal is then accepted in a Metropolis-Hastings step. This is why it

is called Metropolized Gibbs Sampler (MGS [25]). A composite jump can operate on a selected set

of curves through a cluster sampling method (the Swendsen-Wang cut [2, 3]).

Thirdly, the computational cost at each jump step should be small. The proposal probability

ratios in our design are factorized and computed by discriminative probability ratios. These dis-

criminative probabilities are computed in bottom-up processes which are then used to activate the

generative models in a top-down process. As Fig. 12 illustrates, each simple jump maintains a list

of “particles” which are weighted hypotheses with the weights expressing the discriminative proba-

bility ratios. Then a particle is proposed at a probability proportional to its weight within the list

(scope). The higher the weight is, the more likely a particle will be chosen. In contrast, the com-

posite jump introduces auxiliary variables in the proposal probability and explores a combinatorial

number of candidates (clusters) instead of maintaining a list explicitly.

1.2 Relation to previous work and alternative methods

1. Relation to previous work on Markov chain Monte Carlo. Stochastic computing with reversible

jumps was pioneered in [19, 18], and the jump-diffusion method was used successfully in [24, 35]

for automatic target recognition and pose estimation. A Data-Driven Markov Chain Monte Carlo
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(DDMCMC) framework was proposed to improve the speed of reversible jumps by computing the

proposal probabilities with factorized discriminative models. The framework has been applied to

object detection [42], image segmentation [37] and range segmentation [12]. Lately, the DDMCMC

framework has been applied to integrating high level vision tasks such as face and text detection

with the segmentation process [39]. This current work has been extended in [20] to 3D scene

reconstruction from a single image based on the region and curve representation. The work is part

of a series of work for achieving an integrated vision inference engine for segmentation, grouping,

and object recognition. In this paper we shall solely focus on the curve grouping aspect and its

interactions with image segmentation.

In recent years, the Markov chain Monte Carlo methods have attracted considerable interests

in vision and demonstrated computational power in traditional tasks such as structure from mo-

tion [11, 14] and 3D modeling[13]. There is a growing need for systematic ways of designing and

analyzing effective Markov chain searches in complex vision tasks. In this paper we intend to

provide detailed descriptions in an effort to make the MCMC designs simple and easy to use.

2. Relation to the other work in curve detection and grouping.. Curve detection and tracing have

been extensively studied in several areas. For example, active contours (SNAKE) [23], road tracing

in satellite images [16], medical image analysis [43], object tracking [22], and image coding using

ridgelets and curvelets [6, 7]. Existing methods have various restrictive assumptions. (1) Many

methods require manual initialization of the curve near the right position [23, 22, 10] or manually

initializing the starting point for tracing [16]. (2) Most algorithms assume uniform background [1,

43] for the lack of generative models for the background regions. The popular SNAKE and active

contour models use a discriminative representation that works on the difference between the curves

and background rather than generative models for images. (3) Image coding algorithms [6, 7]

assume a generative model that images are linear addition of curve elements/bases. Our early

attempt [38] adopted this additive model with the image bases organized in a Markov chain. The

additive model results in artifacts, such as blurry boundaries, and much improved results are

observed using occlusion model in this paper. (4) In vision, many perceptual grouping methods

work on edge maps rather than the original images. We argue that generative image models are

needed for recovering from errors in the edge detection stage and for interacting with other types

of objects in images.
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3. Comparison with alternative methods. The Markov chain jumps can be considered as general-

izations to conventional gradient descent moves in three aspects. (I) A jump can change dimensions

in the state space by changing the number of objects, while gradient methods only move in spaces

of fixed dimensions. (II) A jump can move in a rather large scope at a single step, while gra-

dient methods move within a small nearest neighborhood. (III ) A jump samples the next state

probabilistically in its scope, while gradient methods make a greedy decision.

1.3 Organization of the paper

In Section (2) we first present the generative models for regions, curves, and curve groups, and

formulate the problem as Bayesian inference. Then we present the algorithm in four sections. In

Section (3) we discuss the basic principles of Metropolized Gibbs Sampler (MGS) methods, speed

analysis, and strategies for good designs. In Section (4) we study reversible jumps for structural and

occlusion relation changes involving regions and free curves. Then we show a series of experiments

in Section (5) and conclude the paper with a discussion in Section (6).

2 Generative models and Bayesian formulation

In this section, we present generative models for both regions and curve structures, and formulate

the inference problem in a Bayesian framework.

2.1 Generative models of curves

(a) free curve (b) discretized curve (c) parallel group (d) tree

Figure 3: Representations of curves and curve groups. (a) A free curve in continuous representation.
(b) A free curve is discretized into a chain of “bars”. (c) Curves for a parallel group, (d). Curves
for a Markov tree.

In this paper, we consider three types of curve models illustrated in Fig. 3.

1. Free curves. A free curve, denoted by C, is represented by its medial axis cm(s) = (xm(s), ym(s))
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and its width 2w(s) for s = [0, L]. L is the curve length. In a continuous representation, a free

curve C occupies an elongated area or domain D(C) bounded by the left and right side boundaries

denoted respectively by cl(s) = (xl(s), yl(s)) and cr = (xr(s), yr(s)). Fig. 3.a shows the boundaries

in dashed lines.

cl(s) = cm(s)− w(s)n(s), cr(s) = cm(s) + w(s)n(s), (1)

where n(s) is the unit normal of cm(s). Intuitively, a curve is a degenerated region parameterized

by a 1D axis. Usually w(s) is only 1 − 3 pixels wide and w << L. This causes major topology

problems in image segmentation where the two boundaries cl(s) and cr(s) could often intersect and

generate numerous trivial regions. This problem will be resolved with the 1D representation. The

intensities of the curve often exhibit a globally smooth shading patterns, for example, the stripes

in a zebra image. Thus we adopt a quadratic function for curve intensities,

J(x, y; θ0) = ax2 + bxy + cy2 + dx + ey + f, (x, y) ∈ D(C), (2)

with parameters θ0 = (a, b, c, d, e, f). Therefore, a free curve is described by the following variables

in continuous representation

C = (L, cm(s)L
s=0, w(s)L

s=0, θ0, σ).

where σ is the variance of the intensity noise (residue).

While this continuous representation is convenient for deriving diffusion equations (PDEs), we

should also work on a discrete representation in other sections where the domain D(C) is a set of

pixels in lattice and C is a chain of elongated bars as Fig. 3.b illustrates.

The prior model for p(C) prefers smooth medial axis, narrow and uniform width, and it also

has a term for the area of the curve in order to match with the region prior.

p(C) ∝ p(D(C))p(c(s))p(w(s)) ∝ e−E(C). (3)

The energy E(C) is the sum of three terms

E(C) = γc|D(C)|ρ + λL + Eo(w), (4)

where ρ, λ are constants and are fixed in our experiments, and γc is a scale factor that can be

adjusted to control the number of curves. Eo(w) is a term which constrains width w(s) to be small.
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We denote the intensities inside the curve domain by ID(C), and assume the reconstruction residue

follows iid Gaussian N (0;σ2), so the image likelihood is

p(ID(C)|C) =
∏

(x,y)∈D(C)

N (I(x, y)− J(x, y; θ0); σ2). (5)

2. Parallel curve groups. A parallel curve group consists of a number of n nearly parallel curves

as Fig. 3.c shows. Each curve Ci, i = 1, 2, ..., n is summarized by a short line segment connecting

its end points (see the dashed lines in Fig. 3.c). They represent curve structures, such as zebra

strips, grids, and railings in natural images. Grouping curves into a parallel group is encouraged

in the model as it reduces coding length and it is crucial for perceiving the whole object from its

parts. For example, separating a zebra from the herd. We denote a parallel curve group by

pg = (n, {C1, C2, ..., Cn}, {α1, α2, ..., αn}),

αi ∈ {1, ..., n} is the index to the curve preceding Ci in the chain.

