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Abstract

This paper presents a stochastic jump�di�usion method for optimizing a Bayesian pos�

terior probability in segmenting range data and their associated re	ectance images� The

algorithm works well on complex real world scenes 
indoor and outdoor�� which consist of an

unknown number of objects 
or surfaces� of various sizes and types� such as planes� conics�

smooth surfaces� and cluttered objects 
like trees and bushes�� Formulated in the Bayesian

framework� the posterior probability is distributed over a countable number of subspaces of

varying dimensions� To search for globally optimal solution� the paper adopts a stochastic

jump�di�usion process��
� to simulate a Markov chain random walk for exploring this com�

plex solution space� A number of reversible jump���� dynamics realize the moves between

di�erent subspaces� such as switching surface models and changing the number of objects�

The stochastic Langevin equation realizes di�usions� such as region competition���� in each

subspace� To achieve e�ective computation� the algorithm pre�computes some importance

proposal probabilities through Hough transforms� edge detection� and data clustering� The

latter is used by the Markov chains for fast mixing� For the varying sizes 
scales� of objects

in natural scenes� the algorithm computes in a multi�scale fashion� The algorithm is �rst

tested against an ensemble of �D simulated data for performance analysis� Then the algo�

rithm is applied to three datasets of range images under the same parameter setting� The

results are satisfactory in comparison with manual segmentation�
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tion�

�The work was done when the authors were at the Computer Science Department� Ohio State University



� Introduction

a�� O�ce scene � b�� O�ce scene �

c�� A street scene d�� A cemetery scene

Figure �� Four examples of indoor and outdoor scenes from the Brown range dataset� The

laser scanner scans the scene in cylindric coordinates and produces panoramic views of the

scenes�

This paper is concerned with the segmentation and surface reconstruction of real world

scenes from laser range images� Some typical examples of the range images� both indoor and

outdoor� are shown in Fig� �� Our research interest is motivated by some new developments

in sensor technology and demands in applications�

�� Recently� high precision laser range scanners have become accessible to many users to

acquire complex real world scenes like those displayed in Fig� �� In aerospace imaging�

�D Lidar images have accuracy up to � centimeter for terrain maps and city scenes�

These images provide much more accurate depth information than conventional vision

cues� such as motion� shading� and binocular stereo� Thus it is increasingly important

to have e�ective algorithms for parsing these range images�

�� There are new applications in graphics� visualization and spatial information manage�

ment� for example� image based rendering� augmented reality� and spatio�temporal

databases of �D urban and suburban maps and developments� These demand the

reconstruction of complex �D scenes from range data�

�� The study of �D range data is also motivated by the need of prior knowledge 
prob�
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abilistic models� in solving the ill�posed problems in vision� Currently� most vision

algorithms assume low level smoothness priors� Though some work has been done for

studying natural image statistics���� and learning priors from optic images����� to the

best of our knowledge� there is no work for learning prior models� for example the

layout of �D objects� from real world range scenes as Fig� � shows� Such prior models

of �D scenes are badly needed for many �D vision tasks�

In contrast to the new developments and applications� existing range image segmentation

algorithms are mostly motivated by traditional applications in recognizing industry parts in

assembly lines� and thus they are focused on block worlds with mostly polyhedra objects� In

the literature� methods on general image segmentation have been introduced and extended

to rang image segmentation� for example� edge detection����� region based methods��� ���

and surface �tting����� clustering���� ���� and generalized Hough transform��� for detecting

parametric surfaces of low dimensions� We refer to 
Hoover et al� ���
� for a survey of

range segmentation algorithms and a good empirical comparison done jointly by a few

groups����� One latest interesting work dealing with range data is directed to ����� Generally

speaking� algorithms for range segmentation are not as advanced as those for intensity image

segmentation� For example� there is no algorithm� to our knowledge� which can satisfactorily

segment complex scenes as those displayed in Fig� ��

The di�culties for segmenting real world scenes lie in several aspects�

Firstly� natural scenes contain many types of objects� for example� man�made objects


buildings� desks�� animate objects 
human and animals�� and free form objects 
trees and

terrain�� These objects should be represented by various families of surface models which

have di�erent dimensions of parameterization� For example� Shade et al����� in graphics

