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Abstract

Natural images have a vast amount of visual patterns distributed in a
wide spectrum of subspaces of varying complexities and dimensions. Un-
derstanding the characteristics of these subspaces and their compositional
structures is of fundamental importance for pattern modeling, learning and
recognition. In this paper, we start with small image patches and define two
types of atomic subspaces: explicit manifolds of low dimensions for structural
primitives and implicit manifolds of high dimensions for stochastic textures.
Then we present an information theoretical learning framework that derives
common models for these manifolds through information projection, and
study a manifold pursuit algorithm that clusters image patches into those
atomic subspaces and ranks them according to their information gains. We
further show how those atomic subspaces change over an image scaling pro-
cess and how they are composed to form larger and more complex image
patterns. Finally, we integrate the implicit and explicit manifolds to form a
primal sketch model as a generic representation in early vision and to gen-
erate a hybrid image template representation for object category recognition
in high level vision. The study of the mathematical structures in the image
space sheds lights on some basic questions in human vision, such as atomic
elements in visual perception, the perceptual metrics in various manifolds,
and the perceptual transitions over image scales.

This paper is based on the J.K. Aggarwal Prize lecture by the first author
at the Int’l Conf. on Pattern Recognition, Tempa, FL. 2008.
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1. Introduction

1.1. Quest for structures of the image space

In pattern recognition, people often extract many features, as many as
one could come up with, from input data, treat them as independent points
in a vector space, lump them together for classification, and justify them by
error rates in the end. It is taken for granted that we are not obligated to
understand analytically the ingredients of these features. To the contrary,
people feel rather proud that they can solve problems without analytically
studying the features or the space structures. Yes, why should we “solve a
problem more than necessary!” But, if we can solve the problems by just
trying good features, then why are we still here designing new features on
a daily bases since the birth of pattern recognition? For example, in object
recognition, new features are invented in every computer vision and pattern
recognition conference. Given the very high dimensions of images, even the
seemingly humble request of finding distinct features for weak classifiers turns
out to be very hard to meet for many object categories. For example, for
detecting vehicles in streets using Adaboost (Freund and Schapire, 1997), we
may run out of weak classifiers rather quickly.

This approach sounds very similar to the Chinese herb clinics, which have
been practiced for more than a thousand years. A herb clinic typically has
hundreds of remedies including almost anything one can try on: barks, roots,
stems, leaves, bugs, worms, and shells which are like our features. They are
selected, mixed in calculated proportions and boiled to a soup – darker and
more bitter than the strongest coffee. With the enormous number of possible
combinations, one is always hopeful to try some of them for any given new
or unknown illness. But good recipes are tough to find!

The herb clinics are nowadays adopting terms in modern medicine, such
as virus, genes, and molecules. Similarly, why couldn’t we spend some time
understanding the structures of the image space, the ingredients of the fea-
tures, and the mechanism of image composition?

In this paper, we don’t intend to engage the long standing debates on
generative versus discriminative methods. Instead we take a short journey
to explore the image space and to report some characteristics of its atomic
subspaces, and then we show how we can pursue models for them under
a common information theoretical principle, and integrate them into more
complex representations for generic images and object categories. Although
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the image space is very complex, the tools and principles for understanding
them could be simple.

1.2. Manifolds in image space: implicit, explicit, and hybrid

Considering an image I, for simplicity, we start with a small patch of
N = 11 × 11 pixels. Depending on where we look, the patch could be a
simple primitive, e.g. patch A at the nose of a hedgehog in Figure 1, or a
texture, e.g. patch B in the hedgehog body.

primitive patch

space of image patches

+ +
+
++

+ +
+

+ +

texture patch
A B

texture patches in  
implicit manifolds

primitive patches in  
explicit manifolds

Figure 1: Pure manifolds in the space of image patches. Patches A and B belong to two
distinct types of subspace. See text for interpretation. Picture adopted from Si et al.
(2009).

If we map patches A and B to the N -dimensional space of all image
patches, it is not hard to realize that they are from two very different sub-
spaces.

Patch A lies in a 4-dimensional subspace where all the image patches
correspond to the same geometric pattern of an edge segment. Each image
patch can be represented by the following variables: central location of the
edge segment, (x, y), orientation θ, and intensity contrast a. We denote these
variables by w = (x, y, θ, a). In general, we have the following definition:

Definition 1. An explicit manifold is a subspace of image patches defined
by an explicit function g(w) with small distortions ε,
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Ωex = {I : I = g(w) + ε; w ∈ W}. (1)

Each image patch I in the explicit manifold Ωex is represented or identified
by a low-dimensional variable w, that can take values within a range W . ε
corresponds to the precision of representation or perception. As w varies in
W , g(w) spans a low-dimensional manifold in the image space. The left panel
of Figure 1 shows a number of geometric primitives, where each column shows
a primitive at the top, followed by some instances below. Each geometric
primitive corresponds to an explicit manifold, with a different functional form
of g() and an associated range W . The instances in each column belong to
the same manifold, and each instance is indexed by a particular value of w.
Sometimes, an explicit manifold is also called an equivalent class invariant
to a set of transformations associated with g().

Patch B belongs to a subspace of a much higher dimension, where the
patches are perceptually equivalent and share some common statistical prop-
erties, e.g., the histograms of Gabor filtered responses. Let H() extract the
histograms of filtered responses from image I and h be a specific value of the
histograms that is shared by all the image patches in Ωim.

Definition 2. An implicit manifold is defined by statistical constraints with
a small statistical fluctuation ε,

Ωim = {I : H(I) = h + ε}. (2)

The fluctuation decreases with the patch size N .
The image patches in the subspace Ωim cannot be represented or identified

by a small number of variables. That is, these image patches lose their
individual identities, and they are collectively described by statistics h, in
the sense that all the image patches in Ωim share the same h. The subspace
Ωim is very different from the explicit manifold Ωex. With a rather liberal
use of the term “manifold,” we call Ωex the implicit manifold, in the sense
that image patches I in Ωex cannot be explicitly identified or differentiated
by a small number of variables, and they are defined by an implicit function
H(I) = h, instead of an explicit function I = g(w) as in the explicit manifold.

Ωim is also called the Julesz ensemble in Zhu et al. (2000), It is similar
to the micro-canonical ensemble in statistical physics which defines a huge
set of microscopic states using a small number of macroscopic properties as
constraints. Ωim can induce a general family of Markov random fields called
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the FRAME model for texture (Zhu et al., 1997). In Ωim, I is the microscopic
state and h is the macroscopic (or statistically invariant) property which are
considered sufficient statistics in human perception. That is, according to
the well-known psychophysicist Bella Julesz, texture images are perceptually
equivalent if they share certain statistical properties.

The explicit manifolds and implicit manifolds are two extremes of the
image patterns. The explicit manifolds contain pure geometric structures,
and the implicit manifolds contain pure stochastic textures. For that reason,
we also refer to them as pure or atomic manifolds. When we look at the
area around of eye of the hedgehog or a larger patch, the image patch may
contain both geometric structures and stochastic textures. So such image
patches belong to what we call a hybrid or composite manifold.

It is worth pointing out that many terms in various disciplines refer to the
same thing from different perspectives. For example, manifolds in mathemat-
ics, ensembles in statistical physics, equivalent (invariant) classes in geome-
try or control theory, clusters in pattern recognition, subspaces in machine
learning. In statistics a probability model p is also said to focus on a set or
ensemble Ωp. Thus we have the first set of terminologies:

manifold ↔ subspace ↔ cluster ↔ equivalence class ↔ ensemble ↔ model Ωp.

The symbol ↔ means “the two concepts can be used interchangeably”.
These terms may sound confusing sometimes, but we should not be too
rigorous or sensitive about these names. In fact, if we tolerate different
perspectives, we can benefit from the diversity brought to our field over the
years with useful tools associated with them. In pattern recognition, the
term “cluster” has never been defined precisely. We believe that the study
of manifolds and their compositions will provide a better description for the
structures of the image space.

At this point, people may raise many questions. Below are some urgent
ones.

1. How many explicit and implicit manifolds can we find in the space of
daily photos? These manifolds are supposed to be the basic components
for image coding, recognition, and perception.

2. How are they related to each other in the space? Can we sort these
manifolds along some axis?
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3. How do we model these manifolds in the image space? How do we
measure their volume and weight their mass?

4. How do we compose atomic manifolds to form larger composed mani-
folds? The latter host images from object categories.

We shall discuss these questions along our short journey in exploring the
fascinating image space which we still do not know too much about.

1.3. The spectrum of manifolds and manifold transition

BarEdge

Two 

Parallel 

Lines

Cat Dog Lion Tiger Fur Carpet Grass Noise

Figure 2: Example patches of 11 categories ranging from the classes of low-entropy patches,
such as edges and bars, to the classes of high-entropy patches, such as textures. Object
categories, such as animal faces, often lie in the middle entropy classes.