The prior model for a pg is a first order Markov model in a Gibbs form with a singleton energy

on individual curve and a pair energy for two consecutive curves

p(pg) ∝ exp{−λ0n−
n∑

i=1

E(Ci)−
n∑

i=2

Epg(Ci, Cαi)}. (6)

The singleton E(Ci) is inherited from the free curve model. For the pair energy, we summarize each

curve Ci by five attributes: center (xi, yi), orientation θi of its associate line-segment, and length

Li of the line segment, curve average width (thickness) w̄i, and average intensity µi. Epg(Ci, Cαi)

measures the differences between these attributes.

3. Markov trees. Fig. 3.d shows a number of curves in a Markov tree structure. We denoted it

by

T = (n, {C1, C2, ...., Cn}, {β1, β2, ..., βn}).

βi ∈ {1, ..., n} is the index to the parent curve of Ci. Thus the prior probability is

p(T ) ∝ exp{−λ0n−
n∑

i=1

E(Ci)−
∑

αi 6=∅
ET (Ci, Cβi

)}. (7)

Again, E(Ci) is inherited from the free curve. The term for Ci and its parent Cαi , ET (Ci, Cαi),

measures the compatibility such as end-point gap, orientation continuity, thickness, and intensity

between the parent and child curves.
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The parallel group pg and tree T inherit the areas from the free curve, thus

D(pg),D(T ) = ∪n
i=1D(Ci). (8)

It also inherits the intensity function J(x, y; θi) from each free curve Ci, i = 1, 2, ..., n. In summary,

the intensity models for C, pg, T are all generative for image I as

I(x, y) = J(x, y; θ) +N (0;σ2), (x, y) ∈ D(Ci), D(pg), or D(T ). (9)

2.2 Generative models of regions

Once the curves explain away the elongated patterns, what left within each image region in the

background are often modeled reasonably well with simple region models, except high level objects

which will be studied in [39]. In this paper, we adopt two simple region models in comparison to

the four models in [37] We denote by R ⊂ Λ a 2D region and IR the intensities inside R.

The first model assumes constant intensity with additive noise modeled by a non-parametric

histogram H.

J(x, y; 1, θ) = µ, I(x, y) = J(x, y) + η, η ∼ H, (x, y) ∈ R.

With a slight abuse of notation, we denote by θ = (µ,H) the parameters used in a region.

The second model assumes a 2D Bezier spline function with additive noise. The spline accounts

for global smooth shadings.

J(x, y; 2, θ) = B′(x)MB(y), I(x, y) = J(x, y; θ2) + η, η ∼ H, (x, y) ∈ R.

where B(x) = ((1 − x)3, 3x(1 − x)2, 3x2(1 − x), x3) is the basis and M is a 4 × 4 control matrix.

The parameters are θ = (M,H) as used in [37]. The likelihood probability is

p(IR|R, θ) ∝
∏

(x,y)∈D(R)

H(I(x, y)− J(x, y; `, θ)), ` ∈ {1, 2}. (10)

The prior for a region R assumes short boundary length ∂R (smoothness) and compact area

|D(R)|,
p(R) ∝ exp{−γr|D(R)|ρ − 1

2
λ|∂R|}, (11)

where ρ and λ are constants that are fixed for all the experiments in this paper, and γr is a scale

factor that can be adjusted to control the number of regions in the segmentation.
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2.3 Occlusion, partial order relation, and partition of lattice Λ

We collect all the curves, including free curves and the curves in the parallel groups and trees,

in a set A = (C1, C2, ..., CN ), and define a partially ordered set (poset [33]) PR = 〈A,¹〉. b ¹
c means that curve b occludes curve c or b is on top of c. PR is represented by a directed

acyclic graph called Hasse diagram. Figure 4 shows an example of the Hasse diagram for PR =

{〈a, b〉, 〈b, d〉, 〈a, d〉, 〈a, c〉, 〈c, d〉, 〈e, f〉} on a set A = {a, b, c, d, e, f}.

ba

c

d

e

f

Figure 4: A Hasse diagram for a partial order relation

As we define curves as the basic elements in A, the curves in a parallel group or a tree can

occlude each other. By default, all curves in A occlude the region layer. It is worth mentioning

that the occlusion representation is important for producing improved results over the additive

representation in our previous experiments [38] that generate images by superimposing image bases.

The occlusion relation between two curves are often evident at the T-junctions or cross-junctions in

images. Figure 7.(c) shows an example of junction and corner detection as bottom-up computation

for the occlusion points.

The occlusion relation PR forms a partition of the 2D discrete lattice Λ. Each curve C occupies

pixels in its domain D(C) minus the pixels covered by other curves occluding C,

ΛC = D(C)− ∪C′¹CD(C ′). (12)

Therefore the domains for parallel groups and trees are respectively

Λpg = ∪C∈pgΛC and ΛT = ∪C∈T ΛC . (13)

The visible part of a region R is ΛR = D(R)− ∪C∈AΛC . 1

1For clarity of notation, we use D(C), D(pg), D(T ), and D(R) in equations (3), (4), (5), (9), (11), and (10). They
are actually replaced by ΛC ,Λpg,ΛT ,ΛR respectively in implementation.
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2.4 Bayesian formulation for probabilistic inference

Given an image I, our objective is to compute a representation of the scene (world W ) in terms of

a number of regions W r, free curves W c, parallel curve groups W pg, trees W t, and a partial order

PR. We denote the representation by variables

W = (W r,W c,W pg,W t,PR).

The region representation W r includes the number of regions Kr, and each region Ri has a label

`i ∈ {1, 2} and parameter θi for its intensity model

W r = (Kr, {(Ri, `i, θi) : i = 1, 2, ..., Kr}).

Similarly, we have W c = (Kc, C1, ..., CKc), W pg = (Kpg, pg1, pg2, ..., pgKpg), and W t = (Kt, T1, T2, ..., TKt).

The problem is posed as Bayesian inference in a solution space Ω.

W ∗ = arg max
W∈Ω

p(I|W )p(W ).

By assuming mutual independence between W r,W c,W pg,W t we have the prior model

p(W ) =
(
p(Kr)

Kr∏

i=1

p(Ri)
)(

p(Kc)
Kc∏

i=1

p(Ci)
)(

p(Kpg)
Kpg∏

i=1

p(pgi)
)(

p(Kt)
Kt∏

i=1

p(Ti)
)
. (14)

The prior for individual p(R), p(C), p(pg), p(T ) are given in previous subsections.

As there are N curves in total including the free curves, and curves in the parallel groups and

trees, thus the likelihood model follows the lattice partition and eqns (5) and (10).

p(I|W ) =
Kr∏

i=1

∏

(x,y)∈ΛRi

H((I(x, y)− J(x, y; `i, θi)) ·
N∏

j=1

∏

(x,y)∈ΛCj

N ((I(x, y)− J(x, y; θj);σ2
j ). (15)

Since all objects use generative model for reconstructing I, these models are directly comparable

and they compete to explain the image. This property is crucial for the integration of region

segmentation and curve grouping.

Our goal is to design an algorithm to make inference of the W ∗ which maximizes the posterior

p(W |I) by sampling W in the solution space with a fast simulated annealing procedure. This

poses rather serious challenges even though we have simplified the image models above. The main

difficulty is to deal with objects with different structures and explore a large number of possible

combinations of regions, curves, parallel groups and trees in an image. Especially our objective
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is to achieve automatic (i.e. no assumption for manual initialization) and nearly globally optimal

solutions.

We present the algorithm in the next sections. Limited by space, we only present novel com-

ponents for solving problems arising in the integration of segmentation and grouping. Readers are

referred to [37] for details of image segmentation by DDMCMC. We focus on the analysis and design

of Metropolized Gibbs Sampler (MGS) and its approximation followed by the detailed discussion

of the reversible jumps for structural and occlusion relation changes involving regions, free curves,

and curve groups.