argued for a spectrum of representation� from polygon to sprites and planar texture maps�

for various precision requirements of photorealism� Thus an algorithm must engage multi�

ple surface models in representation and be capable of switching between these models in

computation� In the formulation of Bayesian inference� the posterior probability 
or energy

functional� is distributed over a countable number subspaces of varying dimensions� Each

subspace is for a certain number of surface models combined� Thus conventional greedy

algorithms are not applicable�

Secondly� objects 
or surfaces� in natural scene come with multiple scales� For example�

the o�ce scenes in Fig� � contain large surfaces such as walls� ceilings� and 	oors� middle

size objects such as people� chairs and tables� and small objects such as books and cups
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on the desk top� This is in contrast with the block world 
see Figures �� and ��� where

objects are of similar sizes� In computation� the algorithm must engage large and small

moves and extract information at multiple scales� In representation� this broad range of

scales seems to disable the conventional model complexity criteria� such as MDL 
minimum

description length������ AIC 
Akaike Information Criterion� ���� BIC 
Bayesian information

criterion����� which are derived from the concern of information coding� Thus other prior

models should be sought to ensure that surfaces of various sizes appear in a scene and thus

in a segmentation�

Thirdly� though range data are very accurate on depth� they are very noisy in comparison

with optical images around object boundaries� It gets worse in objects like trees and bushes�

Furthermore depth data are missing at in�nity objects� such as the sky� or at metal� glass

and ceramic objects where the laser rays never return to the scanner�

Motivated by these problems� this paper presents a stochastic jump�di�usion algorith�

m for segmenting and reconstructing �D scenes from range images� In comparison with

previous work on range segmentation� the paper makes the following contributions�

�� To deal with the variety of objects in real world scenes� this paper incorporates �ve

types of surface models� such as planes and conics for man�made objects� splines for

free�form 	exible objects� and a non�parametric 
�D histogram� model for cluttered

objects� These surfaces models compete to explain the range data under the con�

straints of a statistical prior for model complexity� The paper also introduces various

prior models on surfaces� boundaries� and vertices 
corners� to ensure regularities�

�� To handle missing range data� the algorithm integrates the range data with their

associated re	ectance map under the Bayes framework� The re	ectance measures the

proportion of laser energy returned from surface in ��� �� and therefore carries material

properties� It is especially useful for glass� metal� ceramics� and the sky�

�� To achieve globally optimal solutions� the algorithm simulates ergodic Markov chains

to sample the posterior probability over a complex solution space with countable

subspaces of varying dimensions� The Markov chain consists of reversible jumps and

stochastic di�usions� The jumps realize split and merge� model switching� while the

di�usions realize boundary evolution and competition and model adaptation�

�� To improve the convergence speed and use information at multiple scales� the algo�

rithm pre�computes some bottom�up information in a coarse�to��ne manner� edge
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detection and surface clustering at multiple scales� The computed information is

expressed as importance proposal probabilities���� on the surface and boundaries for

narrowing the search spaces in a probabilistic fashion� and drives the Markov chain

for fast mixing� This follows a data driven Markov chain Monte Carlo method which

has been successfully applied in parsing optical images���� ����

The algorithm is �rst tested against an ensemble of one hundred �D simulated range

data for performance analysis� Then the algorithm is applied to three datasets of range

images� The �rst two are the standard USF polyhedra data and curved�surface data for

comparison� and the third is from Brown university which contains real world scenes� The

experiments demonstrate robust and satisfactory results under the same parameter setting�

In the following of the paper� we �rst discuss the jump�di�usion process and evaluate

the performance in �D simulated data� Then we present a Bayesian formulation of the

problem and the design of algorithm� Finally� we show experimental results and conclude

with some critical discussions�

� Jump�di�usion for energy minimization� a toy example

In this section� we discuss the jump�di�usion and bottom�up approaches using an ensemble

of simulated �D range data� thus the fundamental ideas of the algorithm will not be en�

tangled in the details of the �D range segmentation problem� Furthermore since we know

the ground truth for the simulated data� we evaluate how well the algorithm approaches

globally optimal solutions and we also compare the convergence speeds of the jump�di�usion

algorithms with di�erent designs�

��� Segmenting �D range data� Problem formulation

Figure ��a displays a simulated �D range image I
x�� x � ��� ��� It is generated by adding