It has long been accepted that daily pictures, such as face images under
different expressions and lighting conditions or images of a vehicle taken by
motion camera, lie in low dimensional appearance manifolds. This is the
pillow of many well-known dimension reduction techniques, such as Isomap,
local linear embedding (LLE)(Roweis and Saul, 2000). People who applied
LLE to image patches cropped from daily photos will be disappointed. The
reason is intuitively discussed in the previous subsection, the image space is
not a low dimensional manifold but contains a wide spectrum of manifolds
with compositions. These manifolds have varying dimensions. Figure 2 shows
image patches of 11 categories from image primitives in “low entropy” classes:
edges, bars, parallel lines; to entropy objects: cat, dog, lion, tiger; and to
“high entropy” textures: fur, carpet and grass. When all the images are
normalized to have zero mean intensity, the two extremes of the spectrum are
(1) the set of images with constant pixel intensities over the image lattice,
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which has zero/minimal dimension, and (2) the set of images with pixel
intensities i.i.d. uniformly distributed, which has full N dimensions.

Here we need to clarify another set of terms which are highly related
to each other: volume of a manifold Ω, its entropy H – a term used in
statistical physics and information theory, and its intrinsic dimension d –
a term adopted in mathematics, coding and learning. In later sections, we
will show that the volumes of the explicit and implicit image manifolds are
measured in two distinct ways. In both cases, H, d and the log-volume of Ω
are measures for the massiveness of the manifolds,

entropy H ↔ dimension d ↔ log volume log |Ω|.
Intuitively, one may also call it the degree of freedom in pattern recognition.

In this paper, we use entropy as an axis to map all these manifolds.
Sometimes, people confuse entropy with information. Information has to
be defined for a task. For vision tasks, both primitives (in the low entropy
classes) and textures (in the high entropy classes) are considered boring and
less informative than objects (in the middle entropy classes). As we will
discuss in later section (see Figure 18), we have a smaller number of classes
at the two ends of the entropy spectrum and a much larger number of classes
in the middle entropy regime. The latter are hybrid manifolds and have
complexer structures. We dub it the “middle-entropy crisis” of computer
vision and pattern recognition. Understanding the structures of such hybrid
manifolds shall shed lights on the search of good features and algorithms for
pattern recognition.

The entropy is inherently related to image scaling (zooming). Figure 3
shows sequences of snapshots of maple and ivy leaves in the process of zoom-
ing out. At closer distance, each image contains a single image leaf and
thus represents image primitives from the low entropy regime of geometric
primitives. As the camera zooms out, each image contains a few leaves (i.e.
objects) with pedals. At further distances, each image captures hundreds or
thousands of leaves and becomes texture where the individual leaves can no
longer be identified. At the limit, if we have had large enough maple forest
or ivy wall, the intensity of each pixel is the sum of photons from hundreds
of leaves, and the image should converge to Gaussian noise because of the
central limit theorem.

As the camera zooms out, more leaves come into the images, which be-
come more complex, and the image entropy increases. As images are dis-
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Figure 3: Image scaling causes perceptual transitions between manifolds. From left to
right, as the we zoom out from the leaves, our perception of the image patches transits
from a primitive for single leaf instance in a low entropy class (or explicit image manifold)
to textures in high entropy classes (or implicit image manifolds).

crete signals with finite resolution, details of the leaves get lost and become
imperceptible. Our perception has to drop explicit variables for geometric
structures and change the representation as well as the perceptual metric.
In this process, if we crop image patches from images at different scales,
the manifolds that contain these image patches will change from explicit to
hybrid and finally to implicit manifolds. Readers interested in this aspect
are referred to an early paper Wu et al. (2008) for a discussion about the
information scaling, imperceptibility, and perceptual transitions.

To summarize, we have the third set of terminologies for the axis,

entropy regime transition ↔ camera zooming ↔ image scaling.

In Figure 3, the leaves have similar sizes in a narrow depth range, thus
images at each scale reside in classes/manifolds of similar entropy and the
entropy transition is obvious. Intuitively, we may think of the spectrum of
manifolds as distributed in different entropy regimes in the image space. By
analogy, the structures of the image space may be similar to the cosmology
picture in Figure 4. In our universe, mass and energy are distributed in
various forms. In some subspaces, like the stars, the distributions are of
high densities and low volumes; while in other subspaces, like the nebulas,
the distributions have low densities and high volumes. By analogy, the stars
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Figure 4: By analogy, a picture of the universe with mass distributed on stars (high density,
low volume) and nebulous (low density, high volume).

correspond to the explicit manifolds for image primitives and the nebulas
correspond to the implicit manifolds for textures.

1.4. Pursuing manifolds in the image space

So far, we have shown that the image manifolds have vastly different
dimensions and characteristic structures, and some low dimensional mani-
folds may be submerged in high dimensional manifolds. In the literature, the
conventional K-means clustering methods and other recent methods for sub-
space learning (Ma et al., 2007) all assume that clusters have similar linear
structures, and thus cannot be applied to such image space. We need a new
way to find these manifolds or clusters. This is illustrated in Figure 5.

Suppose that in the image space, represented by the big ellipse in Fig-
ure 5, there is an unknown target manifold Ωf to be clustered for a pattern,
and it is governed by an underlying “true” probability f(I). Ωf is a sub-
space represented by the red closed curve. We learn a sequence of models
to approach f in a stepwise manner, i.e. pursuit, starting from an initial
probability q(I).

q = p0 → p1 → p2 → · · · → pk → f. (3)

These models represent a series of manifolds, shown by the dashed blue curves
approaching Ωf ,

Ωp0 → Ωp1 → Ωp2 → · · · → Ωpk
→ Ωf . (4)

When Ωp coincides with Ωf , we said the manifold is captured.
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There are two ways for pursuing the manifolds as Figure 5 illustrates in
(a) and (b) respectively. For an implicit manifold, we may start with Ωp0 the
whole image space, and at each time, we add a new constraint to shrink the
manifold. With more constraints added, Ωp will capture Ωf from outside. For
Ωim defined in equation (2), these constraints augment to h = (h1, ...,hK).
For an explicit manifold, we start locally with a single point or small ball
inside Ωf , and at each step we expand some dimensions w in equation (1)
and fill Ωf from inside. We will present the model pursuit framework by
information projection and then show two case studies for the two types of
pursuit in Section 3.

(a) pursuit of implicit manifold (b) pursuit of explicit manifold

Figure 5: The red curve represents a manifold Ωf to be pursued. (a) An implicit manifold
is pursued through a sequence of models by shrinking from the whole image space. (b)
An explicit manifold is pursued through a sequence of models by expanding from a single
point or small ball.

The reason for choosing the two pursuit strategies is quite intuitive. As
implicit manifolds are of very high dimensions, thus it is fast to capture
them through constraints (reducing entropy or volume), while the explicit
manifolds are of much lower dimensions, thus it is more effective to capture
them by expansion (increasing the volume).

By analogy, when a teacher is grading a final exam with the full mark
being 100 (just like our full dimension N), for a very strong student, the
teacher will start with 100, and substract a few points here and there for
errors, and then count the final grade like

strategy a : 100− 3− 0− 2− 1− 0− 0− 2− 0− 0− 0 = 92.
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For a very weak student, the teacher starts will count from 0 and add a few
points for credits,

strategy b : 0 + 5 + 0 + 0 + 2 + 0 + 0 + 2 + 0 + 0 + 1 = 10.

In practice, students at both ends are easy to grade. Students in the
middle range around the pass / no-pass line need the most work. This is
exactly like the manifold pursuit where we encounter the hybrid manifolds
in the middle entropy regime for objects.

1.5. Plan of the paper

So far, we have introduced our motivation for studying the structures of
the images space, the characteristics of manifolds or subspaces, an entropy
axis for mapping the manifolds into various regimes and its relation to scaling,
and the intuitive ideas about modeling and manifold pursuit.

The plan for the rest of the paper is the following.
Firstly, we discuss some related work in the literature in Section 2 to set up

the background and context. We overview a number of streams in psychology,
coding, image modeling, and applied math which have investigated similar
topics.

Secondly, we present the theoretical framework for manifold pursuit by
information projection in Section 3. We show that this is a general modeling
and learning scheme which has been practiced in several fields under different
names. We show two case studies: one on Markov random fields, and the
other on learning active basis models for object templates.

Thirdly, in Section 4, we apply the manifold pursuit algorithm in Section 3
to the space of image patches and present experiments for clustering the
implicit and explicit manifolds from the space. Also we show the manifolds
in a sequence of scaled images to illustrate the transition of these manifolds.

Fourthly, we present two case studies in Section 5 that integrate the
implicit and explicit manifolds for image representation. One is the primal
sketch model for generic images at the middle level (Guo et al., 2007), and
the other is the mixed templates for object categories (Si et al., 2009). The
two cases demonstrate that the two atomic manifold can be combined to
represent general images.

Finally we conclude the paper with a discussion and connection to a more
general framework at the higher level: stochastic image grammar embedding
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in a hierarchical And-Or graph structure. The study of the mathematical
structures in the image space sheds lights on some basic questions in human
vision, such as atomic elements in visual perception, the perceptual metrics
in various manifolds, and the perceptual transitions over image scales.