3 Searching complex solution space by Markov chain

A main technical challenge in the integrated image parsing problem is that we must infer an

unknown number of objects – regions, free curves, and curve groups, with their occlusion relations

computed and their probability models selected and fitted. The algorithm must search for the

optimal solution in space Ω which consists of a large number of subspaces of varying dimensions.

In this section, we overview the basic concepts, principles, and speed criteria for designing Markov

chains that can traverse the solution space.

3.1 Designing reversible jumps

In this subsection, we shall focus on the essential practical problems in designing the reversible

jumps for exploring the space Ω.

3.1.1 Overview of MCMC design

Our goal is to maximize a posteriori (MAP) probability p(W |I) in solution space Ω, Note that W

has both discrete and continuous random variables and both can be sampled with the reversible

jumps[18]. In practice, diffusion processes are added to the reversible jumps[19, 24, 35, 12] for

effective computation of some continuous variables, such as the boundary of regions. In this paper,

we shall focus on the reversible jumps for clarity and we omit the region competition processes for

boundary diffusion [41].

The sampling algorithm simulates a Markov chain denoted by a triplet MC =< Ω, ν,K >.

ν(Wo) is the probability for the initial state Wo at time t = 0, and K(WA,WB) denotes the

transition probability from state WA to state WB for any WA,WB ∈ Ω. The kernel K shall have a
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unique stationary probability p(W |I), i.e.

∑

WA∈Ω

p(WA|I)K(WA,WB) = p(WB|I), ∀WB ∈ Ω. (16)

In practice, the requirement is replaced by a stronger condition – the detailed balance equation,

p(WA|I)K(WA,WB) = p(WB|I)K(WB,WA), ∀WB 6= WA. (17)

If we write ν and K as a row vector and a matrix respectively. The Markov chain visits states

Wo,W1, ..., Wt sequentially. At time t the Markov chain state Wt follows probability

Wt ∼ pt(W ) =
∑

Wo

ν(Wo)Kt(Wo,W ). (18)

As t increases, the Markov chain probability pt(W ) shall approach p(W |I), then the samples Wt

approximately follows the posterior probability p(W |I). The convergence of pt(W ) to the target

p(W |I) is monotonic in terms of the Kullback-Leibler divergence.

Our Markov chain consists of µ pairs of reversible jumps denoted by

Jm = (Jmr,Jml), m = 1, 2, ..., µ,

where Jmr and Jml are the right and left jumps respectively. These reversible jumps implement

operators on the curves and regions, such as death-birth, split-merge, switching models, switching

partial relation order, grouping-ungrouping etc. Intuitively, a pair of reversible jumps is like a move

that can be back-traced in AI search algorithms.

A pair of jumps Jm form a sub-kernel Km which is a weighted sum of the right and left sub-

kernels.

Km(WA,WB) = ωmrKmr(WA,WB) + ωmlKml(WA,WB). (19)

The overall kernel K is a linear summation of the sub-kernels

K(WA,WB) =
µ∑

m=1

ωmKm(WA,WB), ω1 + · · ·+ ωµ = 1, (20)

where ωm, m = 1, 2, ..., µ are the probability for choosing a specific move, and are time dependent.

For example, we should use the birth operators more often at the beginning.
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(a) (b)

Figure 5: (a). Illustrations for the scope Ω(W ) at a state W . The round domain on the horizontal
plane represents the scope of a pair of symmetric jumps and the dumbbells represent the left and
right scopes of a pair of asymmetric jumps. (b). A reversible jump Jm between two states WA and
WB. The overlap between Ωmr(WA) and Ωml(WB) affects the speed.

3.1.2 The scopes of reversible jumps

Each jump step can only change 1-2 variables in W and thus most entries in the transition matrices

Km(WA,WB) are zero. We define the scopes of a jump in the following.

Definition 1 At state W ∈ Ω, the scopes of the right and left jumps are the sets of states connected

to W by Jmr and Jml respectively minus W itself,

Ωmr(W ) = {W ′ : Kmr(W,W ′) > 0, W ′ ∈ Ω, W ′ 6= W},

Ωml(W ) = {W ′ : Kml(W,W ′) > 0, W ′ ∈ Ω, W ′ 6= W}.

The scope of Jm at W is Ωm(W ) = Ωmr(W ) ∪ Ωml(W ).

Thus with µ pairs of jumps each state W is connected to a set

Ω(W ) = ∪µ
m=1Ωm(W ).

Fig. 5.(a) illustrates the scope Ω(W ) with µ = 2 jumps in a 3-dimensional space. The scope Ω(W ) is

often small in comparison to the entire state space Ω, due to limited number of available operators

and the locality of the Markov chain. By analogy, one may imagine that the Markov chain walks in

a dark space Ω with a flashlight and the landscape is defined by probability p(W |I). Then Ω(W )

is the scope of the flashlight at state W .

13



For the jumps being reversible, we have the following observation,

WB ∈ Ωmr(WA) if and only if WA ∈ Ωml(WB), ∀m. (21)

Fig. 5.(b) shows the scopes of Ωml(WB) and Ωmr(WA).

We classify a reversible jump as symmetric and asymmetric in the following. The design of the

jumps will be affected by this property as we show in the subsection below.

1. A pair of reversible jumps are said to be symmetric if Ωmr(W ) = Ωml(W ) for W ∈ Ω. An

example is the jumps for switching image models of a region in next section where the scope

is the image model space (family with parameters) and it is illustrated in Fig. 5.(a) by the

round domain in the horizontal plane. Thus for any two connected states x and y, we have

WB ∈ Ωmr(WA) ∪ {WA} = Ωml(WB) ∪ {WB} 3 WA. (22)

2. A pair of reversible jumps are said to be asymmetric if Ωmr(W ) ∩ Ωml(W ) = ∅. For exam-

ple, the death-birth, split-merge jumps have disjoint right and left scopes. In Fig. 5.(a) we

illustrated Ωmr(W ) and Ωml(W ) by the two dumb-bells respectively. In this case, for an edge

e = (WA,WB) shown in Fig. 5.(b) we have

WB ∈ Ωmr(WA) ∪ {WA} 6= Ωml(WB) ∪ {WB} 3 WA. (23)

But the two sets Ωmr(WA) and Ωml(WB) overlap, as Fig. 5.(b) displays. The overlap affects

the Markov chain speed.

3.1.3 Gibbs and Metropolis-Hastings samplers

For a pair of symmetric jumps Jm, we use the Gibbs sampler [15] to design Km which will observe

the invariance eqn.(16). At state WA, we sample the next state WA proportional to p(W |I) in the

scope Ωmr(W ) = Ωm(W ), and the probability is normalized by the total probability in Ωm(W )

plus p(WA),

WB ∼ pmr,A(WB) =





p(WB |I)
p(WA|I)+

∑
WC∈Ωmr(WA)

p(WC |I) WB ∈ Ωmr(WA) ∪ {WA},
0 WB /∈ Ωmr(WA) ∪ {WA}

(24)

similarly it samples WA ∼ pml,B(WA) in the scope Ωml(Wy) = Ωm(W ). Because Jm is symmetric

(see eqn.22), the normalization (denominator in eqn.(24) is the same for both pmr,A(WB) and

pml,B(WA). They are canceled when they are plugged in the invariance equations (16).
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This condition is unfortunately not observed for the asymmetric jumps. Therefore we design

the asymmetric jumps according to the stronger condition – the detailed balance equations in (17).

A standard way to satisfy the detailed balance equations is the Metropolis-Hastings design[29, 21].

Km(WA,WB) = Qmr(WA,WB)αmr(WA,WB), for WA 6= WB, m = 1, 2, ..., µ. (25)

Qmr(WA, WB) = Qmr(WB|WA) is a proposal (conditional) probability for moving from WA to WB

with jump Jmr and α(WA,WB) is the acceptance probability,

αmr(WA,WB) = min(1,
Qml(WA|WB)
Qmr(WB|WA)

· p(WB|I)
p(WA|I) ). (26)

It uses the target probability ratio p(WB |I)
p(WA|I) to rectify the proposal probability ratio Qml(WA|WB)

Qmr(WB |WA) .

When the proposal is rejected, the Markov chain stays at state WA. Thus

Kmr(WA, WA) = 1−
∑

WB 6=WA

Kmr(WA,WB), ∀WA ∈ Ω. (27)

It is easy to check that the detailed balance equation (17) follows from eqns.(25), (26) and (27). The

key issue is to design the proposal probabilities Qmr, Qml for fast computation. This the subject

of the next two subsections.

3.2 The Metropolized Gibbs sampler

In this subsection, we study a design scheme called Metropolized Gibbs sampler which combines

Metropolis-Hastings and Gibbs samplers. Basically it proposes a state WB at WA by a Gibbs

sampler strategy within the scope Jmr(WA) and then accepts the move by a Metropolis-Hastings

step.

Consider the a pair of reversible jumps Jm = (Jmr,Jml) between two states WA and WB, we

design a pair of proposal probabilities following the target probability p normalized within the

scopes.

Q∗
mr(WB|WA) =

p(WB|I)∑

WC∈Ωmr(WA)

p(WC |I)
, for WB ∈ Ωmr(WA) (28)

Q∗
ml(WA|WB) =

p(WA|I)∑

WC∈Ωml(WB)

p(WC |I)
, for WA ∈ Ωml(WB). (29)
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We set Q∗
mr(WB|WA) = 0 and Q∗

ml(WA|WB) = 0 outside the two scopes respectively. Following

eqns.(25) and (26), we have the following transition kernel,

Kmr(WA,WB) = p(WB|I)min(
Q∗

mr(WB|WA)
p(WB|I) ,

Q∗
ml(WA|WB)
p(WA|I) ),

= p(WB|I)min(
1∑

WC∈Ωmr(WA)

p(WC |I)
,

1∑

WC∈Ωml(WB)

p(WC |I)
)

The proposal probability is the same as the Gibbs sampler in eqn.(24), except that we set

Q∗
m(WA,WA) = 0, ∀WA (note that K(WA,WA) 6= 0) and the normalization factor is thus changed

accordingly. Ideally if the scope is large, the probabilities in the denominators sum to one, and

Kmr(WA,WB) is close to p(WB|I). Thus it generates fair samples rapidly.

This design is called the Metropolized Gibbs sampler (MGS) following a simple example in [25],

because it uses a Metropolis-Hasting step to rectify the proposal Q∗ designed by a Gibbs sampler

over the scope.

3.3 Approximating the MGS proposal by discriminative models

The computational time is decided by two factors: (1) the mixing time or first hitting time measured

by the number of steps t; (2). the computational cost at each step. The former demands large jumps

scopes and good proposal probabilities, and the latter requires fast computation of the proposal

probabilities.

In eqns.(28) and (29), the MGS proposals Q∗
mr(Wx|Wy) and Q∗

ml(Wy|Wx) compute the target

probability p(WC |I) over two scopes WC ∈ Ωmr(WA) ∪ Ωml(WB). We observe that

Q∗
mr(WB|WA) =

p(WB|I)∑

WC∈Ωmr(WA)

p(WC |I)
=

p(WB |I)
p(WA|I)

∑

WC∈Ωmr(WA)

p(WC |I)
p(WA|I)

, for WB ∈ Ωmr(WA)

Q∗
ml(WA|WB) =

p(WA|I)∑

WC∈Ωml(WB)

p(WC |I)
=

p(WA|I)
p(WB |I)

∑

WC∈Ωml(WB)

p(WC |I)
p(WB|I)

, for WA ∈ Ωml(WB).

While it is hard to compute p(WC |I)) for every state WC ∈ Ωmr(WA) ∪ Ωml(WB) at each step

since WC contains many variables, it is much easier to compute the ratio p(WC)
p(WA) or p(WB)

p(WA) . Because

the states WA and WC differ in just 1-2 items locally, most of the terms are thus canceled in the

ratio.
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Thus we approximate the MGS proposals in two steps so that they can be computed effectively.

Note that this approximation only changes the design of the proposal probabilities, then the new

proposal probabilities have to be accepted by the Metropolis-Hastings step. Thus the detailed bal-

ance equations are still observed. The kernel Km,m = 1, 2, ..., µ still have the invariant probability

p(W |I).
Firstly, the posterior probability ratios p(WA)

p(WB) can be written in factorized form and we approxi-

mate each factor by discriminative posterior probability ratios. The discriminative probability ratio

is computed by bottom-up methods and is treated as the weight of each candidate.

ωmr,A(WC) ≈ p(WC |I)
p(WA|I) , for WC ∈ Ωmr(WA), ωml,B(WC) ≈ p(WC |I)

p(WB|I) , for WC ∈ Ωml(WB).

Secondly, we replace the two continuous scopes Ωmr(WA) and Ωml(WB) by two finite sets of

“particles” Smr(WA) and Sml(WB) respectively. A particle is a candidate with non-trivial weight.

As Fig.12 illustrates, these particles represent the promising candidates in the scopes.

Therefore the new proposal probabilities become,

Qmr(WB|WA) =
ωmr,A(WB)∑

WC∈Smr(WA)

ωmr,A(WC)
, for WB ∈ Ωml(WA).

Qml(WA|WB) =
ωml,B(WA)∑

WC∈Sml(WB)

ωml,B(WC)
, for WA ∈ Ωml(WB).

The weight ωmr,A(WB) for a candidate state WB ∈ Ωmr(WA) depends on the current state WA.

As we shall show in the next section, each pair of reversible jumps maintains a set of candidates

whose weights are updated on-line in the computational process.

The transition kernel for jump Jmr from WA to WB is then

Kmr(WA,WB) = Qmr(WB|WA)min(1,
Qml(WA|WB)
Qmr(WB|WA)

· p(WB|I)
p(WA|I) ). (30)

In computer vision and machine learning, there are abundant discriminative methods that can

compute the weights in various subspaces to approximate the posterior ratios. For example, it was

proved that the popular boosting methods for classification converge to the posterior probability

ratio on the class labels [32] as the number of features increases.

Figure 6.(a) shows the approximation of the true posterior ratio by weights ω in a scope

Ωmr(WA).
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(a) (b) (c)

Figure 6: (a) Illustration of posterior probability p in scope Ωmr(WA) covered by the proposal
probability Qmr. Darker points have high probabilities. (b). With small scopes of jumps there will
be a long path or more steps between some states WA and WB. (b). The composite jumps enlarge
the scope of each jump and empirically result in shorter paths and less steps.

With the ease of computing proposal probabilities, we seek to enlarge the scope of some jumps

so that the Markov chain mix rapidly. This idea is illustrated in Figures 6.(b) and 6.(c). With

small scopes, the Markov chain needs more steps from a state WA to a state and WB. If WA and

WB are two distinct modes (maxima), this path will have very small probability to occur. With

enlarged scopes, at each step, the proposal is generated over a long distance and thus the Markov

chain may move between state WA and WB in less steps and the probability for jumping between

two distinct modes increases. By analogy, when the jump scopes are small, it is like searching in

a dark space with a flashlight, and when the scope is large, it is like searching with a long range

Radar.

In the next section, we use a Swendsen-Wang cut (SWC) method [2] to design composite jumps

where the proposal is a product of many simple proposals. Such jumps realize split-merge of large

regions, grouping and ungrouping a set of curves into parallel groups and trees, as they can move

a set of elements at a single step.

4 Designing jumps using approximated MGS

In this section, we study seven pairs of reversible jumps using the approximated MGS design

discussed in the previous section for curve detection and grouping: (1) death-birth of an atomic

curve, (2) split-merge of a simple curve, (3) switch partial order between two simple curves, (4)

switching between a degenerated region and a curve, (5) switching intensity models, (6) group-

ing/ungrouping parallel curves, (7) grouping/ungrouping tree. (1-5) are simple jumps and (6-7)
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are composite jumps. The reversible jumps for regions are referred to a previous paper [37].