2. Related research streams in the literature

We overview some interesting work in psychology, natural image model-
ing, coding, and applied mathematics, which investigated related topics.

2.1. Studies in early vision: texture, texton, and primal sketch

In the 1960s, a well-known psychophysicist Julesz (1928-2003) asked a
fundamental question about texture perception: what are the essential fea-
ture statistics so that two texture images sharing the same statistics are
perceptually equivalent. In today’s terminology, a texture is a set of images
that share the same feature statistics H(I) = h. This is the implicit man-
ifold that we defined in Equation (2) and named the Julesz ensemble(Zhu
et al., 2000). Julesz’s texture quest was not very fruitful, since there was
very limited knowledge about the neural functions (such as Gabor filters)
in selecting the features and statistics h. Given some statistical constraints
h, one needs to generate arbitrary (unbiased) images that share the same
h. In statistics, this is to draw fair sample from the manifold Ωim, so one
needs to establish Markov random fields for various h and use Markov chain
Monte Carlo methods for sampling from the models. Such mathematical
tools are necessary for studying the implicit manifolds, but they were simply
not available at that time.

(a) (b)

Figure 6: Two examples from Julesz’s experiments on textons.
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Julesz noticed that early vision (about 100-200 milliseconds) seems to be
very sensitive to certain elements while indifferent to others. Figure 6 shows
two examples designed by Julesz. In (a), One can detect the arrows from the
triangles instantly (i.e. constant time) regardless of the number of triangles
(distracters) in the background, while in (b) one has to search for the ’S’
in a number of ’10’s. The search time increases linearly with the number of
distractors. Julesz concluded that there must be a set of atomic elements
for human perception, which he called “textons.” In our terminology, each
texton is an explicit manifold. Later psychophysical experiments showed
that textons are adaptive (Karni and Sagi, 1991) and can be learned through
repeated exposure to such elements. Such phenomenon is also quite common
in recognizing symbols in language. For example, when western travelers
in China look at a Chinese newspaper or magazine, the Chinese characters
appear to be textures, while the Chinese people see the characters as textons.

As a pioneer, Julesz had touched the essence of texture and textons.
In his 1995 book Julesz (1995), he wrote a dialogue with himself and was
apparently puzzled by the textures and the textons, which in our opinion, are
two different types of manifolds studied by distinct branches of mathematics
with different tools. The textures are modeled by Markov random fields with
analysis tools from statistical physics, while textons are studied by coding
theories and tools from harmonic analysis. Since Julesz, there has been no
real successful work investigating and comparing the atomic textures and
textons in generic images. Our result presented in Section 4 is the first direct
experiment in the literature that compares and competes between textures
and textons and ranks these manifolds numerically.

In his monumental book (Marr, 1982), Marr inherited Julesz’s texton
notion and proposed the concept of image primitives as basic perceptual
tokens, such as edges, bars, junctions, and terminators. Inspired by the
Nyquest sampling theorem in signal processing, Marr went a step further
and asked for a token representation which he named “primal sketch” as a
perceptually lossless conversion from the raw image. He tried to reconstruct
the image with zero-crossings unsuccessfully and his effort was mostly limited
by the lack of proper models of texture. In Section 5.1, we will present a
mathematical model for primal sketch based on our early work (Guo et al.,
2007), which integrates the implicit and explicit manifolds seamlessly. We
refer to two early papers on texton (Zhu et al., 2005) and primal sketch (Guo
et al., 2007) for detailed discussions.

In summary, texture, texton, and primal sketch are important concepts
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in the early stage of visual perception. In this paper, they correspond to the
implicit, explicit, and hybrid manifolds in the image space.

2.2. Studies in the statistics of natural images – tips of the iceberg

It has long been noticed since the 1960s that image signals do not observe
the prominent Gaussian distributions. For example, the distribution of the
gradients of image intensity ∇I has higher kurtosis and heavier tails than
Gaussian, and often remains invariant when the images are down-scaled. This
has inspired much research in the 1990s and early 2000s studying the statistics
of natural images (Ruderman, 1994; Zhu and Mumford, 1997; Huang and
Mumford, 1999; Lee et al., 2003; Mumford and Gidas, 2001). Here, by natural
images, people usually mean photos taken in natural scenes which have a rich
set of objects of various sizes in a long range of distance from the camera,
e.g. trees in a forest.

(a) (b)

Figure 7: (a) The histogram of image gradient ∇I of images at four resolutions, from Zhu
and Mumford (1997). (b) The iso-probability surface plot on a 3D histograms of range
depth image patches (2 × 2 minus mean) of natural scenes, from Huang and Mumford
1999.

Figure 7 shows two typical results that are non-Gaussian distributions.
The heavy tails in (a) and spikes in (b) indicate the existence of structures
in images. Filters (such as gradients, Gabor) receive very high responses at
such structural locations (such as image primitives) and thus contribute to
the tails or spikes of the histogram.

These histograms are marginal (projected) statistics of the image mani-
folds that we are discussing, and are the tips of the iceberg – the underlying
structures of the image space. This simple evidence argues against the Gaus-
sian assumptions and quadratic metrics that are common in computer vision
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and pattern recognition, including Gaussian MRF, K-mean clustering etc.,
and call for non-Gaussian models.

It is worth noting that these studies focused on low dimensional statistics
over local features. The observed scale invariance is pooled over all locations
in an image which consists of objects in a large range of scales. When we
scale the image by downsampling, the larger objects become smaller, the
local statistics remain relatively stable or invariant while the perception of
individual object changes over scales. Such invariance does not conflict with
our observations in the scale transitions on objects (say the maple leaves)
over scales in Figure 3.

2.3. The puzzle of feature learning: sparse coding vs. MRF

The natural image statistics motivated a new round of efforts in image
modeling in the past 15 years. Two types of models are adopted to account
for the statistics.

The first model is the sparse coding by Field (1987) and Olshausen and
Field (1996), who argued that the high kurtosis in natural images indicates a
sparsity principle which directly contributes to the receptive fields of simple
cells found in the prime visual cortex area V1. Figure 8.(a) shows some
examples of the image base functions learned in an unsupervised manner from
natural images using a simple sparse coding model. These patches resemble
the Gabor functions and in our opinion belong to the explicit manifolds. We
notice that their algorithm involved some preprocessing stage that suppressed
the high frequency texture signals.

(a) sparse coding (b) Field of Experts (MRF)

Figure 8: (a) Learned base functions in sparse coding by Olshausen and Field (1996). (b)
Learned features in a Field of Experts (Markov random fields) by Roth and Black (2005).

The second model is the non-parametric Gibbs (MRF) model proposed by
Zhu and Mumford (1997). This model is constructed through the minimax
entropy principle (Zhu et al., 1997) with statistical constraints so that the
model reproduces exactly the observed statistics in Figure 7.(a). Interestingly
this model automatically selects features with the most information gain from
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a pre-defined set. It selects the Laplacian of Gaussian (LoG) and gradients,
i.e. the second and first order image derivatives, whose histograms provide
the more informative statistics against the uniform distribution (noise im-
ages). In 1999-2005, Roth and Black further enlarged the pre-defined set
of features and let the model learn arbitrary features freely as in Olshausen
and Field’s experiments. They used a factorized version of the Zhu-Mumford
model and called it the Field of Experts (FoE). Figure 8.(b) shows some ex-
amples of the top features learned by the FoE model which are close to
checkerboard pattern. In our opinion, these features are different versions of
the LoG and Gradient filters in a predefined patch size. For example, LoG
and Gradients selected in Zhu and Mumford (1997) are also checkboard like
feature in 3× 3 or 2× 1 patches respectively. But they are nothing like the
Gabor patches in Figure 8.(a).

How could two learning models, motivated by the same statistical obser-
vations, end up choosing two completely different sets of features as the most
informative representation? Which set has the true or better features?

To comprehend this puzzle, we again have to remind readers of the im-
plicit and explicit manifolds in the image space and the two manifold pursuit
strategies discussed in Figure 5. The sparse coding model looks for explicit
base functions to reconstruct the observed images, starting from a constant
image, and they capture the structures or primitives which are good at rep-
resenting the explicit manifolds for image structures. In contrast, in learn-
ing the MRF models, one seeks for more informative features to distinguish
natural images against noise images in pursuing the implicit manifolds, and
therefore selects the LoG or gradients features. So both are correct, and they
pursue the manifolds from two different ways, as we discussed in Figure 5.