4.1 Bottom-up computation of the candidate set and weights for simple jumps
on curves

(a) input image (b) curve candidates

Figure 7: (a) An example image. (b) Atomic curves (oriented bars) computed by a matching
pursuit detection and they are used as proposal candidates.

The key idea in the DDMCMC framework is the use of discriminative models to compute

the proposal probabilities, and some discussions about the interaction between discriminative and

generative models are referred to [39]. This paper is mostly focuses on the curve part. We use

the matching pursuit algorithm [28] to detect bars in a bottom-up step. An example is shown in

Figure (7).

In the discrete form, a curve C consists of a number of oriented bars in a chain (see Fig. 3.(b)).

In a bottom-up process we compute an excessive number of candidates by a matching pursuit

algorithm [28]. The matching pursuit algorithm convolves the image with an oriented bar at

each location (xi, yi) and a number of discretized angles θi, and the bars have certain width wi

and constant intensity fi. Large responses mean high likelihood that a curve passing through

the location with tangent directions coinciding the bar orientation. By setting a sufficiently low

threshold, we obtain a set of “atomic curves” as bottom-up candidates in the jump type I discussed

in Section (4.2).

∆DD
c = {ci = (xi, yi, θi, wi, fi) : i = 1, 2, ..., MDD

c }.

where (xi, yi, θi) is the center and orientation, wi the width and fi the intensity. Each ci has a

weight ωi which measures the fitness of ci in the domain D(ci). ωi = p(ID(ci)|ci)

Thus we have a set of weighted atomic curves.

Sc = {(ci, ωi) : i = 1, 2, ..., MDD
c }. (31)
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An example is shown in Fig. 7.b where each atomic curve is represented by a bar. A new curve

will be created by selecting an atomic curve in the set Sc or an existing curve can be extended by

attaching an atomic curve to one of its ends.

The detection of atomic curves can be reformulated as computing discriminative models p(`|F (I))

where ` ∈ {+1,−1} is the label for ”curve” or ”non-curve” respectively and F (I) denotes a number

of features in detection. By setting a low threshold in the ratio test p(`=+1|F (I)
p(`=−1|F (I) we can put all

non-trivial candidates as particles in the set.

4.2 Jump pair I: death and birth of an atomic curve

J1 = (J1r,J1l) is a pair of jumps for adding an atomic curve from Sc or removing one from the

existing curves in current W . Adding an atomic curve results into two possible situations: (1) The

added atomic curve becomes a new curve itself or (2) it can be attached to one end of an existing

curve, if it is near one. Likewise, an existing atomic curve can be removed if it is either on a curve

with no other atomic curve or it is on one of the two ends of a curve. This simulates a birth-death

process between two states WA and WB,

WA = (W−,Kc
A,PRA) ⇀↽ (W−, cB,Kc

B(cB),PRB(cB)) = WB.

In the above notation, cB is the new-born atomic curve, W− denotes all other variables not changed

in this reversible jump and they are the same for both WA and WB. The total number of curves Kc

and the partial order relation PR may change depending on whether cB is an independent curve

or merely an extension of an existing curve.

Fig. 8 shows an example. At state WA the birth jump has 8 candidate atomic curves (shown

by ellipses in the upper middle) and one is proposed as cB in WB. Conversely, at state WB the

death jump has 5 candidates (in lower middle) and cB is proposed. The birth and death jumps

have different scopes Ω1r(WA) 6= Ω1l(WB), and thus are asymmetric,

To design the reversible jump, we calculate the proposal probabilities following the Metropolized

Gibbs sampler (MGS) design and then approximate them by discriminative models in a factorized

form.

We first consider the birth jump. For any state W ∈ Ω1r(WA), it has an extra atomic curve

c1r and we denote W = (W−, c1r,K
c
1r,PR+). W = WB is an instance in Ω1r(WA) when c1r = cB.

The MGS proposal probability for selecting cB is a conditional posterior probability over the jump
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Figure 8: An example of the birth and death of an atomic curve. At the current state WA, there
are 8 possible atomic curves to be proposed, which are shown as ellipses in the upper middle figure.
WB is the state after selecting an atomic curve and make it as a new curve. From WB to WA,
there are 5 candidate atomic curves to be removed, which are shown in the lower middle figure.
Choosing the same atomic curve changes WB back to WA.

scope Ωmr(WA),

Q∗
1r(WB|WA) =

p(WB|I)∑
W∈Ω1r(WA) p(W |I) =

p(WB |I)
p(WA|I)∑

c1r∈S1r

p(W |I)
p(WA|I)

(32)

We divide both the nominator and the denominator by p(WA|I) for the probability ratios are much

easier to compute due to cancellation. Observe that the likelihoods p(I|W ) and p(I|WA) differ only

in the way they explain pixels covered by c1r in a domain D(c1r). The former explains ID(c1r) by

the new model in c1r while the latter explains ID(c1r) by some region R(c1r) which depends on c1r.

Therefore
p(I|W )
p(I|WA)

=
p(ID(c1r)|c1r)

p(ID(c1r)|R(c1r))
.

We can rewrite the posterior probability ratios in a factorized form,

p(W |I)
p(WA|I) =

p(I|W )p(W )
p(I|WA)p(WA)

=
p(ID(c1r)|c1r)

p(ID(c1r)|R(c1r))
· p(c1r|W−) · p(Kc(c1r)|c1r)

p(Kc
A)

· p(PR(c1r)|c1r)
p(PRA)

. (33)

We are only interested in atomic curves which have non-trivial probability ratios. Two types

of atomic curves have non-trivial probability ratios: (1). elements detected in the bottom-up step

which have non-trivial likelihood ratio. (2). elements suggested by context based on continuity

of existing curves. For example, Fig.8 has 8 candidates in ∆̂1r(WA), five of which extend existing

curves and thus are proposed by the context.

21



For each candidate atomic curve c
(i)
1r , its weight ω̂1r

(i) approximates the factorized ratio in

eqn.(33). Intuitively, the weight of a candidate c1r is a product of three factors. (1). How well

the data is fitted by the current model, p(ID(c1r)|R(c1r)). This available for the current WA since

we compute each term in eqn. (15) for each existing region and curve. (2). Its fitness to data

ID(c1r) which is either computed for the data-driven candidates or from the context, p(ID(c1r)|c1r).

This is approximated based on how good a local Gabor function fits the image, same as in the

matching pursuit algorithm. (3). The possible change of curve number and partial order relation,
p(PR(c1r)|c1r)

p(PRA) . This is approximated by a uniform distribution. Thus, we have a set of weighted

candidates for birth at WA.

S1r(WA) = { (c(i)
1r , ω

(i)
1r ) : i = 1, 2, ..., N1r.}

(c(B)
1r , ω

(B)
1r ) is one instance in the above set that leads to state WB. Then the proposal probability

is

Q1r(WB|WA) =
ω

(B)
1r∑N1r

i=1 ω
(i)
1r

.

In a similar way, we can design the death jump J1l from WB to WA. Let Ω1l(WB) be the jump

scope, any W ∈ Ω1l(WB) will have one atomic curve c1l removed from WB. We are interested in

computing the probability for proposing WA from Ω1l(WB). According to the MGS design, it is

Q∗
1l(WA|WB) =

p(WA|I)∑
W∈Ω1l(WB) p(W |I) =

p(WA|I)
p(WB |I)∑

c1l∈S1l

p(W |I)
p(WB |I)

(34)

The likelihoods p(I|W ) and p(I|WB) differ only in the way they explain pixels covered by c1l in

a domain D(c1l). Therefore we have

p(I|W )
p(I|WB)

=
p(ID(c1l)|R(c1l)
p(ID(c1l)|R(c1l))

,

where R(c1l) is the region explaining ID(c1l) in W . Thus the posterior probability ratios can be

rewritten in a factorized form,

p(W |I)
p(WB|I) =

p(I|W )p(W )
p(I|WB)p(WB)

=
p(ID(c1l)|R(c1l))

p(ID(c1l)|c1l)
· 1
p(c1l|W−)

· p(Kc(c1l)|c1l)
p(Kc

B)
· p(PR(c1l)|c1l)

p(PRB)
. (35)

Unlike the birth jump, the candidate set S1l contains only short atomic curves at the ends of the

existing curves. For example, |S1l| = N1r = 5 in Fig.8. Thus we maintain a set of weighted

candidates,

S1l(WB) = { (c(i)
1l , ω

(i)
1l ) : i = 1, 2, ..., N1l.}

22



The weight ω
(i)
1l is computed according to eqn.(35) where the factors have very intuitive meanings.

p(ID(c1l)|R(c1l)) is computed using the image model of underlying region which c1l occludes. Intu-

itively, it is to say an atomic curve whose image part can not be fitted very well by its occluded

region model should have low chance to be removed. p(ID(c1l)|c1l) is available since it is computed

in eqn. (15). p(c1l|W−) is the prior of the atomic curve which is computed in eqn. (14).

(c(A)
1l , ω

(A)
1l ) is one instance in the above set, when it is removed, then state WB becomes WA.

Then the proposal probability is

Q1l(WA|WB) =
ω

(A)
1l∑N1l

i=1 ω
(i)
1l

.

Finally the birth and death proposal probabilities are corrected in a Metropolis-Hastings step.

K1r(WA,WB) = Q1r(WB|WA)min(1,
Q1l(WA|WB)
Q1r(WB|WA)

· p(WB|I)
p(WA|I) ),

K1l(WB,WA) = Q1l(WA|WB)min(1,
Q1r(WB|WA)
Q1l(WA|WB)

· p(WA|I)
p(WB|I)).

4.3 Jump II: split and merge of curves
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Figure 9: An example of the split-merge jumps for simple curves. At state WA, a set of 18
candidate sites are shown in the upper-middle figure for splitting the simple curves and one is
proposed probabilistically. Splitting C3 into two curves C5 and C6, we obtain state WB. At WB, a
set of 2 candidate pairs shown in the lower-middle figure are listed for merge.

The second pair of reversible jumps J2 = (J2r,J2l) realizes split-merge for simple curves. Fig. 9

shows an example of J2 between two states WA and WB. In a way similar to the birth-death jumps,

we maintain two candidates lists at the current state to approximate the jump scopes Ω2r(WA) and
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Ω2l(WB) respectively.

S2r(WA) = { (z(i)
2r , ω

(i)
2r ) : i = 1, 2, ..., N2r.}, S2l(WB) = { (z(i)

2l , ω
(i)
2l ) : i = 1, 2, ..., N2l.}

We adopt a discrete notion with z
(i)
2r and z

(i)
2l being the site between adjacent atomic curves for split

and merge respectively. For example, Fig. 9 shows 18 candidate sites for split at WA and 2 sites

for merge at WB.

The MGS proposal for split is,

Q∗
2r(WB|WA) =

p(WB|I)∑
W∈Ω2r(WA) p(W |I) =

p(WB |I)
p(WA|I)∑

xs∈S2r(WA)
p(W |I)
p(WA|I)

.

Each site zmr ∈ S2r(WA) corresponds to a state W ∈ Ω2r(WA). W differs from WA by splitting

a curve Ck into two curves Ci and Cj . Accordingly the number of free curves increase by 1 and the

partial order may be changed.

WA = (Kc, Ck,PR,W−) −→ W = (Kc + 1, Ci, Cj , PR′,W−).

We write the posterior ratio in a factorized form, noting that these free curves are independent of

other variables in W−.

p(W |I)
p(WA|I) =

p(ID(Ci)∪D(Cj))|Ci, Cj)
p(ID(Ck)|Ck)

· p(Ci)p(Cj)
p(Ck)

· p(Kc + 1)
p(Kc)

· p(PR′|Ci, Cj)
p(PR|CK)

The four factors, again, have very intuitive meanings. (1).
p(ID(Ci)∪D(Cj))|Ci,Cj)

p(ID(Ck)|Ck) measures the good-

ness of fit for the curves before and after splitting. It decides, probabilistically, which curve to split

and where to make the split. Intuitively, if the intensity model of a curve Ck does not fit the image

very well, then Ck should have high probability to be split. This is directly available in p(ID(Ck)|Ck)

for the current WA. For curve Ck, there are many places to make the split, depending upon on

how many atomic curves it has. If its two possible segments ID(Ci) and ID(Cj) are very different

in appearances, their connection site should have more chance to be proposed. This is represented

by p(ID(Ci)∪D(Cj))|Ci, Cj) which is approximated by a Gaussian kernel, G(D(ID(Ci)||ID(Cj)), σ
2).

D(ID(Ci)||ID(Cj)) is a distance measure for the similarity between the two segments, ID(Ci) and

ID(Cj). For fast computation, we use mean of the image segments to measure the distance. (2).
p(Ci)p(Cj)

p(Ck) reflects the prior of curves only and does not involve with the image. Similar as in (1),

p(Ck) is directly available in computing p(WA). If a curve is not so smooth, then it should have high
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probability to be proposed. p(Ci)p(Cj) can be also computed when computing p(Ck) in eqn. (3).

Intuitively, the site which splits a curve into two smooth segments should have more chance to be

proposed. (3). Priors on the curve number can be directly computed. (4). Priors on the partial

order p(PR′|Ci, Cj) is approximated by a uniform distribution. The weight ω
(i)
2r will approximate

the ratio p(W |I)
p(WA|I) . The proposal probability is the weight normalized in the candidate set,

Q2r(WB|WA) =
ω

(B)
2r∑N2r

i=1 ω
(i)
2r

.

ω
(B)
2r is the weight for a site z

(B)
2r ∈ S2r(WA) that leads to state WB.

Similarly we update the weights in the candidate set S2l(WB) and compute the proposal prob-

ability Q2r(WA|WB) as the normalized weight.

4.4 Jump III: swap the partial order relation

1C

2C 3C

forDiagramHasse PR forDiagramHasse 'PR

1C

2C
3C

1C

2C

3C

1C

2C
3C ����

Figure 10: An example of partial order change.

The third jump J3 = (J3r,J3l) is a pair of symmetric jumps that switch partial order relation

between curves. The candidate sets S3r and S3l are the same for the left and right moves.

S3 = {(z(k)
3 , ω

(k)
3 ) : z

(i)
3 =< Ci, Cj >∈ PR, k = 1, 2, ..., N3.}

Each candidate z
(i)
3 is an occlusion between two existing curves Ci ¹ Cj and the jump is to reverse

the order

WA = (< Ci, Cj >, W−) ⇀↽ (< Cj , Ci >, W−) = WB,

Figure 10 shows an example of such a change of partial order. The weight of each candidate z
(i)
3 is

only decided by the probability ratio on the overlapping image domain

ω
(k)
3 =

p(W |I)
p(WA|I) =

p(ID(Ci)∩D(Cj)|Cj)
p(ID(Ci)∩D(Cj)|Cj)

, ∀k.
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The position of the intersection points between Ci, Cj are collected in a candidate set Ξ of junctions.

Each intersection has an equal probability in the candidate set S3. Then we can compute the

proposal probabilities for J3r and J3l in the same way as J1 and J2.

4.5 Jump IV: switching between degenerated region and curve

The fourth pair of jumps J4 = (J4r,J4l) is needed for resolving region-curve ambiguity. At a certain

stage a region may become elongated and thin, thus it may switch to a curve. Conversely a short

curve may become thick and switch to a region. The switch is realized by reversible jumps between

two states,

WA = (Kc − 1, Kr + 1, Rk,W−) ⇀↽ (Kc, Ck,K
r,W−) = WB.