Figure 9 illustrates this idea intuitively. Suppose we have some Gaussian
clusters and we plot their eigen-values in a decreasing order. If a cluster is
of a very low dimension, like images of human faces, then we choose a few
largest eigenvalues (see the blue curve) whose eigenvectors most effectively
reconstruct the face. This PCA example corresponds to the sparse coding
model except that the base functions in the sparse coding model are over-
complete and not orthogonal to each other. If a cluster is of a very high
dimension, like stochastic textures whose eigenvalue plot will be like the
red curve, then it won’t be effective to choose the top eigenvectors, instead
one ought to use the smallest eigen-values whose eigenvectors are often the
checkerboard patterns. Both could be considered as principal component
analysis (PCA). The first is the usual case for constructing lower dimension
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Figure 9: Plot of eigenvalues in decreasing order for some Gaussian clusters of low dimen-
sion (blue curve) or high dimension (red curve). One should choose the largest eigenvectors
for the low dimensional clusters and the smallest eigenvectors for the high dimensional
clusters. PCA are special cases for the the manifold pursuit and related feature selection.

clusters, and the second is the opposite case where we constrain the model
from uniform. This is again like the two grading strategies used by teachers as
we discussed in Section 1.4. We refer to a recent paper Weiss and Freeman
(2007) for more formal account and comparison between the two learning
schemes: sparse coding and Markov random fields.

2.4. Image scaling and perceptual transitions

Objects appear at arbitrary scales or sizes in images and evoke very dis-
tinctive perceptions and representations at different scales, Figure 3 demon-
strates the perception of maple leaves changes from primitives to texture.
Although there is a long thread of research in image scale space, the first
work that linked the perceptual transition to the entropy was done by Wu,
Guo and Zhu in 2007-08 (Wu et al., 2008).

Let W denotes the variables describing the whole scene, say the locations,
shapes and appearance for tens of thousands of maple leaves. W generates
the image I = g(W ) deterministically by a rendering function g(). Many
details are lost due to occlusion and image discretization in the rendering
process. Visual perception is to estimate W from I following a posterior
probability in the Bayesian framework,

W ∼ p(W |I). (5)

The symbol x ∼ p(x) means “x follows a probability p”.
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Suppose at a certain scale, we have I and W following probability p(I) and
p(W ) respectively. The entropy of the posterior probability p(W |I), averaged
over the images I in a certain scale, reflects our uncertainty or inability to
compute W precisely.

Definition 3. The imperceptibility of description W from an image I in an
image ensemble is,

imperceptibility : H(W |I) =
∑
W

∑
I

p(W, I) log p(W |I).

It was shown in Wu et al. (2008) that the imperceptibility increases when
the image is downsampled to a lower resolution where we denote the im-
ages by I−. For example, the shapes of maple leaves may not be visible.
Thus our representation need to reduce its complexity from W to W− by
dropping or combining some variables, so that H(W−|I−) returns to below a
certain threshold. The underlying assumption in this Bayesian inference is
that visual perception , human or machine, do not handle variables of high
ambiguities. For example, we don’t attempt to recognize a person’s face if
the person is very far away, and even for close faces we don’t define the exact
boundary between the upper part of nose and the rest of the face.

For a scene where the elements have a narrow range of sizes, such as the
maple scenes, at a critical scale, a catastrophic transition (Wang and Zhu,
2008) occurs when we discard all the shape variables in W (describing the
explicit manifolds for leaves) and switch to a statistical description W− = h
for implicit manifolds. In the latter case, h is an representation for the overall
texture impression without noticing the individual primitives.

explicit (W = {w}, I) zoom−out−→ implicit (W− = {h}, I−). (6)

This intuitively explains the transition between explicit manifolds and im-
plicit manifolds over the scaling process. For natural scenes which contain
objects in a continuous scale following certain distributions, for example, the
object radius r ∼ 1/r3 in the scene follows a density p(r) ∝ 1/r3 (Mumford
and Gidas, 2001), the individual object must undergo the above perceptual
transitions during the zooming process, but the overall local statistics aver-
aged over the entire image remain invariant . We refer to Wang and Zhu
(2008); Wu et al. (2008) for more discussion.

To summarize this section, we have discussed a few puzzling topics of sig-
nificant importance in the literature: (1) texture, texton and primal sketch;
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(2) high kurtosis and sparsity in natural image statistics; (3) seemingly con-
trast features learned by sparse coding vs Markov random fields; and (4)
image scaling and perceptual transitions. All these issues are related to or
explained by the explicit and implicit manifolds.

3. Information projection and manifold pursuit

In this section, we present the manifold learning framework and pursuit
algorithm, following the introduction in Section 1.4.

3.1. Learning by information projection

Suppose we have a target manifold Ωf governed by a probability f(I),
and it is represented by a number of observed examples. In the context of
discriminative pattern recognition, they are called positive examples.

Ωf ⊃ {Iobsm ; m = 1, 2, . . . , M} ∼ f(I) (7)

The objective of manifold pursuit is to find a sequence of models, starting
from an initial reference model q, that would gradually approach f(I),

q = p0 → p1 → · · · → pk to f (8)

in terms of minimizing the Kullback-Lebler divergence KL(f ||p).
We have introduced two pursuit strategies in Section 1.4, more specifically

in Figure 5. Both pursuit strategies follow the same learning procedure and
principle, and only differ in their initial models q and the selected feature
statistics.

Figure 10 illustrates the learning procedure by information projection
in the space of probability distribution. Note that we have been talking
about image space and subspaces where each point is an image. Now we are
dealing with a new space for probabilities where each point is a probability
distribution q(I), p(I), or f(I). In this probability space, the Kullback-Leibler
divergence between two probabilities plays the same role as squared distance
in the Euclidean space.

The learning proceeds iteratively. At each step k, we augment the current
model pk−1 to pk by adding some statistical constraint that pk−1 does not
observe, i.e.
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Figure 10: Learning by information projection in the space of probabilities. Each point is
a probability model. With more constraints added, the KL-divergence reduces monotoni-
cally.

Epk
[rk(I)] = Ef [rk(I)] 6= Epk−1

[rk(I)]. (9)

rk(I) is some function of image I, for example, the response of a Gabor filter
at certain location in the image, or rk(I) can be a vector for the histogram
of Gabor filter responses. In practice we can always approximate the expec-
tation by the sample mean,

Ef [rk(I)] ≈ r̄k =
1

M

M∑
m=1

rk(I
obs
m ) (10)

Definition 4. We denote the set of all probabilities p that satisfy the con-
dition as candidate models in the probability space,

Pk = {p : Ep[rk(I)] = Ef [rk(I)]}. (11)

Pk is represented by the curve in Figure 10. For example, both f and pk

lie on Pk in Figure 10 as they satisfy the constraint.
Now, we hope to project pk−1 to Pk perpendicularly, and thus find the p∗

on Pk that is closest to pk−1,

p∗ = arg min
p∈Pk

KL(p||pk−1). (12)
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Solving this constrained optimization problem by Lagrange multiplier, we
have

pk(I; Θk) =
1

zk

pk−1(I; θk−1)e
−λkrk(I) (13)

λk is the parameter and zk normalizes the probability to 1. This new model
pk may no longer observe the previous constraints, for example, pk is not on
Pk−1.

The three points pk−1, pk and f form a triangle with right angle, as
Figure 10 shows. This is the famous Pythagorean theorem (see Della Pietra
et al. (1997) and Csiszár and Shields (2004)).

Theorem 1. For the exponential probability family {pk} constructed above,
we have

KL(f ||pk−1) = KL(f ||pk) + KL(pk||pk−1), ∀k. (14)

As long as one can find informative features rk(I) so that pk−1 6= pk, then
KL(pk||pk−1) > 0 and the pursuit process converges to f monotonically.

After K iterations, we obtain a model,

p(I; Θ) = q(I)
K∏

k=1

1

zk

e−λkrk(I). (15)

Or we can rewrite it as

p(I; Θ)

q(I)
=

K∏

k=1

1

zk

e−λkrk(I) =
1

Z
exp{−

K∑

k=1

λkrk(I)}. (16)

Z = z1z2 · · · zK and Θ = (λ1, . . . , λK). The above learning process sequen-
tially projects the current model to a number of constrained spaces, and thus
is called “information projection”.

Each iteration of the learning process includes two steps.
1. Min-step: given the feature constraint rk, we compute the parameter

λk by finding the pk on Pk that is closest to pk−1,

λ∗k = arg min
pk∈Pk

KL(pk||pk−1) (17)

2. Max-step: choosing an informative feature and statistics rk, which
reveals the biggest difference between pk and pk−1.
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r∗k = arg maxKL(pk||pk−1) (18)

As eqn 14 shows that KL(pk||pk−1) = KL(f ||pk−1)−KL(f ||pk), this step is
a greedy way of minimizing the KL-divergence between f and p.

There are variations of the above information projection precess, which
differ in two major ways.

1. The choice of the initial or reference probability q. For implicit manifold
or texture modeling, one often starts with q being the uniform proba-
bility over the entire image space. In contrast, for explicit manifolds q
is chosen to be focused on a point with an ε radius. See illustrations
in Figure 5. For the former case, the constraint is a “push” operator
that shrinks the volume of Ωp at each step, while for the latter case,
the constraint is a “pull” operator that expands the volume of Ωp at
each step.

2. One may choose to accumulate the statistical constraints and thus let
Pk observe all the existing statistical constraints,

Pk = {p : Ep[rn(I)] = Ef [rn(I)], n = 1, 2, ..., k}. (19)

The Pythagorean theorem holds true for the above construction. This
leads to the minimax entropy learning scheme in Zhu et al. (1997). It
was also used in language modeling in Della Pietra et al. (1997).