To do so, we maintain two weighted lists for degraded regions and curves respectively in the current

state,

S4r(WA) = { (R(i)
4r , ω

(i)
4r ) : i = 1, 2, ..., N4r }, S4l(WA) = { (C(i)

4l , ω
(i)
4l ) : i = 1, 2, ..., N4l }.

The weights are decided by the priors for curve and region.

ω
(i)
4r =

p(Ck)
p(Rk)

· p(Kc)
p(Kc − 1)

· p(Kr)p(Kr + 1), ω
(i)
4l =

p(Rk)
p(Ck)

· p(Kc − 1)
p(Kc)

· p(Kr + 1)p(Kr),

In the same way, the proposal probabilities are computed as the normalized weights within the two

candidate set. Since there is only prior about curves and regions involved, both p(Ck) and p(Rk)

can be quickly computed at each step for all the regions and curves. Some simpler tests, such

as measurement of aspect ratio and area, can be adopted to make the computation even faster.

Intuitively, an elongated region will have high probability to be switched into a curve, and a “fat”

curve will have a big chance to be turned into a region.

4.6 Jump V: switching intensity models

For each region or simple curve, we need to select a suitable generative model. For example, a region

could be fitted to a texture, a color, a smooth shading model, or a clutter model in DDMCMC

segmentation[37]. Each type of model has a parameter space which has multiple modes. So the

fifth jump J5 = (J5r,J5l) realize the switch of models for each region or curve at a time. J5 is a

symmetric jump with its scope being the parameter space of the models.
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We compute a set of candidates by bottom-up methods, such as mean shift[8] in the parameter

space of each type of models. Each candidate (`(i), θ(i)) is a mode in parameter space of type `(i).

Ŝ5 = {(`(i), θ(i), ω
(i)
5 ) : i = 1, 2, ..., N5.}

When we switch models for a region R or a curve C, the weight ω(i) for candidate model (`(i), θ(i))

is the accumulative votes from the pixels inside the domain D(R) or D(C). Each pixel contributes

a vote in [0, 1] depending on its goodness of fit to the candidate model. The vote is computed once

in bottom-up. Then one model is proposed in proportion to its weight. Details about this part can

be found in [37].

4.7 Jump VI: split and merge of trees

The sixth pair of jumps is the split-merge of tree structures, and thus it jumps between two states,

WA = (W−, TA) ⇀↽ (W−, TB, TC) = WB

kT
jT

iT

kT propose

jT
iT

propose

compute proposal probabilities

        for splitting a tree

compute proposal probabilities

        for merging trees

Figure 11: An example of splitting and merging trees.

Figure 11 illustrates an example where a tree Tk is split into trees Ti and Tj . Unlike the split-

merge process for parallel curves, cutting the parent-child relation between any two curves in a tree

will naturally split this tree into two. Thus, the process of splitting a tree has an analogy to that

of splitting a curve. Similarly, we maintain two candidate lists at the current state to approximate

the jump scopes Ω6r(WA) and Ω6l(WB) respectively.

S6r(WA) = { (z(i)
6r , ω

(i)
6r ) : i = 1, 2, ..., N8r.}, S6l(WB) = { (z(i)

6l , ω
(i)
6l ) : i = 1, 2, ..., N8l.},
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where z
(i)
6r and z

(i)
6l are sites between adjacent curves for tree split and merge respectively.

The MGS proposal for tree split is,

Q∗
6r(WB|WA) =

p(WB|I)∑
W∈Ω6r(WA) p(W |I) ≈

p(WB |I)
p(WA|I)∑

xs∈S6r(WA)
p(W |I)
p(WA|I)

.

Each site xs ∈ S6r(WA) corresponds to a state W ∈ Ω6r(WA). We write the posterior ratio in a

factorized form.

p(W |I)
p(WA|I) =

p(Ti)p(Tj)
p(Tk)

· p(KT + 1)
p(KT )

=
1

exp{−ET (CTk
(i), CTk

(j))} ·
p(KT + 1)

p(KT )
,

where CTk
(i) and CTk

(j) are the two curves whose parent-child relation is cut in three Tk leading

to two new trees Ti and Tj . Curve CTk
(i) becomes the root curve in tree Ti and curve CTk

(j))

becomes a leaf curve in tree Tj . Thus, the proposal probability is computed by

Q6r(WB|WA) =
ω6r(B)

∑N6r
i=1 ω

(i)
6r

.

ω
(B)
6r is the weight for a site z

(B)
6r ∈ Ŝ6r(WA) that leads to state WB and it is computed according

to the probability by parent-child relation exp{−ET (Cparent(zB), Cchild(zB))} at the site z
(B)
6r . The

orders {α1, α2, ..., αn} are decided by the tree structure in the parent-child relation directly.

Similarly we update the weights in the candidate set S6l(WB) and compute the proposal prob-

ability Q6r(WA|WB) as the normalized weight.

4.8 Summary on the six simple jumps

The five simple jumps presented so far have a total of 10 sets of “particles” as Fig.12 displays. Each

particle is a candidate with its weight approximating the posterior probability ratio in a factorized

form. These particles encode the proposal probability in each jump scope and will be re-weighted

on-line.

4.9 Jump VII: Grouping/ungrouping of parallel curve groups

The seventh pair of jumps is to group a number of free curves into a parallel curve group pgi or

split a group of free curves from one group pgi to a group pgj .

Figure 13 shows a reversible jump between two states

WA = (pgA
1 , pgA

2 ,W−) ⇀↽ (pgB
1 , pgB

2 ,W−) = WB.
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S1r: birth row S1l: death row

S2r: split row S2l: merge row

S3: switch of partial order

S5: switch of models

S4r: degraded regions S4l: degraded curves

S6r: tree split sites S6l: tree merge sites

Figure 12: The 6 simple jumps maintain 10 sets of “particles” whose sizes illustrate their weights.
The sets are updated and re-weighted in each jump steps, and they encode the proposal probabilities
in a non-parametric representation.

WA has two curve groups – pgA
1 includes 7 curves (C1, C2, C3, C4, C5, C6, C8) and pgA

2 has three

curves (C7, C9, C10). Three curves C1, C3, C4 (Fig.13.(a)) are split from pgA
1 and merged with pgA

2

to form two new parallel groups– pgB
1 and pgB

2 (Fig.13.(c)). Each curve group is illustrated by a

dotted ellipse.

Suppose we have a set of free curves {C1, C2, ..., CN} and we treat each curve as a single

vertex and build an adjacency graph G which connects two nearby curves cs and ct with a link

est =< Cs, Ct >. Fig. 13.(b) shows an example of the adjacency group. Therefore the curve

grouping problem becomes a graph coloring or partition problem – all curves (vertices) with the

label (or color) belong to a curve group. Thus we adopt a Swendsen-Wang Cut algorithm [2, 3]

developed by the authors’ group for partition (coloring) this graph G. The SW-cut algorithm is a

generalization to the Gibbs sampler. Conventional Gibbs sampler flips the color/label of a single

vertex each time and often gets stuck at local minima. In contrast, the SW-cut algorithm can flip a

set of vertices that have the the same color at once, and it is shown to converge (mix) much faster

than the Gibbs sampler. We call such jumps the ”composite jumps”.

We briefly introduce the SW-cut idea below and refer to [2] for details. We associate a binary

variable bst to each link est in the adjacency graph G. bst = 0 means the link is ”off” and thus Cs

and Ct are disconnected. bst = 1 means the link remains connected. Each link est is also associated
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with a probability qst which measures how likely the two curves Cs and Ct belong to the same curve

group.

qst ∝ exp{−Epg(Cs, Ct)}.

The energy Epg measures the distance, parallelism of the two curves and was discussed in eqn. (6).