In the following, we show two case studies to illustrate the above learning
process: one for implicit manifolds and one for explicit manifolds.

3.2. Case study I: the FRAME model for texture modeling

In the first case study, we illustrate the pursuit of implicit manifolds for
texture modeling following the work of FRAME model (Zhu et al., 1997) and
Julesz ensemble (Zhu et al., 2000).

The feature dictionary ∆im = {Fk} consists of Gabor sine and cosine
filters, Laplacian of Gaussian (LoG) and gradient filters of varies sizes. The
features extracted are filter responses 〈Fk(x, y), I〉, where k indexes the scale
and orientation of the filter, and (x, y) is the location. We assume that the
texture is homogeneous, so we pool the filter responses over the image domain
to form a histogram rk(I) = hk(I) for each filter k. So we have the implicit
manifolds for texture in a sequence,
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Pk = {p : Ep(hi(I)) = Ef (hi(I)), i = 1, 2, ..., k, ∀(x, y)}, (20)

where f is the true distribution that generates the observed image, and
Ef (hi(I)) can be approximated by the corresponding histogram of the ob-
served image, because f is stationary.

We initialize the learning process with k = 0, and we take p0 to be the
uniform distribution of the entire image space. Each step, set k ← k + 1,
we choose from ∆im a new filter Fk and its histogram hk which reveals the
biggest difference between the current model pk−1 and the true distribution
f , then we keep adding hk to augment the model. As k increases, it gets
closer to f as Figure 5 illustrates.

To verify the learning process, we draw typical samples, by Markov chain
Monte Carlo simulation, from the sequence of image manifolds Ωim

k , k =
0, 1, 2, ..., 6. These typical images are shown in Figure 11. As k increases, the
sampled images become perceptually more similar to the input image in (a).

(b)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Figure (a) is the original input image, (b) is the initial noise image, and (c)-(h)
are the synthesized image after adding 1-6 features into the model. The right panel plots
of eigenvalues for the images patches from the synthesized image sequence. The red dotted
line is for the noise image, and green broken line for the original input image. Eigenvalues
are scaled so that the first eigenvalue would equal to 1.

As another way to visualize the learning process, we randomly choose
10,000 image patches of 10×10 pixels from the sample images at each learned
stage Ωim

k , k = 0, 1, ..., 6, as well as the original image. We applied PCA
analysis and plot the eigenvalues in decreasing order for each manifold in the
right panels of Figure 11. The eigenvalues are scaled in the figure so the the
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first eigenvalue would equal 1. The red-dotted curve is the eigenvalue plot
of noise patches which is almost flat as expected. As k increases, the curves
converges to the green curve for the input texture.

For a large image lattice, each learned pk is equivalent to the uniform
distribution over an implicit image manifold Ωim

k = {I : hi(I) = hi, i =
1, ..., k}, where hi(I) is the histogram of filter responses pooled over the
image I. The entropy of pk is the log-volume of the ensemble Ωim

k . This
volume decreases as k increases. This example for pursuing implicit manifold
confirms our intuitive ideas discussed in Figure 9 and the grading strategy a
in Section 1.4.

In the above example, the first two steps have the most effective com-
pression along some dimensions, that is, the volume of the manifold shrinks
at each step. In fact, the effectiveness of a filter Fk and thus its statistics hk

is measured by reduction of volume in logarithm,

Info.gain : Igim(hk) = log
|Ωim

k−1|
|Ωim

k | . (21)

Because of the equivalence between entropy of pk and the log-volume of Ωim
k ,

the above information gain is

Igim(hk) = entropy(pk−1)− entropy(pk). (22)

The pursuit of implicit manifold is a greedy process of entropy reduction
process. This information gain is computed numerically by the following
formula in Zhu et al. (1997), following a Taylor expansion of entropy(pk) at
entropy(pk−1),

Igim(hk) = N/2 · (hk − ho)
′Σ−1

o (hk − ho), (23)

where N is the number of images in I, ho is the statistics (histogram of filter
responses) according to the current model pk−1, and Σo is a covariance matrix
of hk. Thus the larger the distance between the observed statistics hk and
the current statistics ho, the bigger the information gain. We refer to Zhu
et al. (1997) for details of the modeling and learning process.

3.3. Case study II: the Active Basis model for object template

In the second case study, we illustrate the pursuit of explicit manifolds
for learning deformable templates using the Active Basis model in our recent
work Wu et al. (2007, 2009). Suppose we observe images {Iobsm ,m = 1, ..., M}

25



from an object category. For simplicity, let us assume that these images are
of the same size, and the objects in these images appear at the same position
and scale and in the same pose. Our goal is to learn a common template
from these training images.

Similar to the FRAME model, the feature dictionary ∆ex = {Fk} con-
sists of Gabor sine and cosine filters. However, in the Active Basis model, the
Gabor filters play the role of basis functions for spanning the explicit mani-
folds. More specifically, let Bx,y,s,α be the Gabor wavelet centered at location
(x, y), at scale s and orientation α. Then the active basis representation is
as follows:

B = (Bk = Bxk,yk,s,αk
, k = 1, ..., K). (24)

B is viewed as a deformable template, because we allow each basis function
Bk to deform to Bxk+∆xm,k,yk+∆ym,k,s,αk+∆αm,k

, where (∆xm,k, ∆ym,k) is the
shift of Bk in location, and ∆αm,k is the shift of Bk in orientation. We
restrict the shifts (∆xm,k, ∆ym,k, ∆αm,k) to be within a limited range. In
detecting the template, these local deformations are computed through a
local maximization process that chooses the maximum response rk for Bk

over the deformation range.
The Active Basis B defines an explicit manifold of images,

Ωex = {I : I =
K∑

k=1

ckBxk+∆xk,yk+∆yk,s,αk+∆αk
}, (25)

where w = (ck, ∆xk, ∆yk, ∆αk, k = 1, ..., K) are the variables. This explicit
manifold is highly non-linear, because of the shifts in locations and orienta-
tions of the basis elements.

Though Ωex is spanned by K independent basis functions, these basis
functions are like the spikes pointing to various dimensions and thus the
volume of Ωex is quite small even if K is large. In the following, we de-
fine a probability distribution for Ωex following the information projection
procedure.

We construct a sequence of constraints on the individual response of basis
function Bk.

PK = {p : Ep [s(rk(I))] = Ef [s(rk(I))] , k = 1, 2, ..., K, }, (26)
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where s(r) is a sigmoid transformation that increases monotonically from 0
to a saturation level, and Ef [s(rk(I))] can be estimated by the sample mean,

Ef [s(rk(I))] ≈ 1

M

M∑
m=1

s(rk(I
obs
m )). (27)

The learning process leads to the following model,

p(I; Θ) = q(I)
K∏

k=1

1

zk

e−λks(rk(I)). (28)

Θ = (λ1, ..., λK) is the parameters. We choose q(I) to be a uniform distri-
bution in the image space centered at a flat image with small perturbations.
For example, we may take patches from natural images and these patches
are dominated by flat regions as we shall show in the next section.

Figure 12 illustrates the pursuit process for a deer template. It consists
of 50 basis functions represented by strokes.

Figure 12: (Top) The process of learning the Active Basis templates for a deer image.
Basis function vectors are selected in the order of their information gains. (Bottom) Nine
examples of the deer images with their deformed templates on the right.

Intuitively, if more image instances have a feature (i.e. high response rk)
at a common location and orientation, then the corresponding basis function
Bk has a higher information gain.

In the following, we briefly derive the information gain for the Active
Basis model in eqn.(28), and refer to Wu et al. (2009) for more details. In
Wu et al. (2009), some simplification steps are taken by assuming the basis
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function are non-overlapping and conditionally independent given the overall
alignments. Thus we have both p and q in factorized forms,

p(I)

q(I)
=

K∏

k=1

p(rk(I))

q(rk(I))
, (29)

with p(rk(I)) and q(rk(I)) being 1D probabilities. Thus the information gain
for selecting a basis function Bk is simply,

Igex(Bk) = KL(p(rk)||q(rk)). (30)

Figure 13 illustrates the information gain for an car example. In this example,
q(rk) is the same for all rk and is focused around zero, while p(rk) may have
a bump due to high responses at the observed image instances.

))(||)(( ii rqrpKL

no. of base functions selected

B1

1  2  3  4  5  6  7

B1

B3

B2

template instance 1 instance 2 instance n

…

projection r

q(r)

p(r1)p(r2)
p(r3)

0

Figure 13: Active Basis pursuit and measuring the information gain for each basis function.
The three basis functions B1, B2, B3 represent some common car structures and their
responses follow distributions p(r1), p(r2) and p(r3) respectively in contrast to the null
model q(r). The KL-divergence between p(rk) and q(rk) measures the information gain of
choosing Bk.

Following the parametric model in eqn.(28), we have

p(rk)

q(rk)
=

1

zk

e−λks(rk(I)). (31)

The information gain for choosing Bi is then,
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Igex(Bk) = λiEf [s(rk(I))]− log zk. (32)

Ef [s(rk(I))] is estimated in eqn.(27) and λk and zk are scalars which can be
estimated by Monte Carlo methods on positive training images.

For the source code, data and further details of the above results, please
refer to http://www.stat.ucla.edu/~ywu/ActiveBasis.html.

3.4. Manifold pursuit: a push and pull process

So far, we have introduced manifold learning by information projection,
and shown examples for pursuing both implicit and explicit manifolds. The
model pursuit in the probability space in Figure 10 is an abstract view which
may be less intuitive. Now we further discuss the pursuit in the image space
and interpret the manifold pursuit as a push and pull process.

Let Ωf be the underlying image manifold that we are pursuing and it is
governed by a probability f(I), and the current model p(I) corresponds to an
image manifold Ωp. When p = f , Ωp coincides with Ωf , we say the manifold
is “caught” successfully. As the image space is of very high dimensions, we
cannot visualize the shape of Ωf or Ωp, instead we project them to lower
dimensional space and observe their marginal distributions. For example,
Figure 7 shows the 1D and 3D marginal statistics for the set of natural
images. Let r be the response of an image to a filter (an axis in the image
space), and for simplicity we denote the marginal statistics of r by Ep[r] and
Ef [r] respectively (note they are not the expectations of the response), and
they are shown by the dashed blue curves and solid red curves respectively
in Figure 14.

r r
(a) push and compress (b) pull and expand

Figure 14: Two 1D marginal statistics. The blur dashed curves are the marginal proba-
bility Ep[r] of model p, and the red curves are the marginal probability Ef [r] of model f .
(a) the push process, and (b) the pull process. See text for interpretation.
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If p is matched to f , then a necessary but not sufficient condition is to
match their marginal probabilities

Ep[r] = Ef [r]. (33)

This is exactly what we do in each iteration of the information projection
process.

1, The push process. In pursuing implicit manifolds like texture in case
study I, one starts from a uniform probability p0 and thus Ep[r] is “fat” while
Ef [r] is “slim” and peaked at a single point. We need to push Ep[r] to fit
Ef [r] by compressing the volume of Ωp. In an extreme case, if Ef [r] is so slim
and becomes an impulse function (or direct delta function), then its means
Ωf is perpendicular to the filter. So the pushing process compresses a whole
dimension.

2, The pull process. In pursuing explicit manifolds like the active basis in
case study II. Ef [r] has a much longer tail than Ep[r] because the structures
aligned with the filter generate large responses. The matching process pulls
Ep[r] to fit Ef [r], and thus produces a spike along the axis of the filter, just
like the spikes shown in Figure 7.(b).

The above push and pull processes are refined interpretations to the two
manifold pursuit strategies discussed in Figure 5 and show that we can use
the statistical constraints to both compress and expand the manifolds. In
the hybrid template learning case which we shall introduce in Section 5.2,
the push and pull processes will alternate to reshape Ωp so that it matches
to Ωf . The convergence is guaranteed by the Pythagorean theorem.

4. Pursuing atomic manifolds in the space of image patches

In this section, we pursue the explicit and implicit manifolds in the space
of image patches. We choose small patches as they mostly belong to either
a pure explicit or a pure implicit manifold. These manifolds are the atomic
structures in the image space, contain the prevailing textures and textons
in our visual environments, and they are composed to form large subspaces
for complex image patterns. We are particularly interested in knowing the
most popular atomic manifolds in the space of natural (or daily) images and
sorting them according to their information gains.
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4.1. The space of image patches

Let Ω denote the space of all image patches of N pixels, say, N = 112

to 192. We are interested in studying a subspace Ωf ⊂ Ω governed by a
probability f(I). For example, Ωf contains patches cropped from generic
images that we see in daily life or photos that we download from the Internet.
We observe a large number of patches {Iobsm : m = 1, 2, ..., M} and assume
that Ωf is made up of both explicit and implicit manifolds, plus some leftover
image patches that are rare and complex patterns.

Ωf = ∪S
s=1Ωs ∪ Ωleftover (34)

Ωs denotes an implicit or explicit manifold, and the “leftover” image patches
in Ωf are explained by the background model q(I) = Unif[Ω], i.e. uniform
probability over the entire space Ω.

We assume that Ωs are non-overlapping, and estimate the frequency of
each manifold by

fs = Ef(I) [1(I ∈ Ωs)] ≈ 1

M

M∑
m=1

1(Im ∈ Ωs), (35)

1() is an indicator function. This is a reasonable assumption in high dimen-
sional spaces. Sometimes a low dimensional subspace (cluster) is submerged
in a cluster of higher dimensions, the volume of the formal is negligible in
comparison to the later.

Our objective is to pursue a probability model p to approximate f , with
an initial uniform distribution q over Ω. The Kullback-Leibler divergence is

KL(f ||q) = −
S∑

s=0

fs log
fs

|Ωs| + Ef [log f(I)]. (36)

So we can measure the information gain of Ωk by

ls = fs log
fs

|Ωs| . (37)

Note that |Ω| = LN is a constant with L being the number of gray levels.
Therefore the pursuit process seeks the manifold Ωs with large frequency (i.e.
heavy) and small volume (i.e. tight).
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In the following, we shall calculate ls for the explicit and implicit mani-
folds. To do so, we need to estimate their volumes |Ωs|, s = 1, 2, ..., S.

(1). Volumes of the explicit manifolds. For an explicit manifold, the
images are represented by an Active Basis model with K = 1, 2, 3, 4 strokes,
such as edges, bars, junctions, and cross etc. Ωs = {I : I = gs(ws) + ε}, with
ws = (ws,1, . . . , ws,K), we define its volume as

log |Ωs| =
K∑

i=1

Li, (38)

where Li is the log-volume of the space that ws,i spans, or the coding length
of ws,i.

Li = log |Ωxi
|+ log |Ωyi

|+ log |Ωθi
| −

∑
ai

p(ai) log p(ai).

where Ωxi
× Ωyi

× Ωθi
is the deformation space of the i-th stroke, and p(ai)

is the probability for the contrast ai.
(2). Volumes of the implicit manifolds. For an implicit manifold Ωs =

{I : Hs(I) = hs + ε}. hs denotes the normalized histograms. Its volume can
be estimated according to the information gain in eqn.(23).

log |Ωs| = log |Ω| −N/2 · (hs − ho)
′Σ−1

o (hs − ho) (39)

where ho is the histograms of filtered responses from noise images, and
log |Ω| = N log L.

4.2. The pursuit algorithm

For the observed image patches in Ωf , we first apply an EM-type cluster-
ing algorithms using the implicit and explicit models separately. Thus we de-
compose Ωf into a set of candidate explicit manifolds (clusters) Ωex = {Ωex

s },
and also decompose Ωf into a set of candidate implicit manifolds (clusters)
Ωim = {Ωim

s }. The two sets of manifolds overlap with each other.
These candidate manifolds are ranked by their information gains ls dis-

cussed in the previous subsection. We iteratively select the manifold that has
a maximum information gain, and mark its cluster members (image patches)
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as “explained”. Then patches in this cluster are then eliminated from all
other clusters whose information gains are re-calculated to only count the
un-explained ones. This procedure is carried on until the gain of the newly se-
lected manifold is small than a threshold, or when all example image patches
are “explained”.

Input: Ωex = {Ωex
1 , . . . , Ωex

M} and Ωim = {Ωim
1 , . . . , Ωim

N }
Output: Ω = {Ω1, . . . , ΩS}
1. Initialize Ω = ∅, S ← 0
2. Repeat
3. Calculate information gain lk for all Ωex

k

4. Calculate information gain lk for all Ωim
k

5. Select ΩK with highest gain lmax, remove it from Ωex or Ωim

6. For each Ωk ∈ Ωex ∪Ωim

7. Ωk ← Ωk − ΩK .
8. K ← K + 1
9 Until lmax < τ , or Ωex = ∅ and Ωim = ∅

4.3. Pursuit experiment I: manifolds in generic images

In this section, we report the manifold pursuit experiments on three sets of
images. More detailed description is refer to a Ph.D dissertation Shi (2008).

The images in this experiment are from Flickr.com, Corel image database
and our own collection. The images are approximately 400× 600 pixels, and
we crop image patches of 19× 19 pixels.

The first image set consists of 200 generic natural images. Figure 15 shows
examples of collected natural images, together with top 20 image manifolds
learned using the method described in Section 4.2. The left most column
displays a template or prototype image for each manifold, and to the right
of it we show three of its instances. Each instance is shown with its context.