Each vertex Cs is assigned a label `s ∈ {1, 2, ..., Kpg}, and curves that have the same label

belong to a common parallel group pg whose goodness of fit is measured by a posterior probability

p(pg|IΛpg). The number of possible labels Kpg is unknown. Suppose we start with every free curve

has a different label. A jump in the SW-cut algorithm includes two steps.

Step I: Clustering. For each link est in G, bst is turned off (set to 0) deterministically if `s 6= `t

in the current state WA. Otherwise bst is turned off with a probability 1 − qst. That is, bst is an

auxiliary variable following the following Bernoulli probability,

bst ∼ Bernoulli(qst1(`s = `t)).

This procedure generates a number of connected components (CP) for the adjacency graph G. Each

CP has a connected subgraph after turning off a number of links in G. This is called ”clustering”

of the graph. Each cluster will be a candidate for flipping color. For example, Fig.13.(e) shows 3

CPs (or clusters) which can be generated from both state WA and state WB.

Step II: flipping. One connected component is picked at random (e.g. a uniform probability).

For example, suppose the current state is W (W = WA or W = WB) and we pick CP1 at Fig.13.(e),

and suppose the current label of CP1 is `(CP1) ∈ {1, 2, 3, ..., Kpg}. We assign a new color `′(CP1) ∈
{1, 2, ...,Kpg + 1} to all curves in CP1 at a proposal probability q(`′(CP1)|W ). For example, at

state WA, CP1 belongs to pgA
1 and `(CP1) = 1. At state WB, CP1 belongs to pgB

2 and `(CP1) = 2.

When CP1 is assigned an existing color `′(CP1) ∈ {1,Kpg}, it means that CP1 is split from the

current group pg`(CP1) and merged with pg`′(CP1). In a special case when CP1 = pg`(CP1) is a whole

parallel group at the current state, then this merge reduces the number of parallel groups. On the

other hand, if CP1 is assigned a new color `′(CP1) = Kpg + 1}, it means that CP1 becomes a new

parallel group.

In Fig. 13, according the the SW-cut algorithm[2, 3], the proposal probability ratio is given by,

Q(WB|WA)
Q(WA|WB)

=
∏

est∈CutA
(1− qst)∏

est∈CutB
(1− qst)

· q(`′(CP1) = 2|WA)
q(`′(CP1) = 1|WB)

. (36)
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Figure 13: An example of split-merge of parallel curve groups by a composite jump designed with
the SW-Ccut method.

In the above equation, CutA is the set of links in G at state WA that connect CP1 with the rest

of pgA
1 They must be cut (turned off) in order for CP1 being a connected component. So the

probability of turning off them in the clustering step is
∏

est∈CutA
((1− qst). Similarly, CutB is the

set of links in G at state WB that connect CP1 with the rest of pgB
2 . CutA and CutB are illustrated

in Fig.13.(d) and Fig.13.(f) respectively by the dashed lines.

By a Metropolis-Hastings step, the proposed jump is accepted with probability,

α(WA,WB) = min(1,
Q(WB|WA)
Q(WA|WB)

· p(pgA
1 )p(pgA

2 )
p(pgB

1 )p(pgB
2 )

). (37)

In the above equation, the posterior probability ratio p(WB |I)
p(WA|I is reduced to the ratio p(pgA

1 )p(pgA
2 )

p(pgB
1 )p(pgB

2 )

on the prior for the new parallel groups. This is due to two reasons. (1) The individual curves are

fixed and thus the likelihood does not change during the jump between WA and WB. (2) Once a

parallel group is formed, the sequence orders α1, α2, ..., αn of the curves within the group is quite

obvious and is thus deterministically decided. In [3], we can choose the proposal probability ratio

of the new labels q(`′(CP1)=2|WA)
q(`′(CP1)=1|WB) so that the acceptance probability is 1 (i.e. always accepted). But

this may not necessarily improve the computational speed.

In summary, the composite jump designed by SW-cut has three properties.

1. Unlike the simple jumps which maintain a list of candidates for its proposals, this composite

jump explores a combinatorial number of possible candidates in the clustering step.
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2. Like the simple jumps, the proposal probability ratio is also factorized into a number of

discriminative probabilities 1− qst.

3. It realizes death-birth and split-merge operators of parallel groups depending on the selection

of connected component and the assignment of new labels.

5 Experiments

In Fig. 2 we have showed some examples where image segmentation algorithm produces unsatisfac-

tory results because these input images have curve patterns that do not fit the region assumptions.

Much improved results are obtained on these images when the curve processes are modeled explic-

itly, as we shall show in this section.

Our experiments proceed in two stages. We first compute only regions and free curves, and

then we run jumps VI and VII to obtain the parallel curve groups and trees.

Experiment A: compute regions and free curves.

Six examples are shown in Fig. 14 and 19. For each example, the first row (from left to right)

displays the input image Iobs, the computed free curves W c, and the region segmentations W r in

the background. The second row shows (from right to left) the synthesized image according to

the generative models for the regions Ir
syn ∼ p(I|W r), the curves Ic

syn ∼ p(I|W c), and the overall

synthesis (reconstructed) Isyn by occluding Ic
syn on Ir

syn.

We compute the synthesis images to verifies what the computer understands about the input.

For example, Fig.14 shows that the computer did not understand the faces of the three Japanese

ladies and treated them as regions.

In these experiments, two parameters in the prior models are adjustable: (1) γr in equation (11),

and (2) γc in equation (4). The two parameters control the extent of the segmentation, i.e. the

number of regions and curves. Therefore they decide how detailed we like the parsing to be. Usually

we set γr = 5.0 and γc = 3.5 and other parameters are fixed.

Experiment B: assuming regions, curves and parallel groups, and trees.

In the second experiment, we further compute the parallel groups and trees by turning on the

two composite jumps J7,J8. Figures 20 to 23 show four examples. In each example, the top row

shows the parallel groups or trees grouped from the simple curves. The second and third rows

are displayed as before. ¿From the results, we can see that the algorithm successfully segments,
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input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 14: Experiment A1: parsing images into regions and free curves.

input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 15: Experiment A2: parsing images into regions and free curves.

detects, and groups regions, curves, and curve groups respectively.

We observed some problems with the zebra image in Fig.21. There are simple curves computed

for both black and white stripes. The prior model for parallel groups emphasizes parallelism not

intensity similarity, thus the stripes are divided into three parallel groups.
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input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 16: Experiment A3: parsing images into regions and free curves.

input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 17: Experiment A4: parsing images into regions and free curves.

Computational time. It usually takes 20 minutes for the algorithm to produce a result on an image

of size 300×200 pixels, because of the integration of region and curve models. The code is not well

structured at the moment as it is incrementally added over time. We expect to bring the computing

time to within 1 minute per image on regular PCs.
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input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 18: Experiment A5: parsing images into regions and free curves.

input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 19: Experiment A6: parsing images into regions and free curves.
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Figure 20: Experiment B1: parsing an image into regions, curves, and parallel curve groups.

Figure 21: Experiment B2: parsing an image into regions, curves, and parallel curve groups.
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Figure 22: Experiment B3: parsing a tree image into regions, curves, and trees

Figure 23: Experiment B4: parsing an image into regions, curves, and trees.
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6 Discussion and future work

In this paper, we introduce a MCMC method for solving two middle level vision tasks together:

image segmentation and curve detection. Three aspects are crucial to the integrated solution.

The first aspect is the use of generative models and priors to encode a variety of regularities

in a Bayesian formulation. The generative representation enables the curve structures and regions

compete to explain the image. The second aspect is the design of Markov chain transition kernel. It

is composed of seven pairs of reversible jumps plus other jumps for the region segmentation. These

jumps can traverse the state space. The third aspect is to use discriminative models for composing

the proposal probabilities which approximate the posterior probabilities ratio in factorized forms.

This paper is part of a series of work integrating discriminative and generative models from

low-level image segmentation [37], middle-level curve structures detection [38], to high-level object

recognition [39]. The representation computed in this work has been used in reconstructing 3D

scene from a single image [20].
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