The two types of manifolds are selected in a mixed order. Figure 16
shows the relative frequencies fk and information gains lk of the sequentially
selected manifolds. The frequencies are highly uneven. The top selected
manifolds are dominated by implicit manifolds. Only 5 of the top 20 mani-
folds are explicit, and they combine to contribute to less than 15% of the total
image patches. Clean boundaries of objects are often much more informative
perceptually (Marr, 1982) and useful in object recognition. However, the
explicit manifolds we found using generic image set only contain very simple
structures such as edges, bars and parallel lines. We did not obtain complex
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cluster
centers instances in each cluster

two parallel lines
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floor, sky, wall

concrete, fur, stone 
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tree, wild grass

carpet, lawn

concrete, stone, leaves from distance

carpet, wood

11

13

14

16

15

17

19
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18

12

three parallel lines

leave, skin, wood

carpet, floor

fur, grass

two parallel lines

grass, stone, water

metal, stone, water
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floor tile
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cluster
centers instances in each cluster

Figure 15: Top: examples of generic images. Bottom: the top 20 clusters with proto-
types of the manifolds sequentially selected, and the instances of image patches on these
manifolds. The two types of manifolds are selected in a mixed order. For illustration pur-
pose, we have beautified the explicit shape templates by minimally adjusting the positions
of edge elements.
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structures such as T-junctions, which is in part due to their extremely low
frequencies.

Figure 16: Plot of frequencies and information gains of the 20 sequentially selected mani-
folds.

To see what types of manifolds are important for describing images with
man-made objects, we selected 30 such images as our second image set, which
includes both indoor and outdoor scenes with buildings, furniture etc. The
top 15 manifolds found are shown in Figure (17). Comparing with the man-
ifolds shown in Figure 15, the most glaring difference is that there are far
more explicit manifolds. In addition to edges and bars, “L”-junctions and
“T”-junctions are also found. This demonstrates that explicit manifolds are
more prominent in images containing man-made objects than they are in
more generic images. We would like to point out that even though “L”-
junctions and “T”-junctions have much higher frequencies in this image set,
their frequencies are still small.

4.4. Pursuit experiment II: manifold transition in scales

For the third image set, we study the images with visual patterns of dif-
ferent scales. Wu et al. (2008) studied this problem using a dead leaves model
(Matheron, 1975) by generating sets of 512× 512 images containing multiple
occluding squares of varies sizes, with one of the sets shown in the bottom
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Figure 17: The prototypes of the manifolds sequentially selected from images primarily
compose of man-made objects, The two types of manifolds are selected in mixed order,
but explicit manifolds appear much more often, and the implicit manifolds are mostly flat
textures.
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of Figure 18. This simulates the maple leaf example shown in Figure 3. The
image at the first scale is generated by randomly placing squares of various
sizes onto the image. The side length of the squares is s and it takes values
from [64, 256] with the frequency proportional to 1/s3. That is, the large
squared are occluded by much more squares of smaller size. The squares
are placed at random until all pixels are covered at least once. The pixel
intensity t is constant within each square, with t randomly sampled from a
uniform distribution [0, 255]. Image in each subsequent scale is a downsam-
pled version of the image in the previous scale. The resolution is lowered by
1/2, and the intensity of each pixel (x, y) is generated by taking the average
of the four pixels (2x− 1, 2y − 1), (2x− 1, 2y), (2x, 2y − 1), (2x, 2y) from the
previous scale. In their study, they found that the per pixel entropy of the
images increases as the scale increases. As we discussed before, the images
go from cartoon like pictures in a low entropy regime, to an object like mid-
dle entropy regime, and to a texture like high entropy regime, and end at
Gaussian noise at scale 8. At scale 8, each pixel is the normalized sum of
27× 27 pixels at scale 1. Even the largest squares are longer destroyed in the
downsampling and discretization process.

Studying this dataset reveals some interesting results for transitions of
manifold as well as our models for representation.

Firstly, we estimate the number of manifolds needed to encode at each
scale. Again we perform the manifold pursuit procedure, and we allow the
explicit and implicit manifolds compete against each other in order to form
the optimal set of manifolds. Manifolds identified in each scale are shown in
Figure 19. We only display the top manifolds with frequencies greater than
0.5%. These manifolds give a good picture of how many manifolds is needed
because these top manifolds already cover the vast majority of the images
(greater than 95%).

As Figure 18 shows, scales 1-2 contain only explicit manifolds, and scales
6-8 are exclusively implicit manifolds. The scales 3-5 have both types. In
addition, the number of manifolds peaks around scale 4. This means that we
only need a few manifolds in our dictionary to efficiently code very high or
very low resolution images, but more manifolds are needed to code images of
middle resolution. This suggests that the “middle resolution”, which is also
where typical patterns of visual objects appear, contains most interesting
information.

Secondly, we compare the coding efficiencies of the two types of manifolds
at different scales by computing the coding efficiency of the two manifolds.
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scale1                    2                    3                         4                         5                     6                     7                       8 

clusters

instances 
in a cluster

Figure 18: Bottom: A sequence of images of occluding squares. The resolution of each
image is 1/2 of the previous image. Top: Examples of manifolds found at each scale,
additional patch instances are displayed for selected manifolds to show the within-manifold
variance.
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We tabulate the total number of pixels Tk covered by member image patches
of each explicit manifold Ωex

i or implicit manifold Ωim
i . Overlapping pixels

contained by multiple image patches are counted as 1/N of a pixel toward
each of the N image patches that cover it. Pixels that are not covered by
any image patches belonging to an explicit manifold or implicit manifold are
placed into the default background manifold Ω0, where pixels are coded with
the maximum coding length of 8. Given this information, the average de-
scription length per pixel for the whole image by using only explicit manifold
and only implicit manifolds can be compute by L =

∑K
k=1

Ti

N2 lk, where lk is
the description length of manifold Ωi, and N2 represents the total number of
pixels in the image.

Figure 19: Coding length changes over scales for the implicit and explicit manifolds.

The coding lengths for both explicit and implicit methods increase as the
scale increases, because the entropy of the images increases as we increase
scale, thus it is inevitable that manifolds obtained from high-resolution im-
ages will have larger volumes, regardless how we model it. But it is clearly
more efficient to use explicit manifolds to represent the high resolution im-
ages, and use the implicit manifolds to represent the low resolution images.
The two curves intersect between scale 4 and 5, indicating that the coding
efficiencies of the two manifolds are comparable for images at the medium
resolutions.
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5. Integrating the explicit and implicit manifolds

In this section, we show two cases for integrating image patches from the
explicit and implicit manifolds to form larger representations: (1) the primal
sketches for representing generic images, and (2) the hybrid image templates
for representing object recognition.

5.1. Case study III: the primal sketch model for generic image representation

As reviewed in Section 2.1, the primal sketch was conjectured by Marr
(1982) as a symbolic and perceptually lossless representation for generic im-
ages and it was considered the perceptual model for early vision. A mathe-
matical model was proposed by Guo et al. (2007). We briefly show how this
model integrates the texture and textons (or image primitives), or in our
terms, patches from explicit and implicit manifolds.

(a) input image (b) sketch graph (c) texture regions

(f) reconstructed image (e) sketch reconstruction (d) texture reconstruction

= +

Figure 20: Example of the primal sketch representation, from Guo et al. (2007).

Figure 20 illustrates the primal sketch model from Guo et al. (2007), the
image domain Λ is divided into two disjoint parts: the sketchable part Λsk

for structures in (e) and non-sketchable part for textures in (d).

Λ = Λsk ∪ Λnsk, I = (Isk, Insk). (40)
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The sketchable part is further divided into a number of domains (usually
5× 11 pixels) for image primitives, such as blobs, edges, bars, and junctions
in (b).

Λsk = ∪iΛsk,i, with Isk,i = B∗
i (wi) + ε, Isk,i ∈ Ωim

i∗ . (41)

In the above notation, each patch Isk,i is mapped to (or coded by) a closest
explicit manifold Ωex

i∗ with a primitive B∗
i indexed by its explicit variables

wi = (xi, yi, θi, ai) for translation, rotation, and contrast.
The non-sketchable part is also divided into a few texture regions shown

by different gray levels in (c). The shape of these regions may be irregu-
lar unlike the primitives. The image in each region belongs to an implicit
manifold since Insk,j under its boundary condition Isk has certain statistics.

Λnsk = ∪jΛnsk,j, with h(Insk,j|Isk) = h∗j + ε, Insk,j ∈ Ωim
j∗ . (42)

In the above notation, each texture region Insk,j is mapped to (or coded by)
a closest implicit manifold Ωim

j∗ with statistics h∗j . The texture areas can be
synthesized by sampling the images from the implicit manifold Ωim

j∗ using
a Markov Chain Monte Carlo method. The sampling is conditional on the
sketchable part Isk.

In Figure 20, both structures in (e) and textures in (d) are represented
by explicit and implicit manifold respectively. The two parts are combined
to yield an image in (f), which is perceptually almost lossless to the input
image in (a), although the texture parts are very different in terms of pixel
intensities. We refer to Guo et al. (2007) for details of the primal sketch
model.

In summary, the primal sketch model decomposes the image into patches
and each patch is indexed to either an explicit manifold or an implicit mani-
fold. This is a very parsimonious representation and it needs much less bytes
than jpeg coding (see the bit count in Guo et al. (2007)). It has the follow-
ing properties in comparison to vector quantization and image coding in the
literature.

Firstly, one may view the primal sketch representation as a vector quan-
tization process. Unlike conventional vector quantization where the recon-
struction errors are measured in a single space, say the squared distance in
Euclidean space for image coding, the reconstruction errors in primal sketch
are measured in differ metrics. A primitive patch is reconstructed to an ε
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precision in the explicit manifold for errors in location, orientation and in-
tensity difference. A texture patch is reconstructed to an ε precision in an
implicit manifold measured by histogram difference.

Secondly, it is drastically different from wavelet coding or sparse coding
and is more effective in image reconstruction. For structure patches, the
image primitives are much sparser (i.e. more over-complete) than the wavelet
dictionary. Each patch is represented by only one primitive that can account
for sharp object boundaries. For texture patches, the image is reconstructed
up to a statistical histogram that produces textures perceptually equivalent
to the input texture areas.

5.2. Case study IV: learning hybrid image templates for object recognition

In the fourth case study, we show another application of combining ex-
plicit/implicit manifolds for representing hybrid image templates for object
recognition in high level vision. More discussion about the hybrid template
is referred to a recent paper (Si et al., 2009).

The hybrid template is an extension of the Active Basis model presented
in Section 3.3. The latter only uses Gabor basis functions from the explicit
manifolds for representing structural elements in the objects. Now we use
both primitives from explicit manifolds and texture patches from implicit
manifolds. For each object we may have multiple deformable templates to
account for different views or configurations. Each template is learned from
a set of training images {Iobsm : i = 1, 2, ..., M}. These images are instances of
the object and are well aligned in position, orientation and scale with arbi-
trary background. Different templates of the object can be learned through
an EM-like clustering procedure.

Like primal sketch, the image domain of a hybrid template is divided into
a number of K non-overlapping patches Λ = ∪K

i=1Λi. The image in a patch Λi

is denoted by IΛi
. A patch can be either a primitive from the explicit manifold

or a texture from the implicit manifold, just like the hedgehog example in
Figure 1.

Figure 21 shows our results of the learned hybrid templates for eight ob-
ject categories. Explicit manifolds and implicit manifolds largely complement
each other in explaining the object boundary and interior clutters.

In the following, we briefly introduce the modeling and learning process.
If a patch IΛi

is from an explicit manifold, we define its feature response
by,
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cat head hedgehog lion head tiger head

pig head pizza clock pigeon head

Figure 21: Learned hybrid templates of eight object categories. Bold block bars denote
sketches (explicit manifolds), while the blurred red blobs describe local textures (implicit
manifolds). The sketch features capture the global shape, while the texture features cap-
ture additional information in the image appearance. Results are from Si et al. (2009).

rexi (I) = ρex(IΛi
, Bi) (43)

where Bi is a basis function normalized to unit norm, ρex(IΛi
, Bi) = ‖IΛi

−
ciBi‖2, is an Euclidean distance with ci = 〈I, Bi〉. Because ‖IΛi

− ciBi‖2 =
||IΛi

||2− |ci|2, we can model |ci|2 directly, and let rexi (I) = |ci|2. We allow Bi

to slightly perturb its locations and orientations in order to better fit I.
If a patch IΛi

is from an implicit manifold, we define the feature response,

rimi (I) = ρim(h(IΛi
),hi), (44)

where H(IΛi
) is the histogram of the responses from Gabor filters at different

orientations pooled within IΛi
, and hi is the typical histogram. We can use

`2 distance between h(IΛi
) and hi as the feature response rim

i (I).
Our objective is to learn a model p(I) against a background model q(I).

We transform the image I to a new set of variables,

I 7→ (R, R̄), with R = (r1, ..., rK). (45)
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R is a vector for the K responses from the explicit or implicit patches, and R̄
is the remaining dimensions. This is a non-linear transform that transfers the
space into a subspace for R and the remaining subspace for R̄. The pursuit
process is to seek for the most informative patches in the image so that p(R)
is very different from the background model q(R), while in the remaining
subspace, p(R̄) is of no difference to q(R̄), so p(R̄) = q(R̄). By canceling the
Jacobian term, we have

p(I)dI

q(I)dI
=

p(R)dR

q(R)dR
· p(R̄)dR̄

q(R̄)dR̄
·
| ∂I
∂(R,R̄)

|
| ∂I
∂(R,R̄)

| (46)

=
p(R)dR

q(R)dR
. (47)

As the images are well-aligned, the feature responses {ri} do not overlap and
thus are independent of with each other conditional on the overall location
and alignment. So we obtain a probability

p(I) = q(I)
K∏

i=1

pi(ri)

qi(ri)
, (48)

where pi(ri) is a 1-dimensional distribution of ri pooled over the M training
images of the object, and qi(ri) is a 1-dimensional distribution pooled over
generic images (i.e. daily photos that do not have the object). Thus the task
is decomposed as learning a series of 1D models through the information
projection process,

pi(ri) =
1

zi

qi(ri)e
−λis(ri).

The learning process is to select Bi or hi sequentially according to their
information gains. Intuitively we seek for patches whose responses have large
KL(pi||qi).

In experiments, we use the same set of Gabor filters {Fk} as in the Active
Basis and texture modeling. We perform feature selection for both sketch
and texture and rank them by information gains, until a maximum number of
features (60) is reached or the information gain is smaller than a threshold,
currently set to a heuristic number 0.2, which is universal across different
image categories. To ensure the approximate orthogonality of features, the
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selected primitives patch are enforced to correlate no larger than a threshold
0.1. The texture patches are allowed to overlap 25% so as to pool the feature
statistics.

Figure 22 illustrates the information gain for three categories and each
category has M = 15 training examples. For image category that has reg-
ular shape, like the head and shoulder, the explicit patches dominates. In
contrast, the implicit patches dominate the water category, and the hedge-
hog template is mixed. Eight learned object templates are shown in Fig-
ure 21. More experiments and recognition results are reported in Si et al.
(2009). For source code and data please refer to the project web page at
http://www.stat.ucla.edu/~zzsi/mixed_template.html.

Figure 22: Competition of sketch (explicit) and texture (implicit) features in learning
hybrid templates. Each figure plots the information gains of selected features, ranked
in descending order: hollow black/white bars for primitive patches and solid red bars
for texture patches. For image categories with clear and regular shape, e.g. human
head/shoulder, primitives dominate the information gain. For texture categories with
cluttered structures, the texture patches dominate. The hedgehog category is a typical
case where the two types of patches alternate. Results are from Si et al. (2009).

In the following, we briefly compare the hybrid templates to other related
templates or object representations in the literature.

1, As a generative representation, deformable shape models and pictorial
templates were widely used in the 1970-80s (Yuille et al., 1992). Appearance
is added to shape in the well-known active appearance model in Cootes et al.
(2001). But in such models, the shape (or keypoints) are defined manually
and the appearance is modeled by global linear representation, such as PCA.
In contrast, the hybrid templates are learned though training images and the
shape and texture patches are selected by calculating an information gain in
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an unsupervised way. Obviously the selection of primitives and textures will
change over image scales, as it is discussed in previous sections.

2, As a discriminative representation, many image features are extracted
for objects, the most popular one in recognition is the HoG template (His-
togram of oriented Gradients) (Dalal and Triggs, 2005), and recently part
based HoG models are also studied (Felzenszwalb et al., 2009). The HoG
representation divides the image domain into regular m × n grid with each
cell being a small image patch, for instance, 8 pixels. At each pixel, a gra-
dient is calculated, and a histogram is pooled over each cell for different
orientations. The histograms from the mn cells are concatenated into a long
vector to feed a SVM classifier. In fact, this HoG template bears similarities
to the hybrid template here. The differences are (i) the cells or patches are
not regularly divided and are allowed to deform in the hybrid templates; (ii)
at image primitives, such as edges and bars, the histogram of gradients is
dominated by one orientation in the HoG, and thus it is a more expensive
representation than the primitives themselves.

In general, the hybrid template is a generative model for object that
integrates shape and texture. The implicit and explicit manifolds quantize
the space of image patches and provide a very sparse representation.

6. Discussion

Two types of manifolds. The key idea in this paper is to propose a
theoretical framework for studying two different types of manifolds in a uni-
fied framework. Explicit manifolds are better suited for geometric structures,
whereas implicit manifolds are better suited for stochastic textures. They are
the atomic structures in the space of image patches and they are composed
to form complex representation for larger images.

An entropy spectrum. We map different manifolds in the image space
according to their entropy. The explicit manifolds and active basis models are
in the low entropy regime, while the implicit manifolds and texture models
are in the high entropy regime. The hybrid templates belong to the mid-
dle entropy regime where a combinatorial number of objects reside. Image
scaling could cause transitions between these manifolds.

Visual vocabulary and AND-OR graph composition. The atomic
explicit and implicit manifolds form a leaf level dictionary for the visual vo-
cabulary. They can then be recursively composed into more complicated
image categories or visual words, which in turn serve as non-terminal nodes
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in an hierarchical AND-OR graph representation (Zhu and Mumford, 2006).
In this representation, the AND node denotes the composition of its compo-
nents, while the OR node denotes multiple ways of compositions. We refer
to Zhu and Mumford (2006) for a lengthy discussion of the compositional
mechanisms.
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