Gaussian noise N
�� ��� to the original surfaces Io in �gure ��b� Ith consists of an unknown

number of k surfaces which could be either straight lines or circular arcs� separated by

changing points�

� � x� � x� � x� � � � � � xk�� � xk � ��

Let �i � fline� circleg indexes the surface types for interval �xi��� xi� with parameters �i�

i � �� �� ���� k� For a straight line � � 
s� �� represents the slope s and interception �� For a
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a

b

c

d

Figure �� a�� A �D range image I
x�� x � ��� ��� b�� the true segmentation Wth� c�� edgeness

measure b
x� x � ��� �� for changing point detection on I� d�� The best solution W � found

by the algorithm plotted against Wth�

circular arc� � � 
�� �� 	� represents the center 
�� �� and radius 	i� Thus the �world scene�

is represented by a vector of random variables�

W � 
k� fxi � i � �� �� ���� k � �g� f
�i� �i�� i � �� �� ���� kg��

The surface Io is fully determined by W with

Io
x� � Io
x� �i� �i�� x � �xi��� xi�� i � �� �� ���� k�

By standard Bayesian formulation� we have the posterior probability

p
W jI� � expf� �

���

kX
i��

Z xi

xi��


I
x�� Io
x� �i� �i��
�dxg � p
k�

kY
i��

p
�ij�i� 
��

The �rst factor above is the likelihood and the rest are prior probabilities p
k� � exp��ok

and p
�ij�i� � exp���i the parameters which penalize the parameter numbers ��i� Other
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variables are assumed to be uniformly distributed for simplicity� Thus an energy function

is de�ned�

E
W � �
�

���

kX
i��

Z xi

xi��


I
x�� Io
x� �i� �i��
�dx � 
ok �

kX
i��

��i� 
��

Now� the problem is that W does not have a �xed dimension� For example� if there are �

objects 
k � �� with � lines and � circular arcs� then W has ��������� � �
 dimensions�

But if k � �� with � lines and 
 circular arcs�then it has �� dimensions� The probability

p
W jI� 
or the energy E
W �� is thus distributed over a countable number of subspaces

of varying dimensions� Thus to achieve globally optimal solutions� we should adopt more

advanced energy minimization approach � the jump�di�usion method via Markov chain

Monte Carlo�

��� Background of jump�di�usion

In statistics literature� there were some designs of hybrid sampler 
Tierney� ����� which

traverses parameter spaces of varying dimensions by random choices of di�erent Markov

chain moves� Grenander and Miller 
����� �rst introduced the jump�di�usion process which

mixed the Metropolis�Hastings method��
� and Langevin equations����� Other notable work

includes 
Green� ����� for reversible�jumps and 
Phillips and Smith� ����� for model com�

parison with reversible jumps� In this subsection� we brie	y present the basic ideas and

discuss some problems with convergence speed�

In the �D range segmentation problem above� let � denote the solution space which is

a union of a countable number of spaces

� � ��n���n�

where n � 
k� ��� ���� �k� indexes the various combinations and subspace� The algorithm

simulates ergodic Markov chain traversing the solution space by coordinating two types of

moves� reversible jumps between di�erent subspaces and stochastic di�usion within each

subspace�

�� Reversible jumps

Let W � 
n� �� be the state of a Markov chain at time t with � � �n� In an in�nitesimal

time interval dt� the Markov chain jumps to a new space �m 
m �� n� at state W � � 
m����

There are three types of moves� ��� switching a line to a circular arc� or vice versa� ���






merging two adjacent regions to a line or a circle� ��� split a region into two regions 
lines or

circles�� Thus a subspace �n with k regions is connected to k� �� 
k� �� � �� k � �k� �

other subspaces by the three types of moves� We denote by C
n� the set of indexes to the

�K � � subspaces� and denote

J 
n� �� � �m�C�n��m� and 
m��� � J 
n� �� i� 
n� �� � J 
m����

the spaces connected to point 
n� �� by the three jumps�

The jump is realized by a Metropolis move��
� which proposes to move from 
n� �� to


m��� 
m �� n� by a proposal probability q
n� m�q
�jm�d� and accepts the proposal with

probability




n� �� � 
m���� � min
��
q
m� n�q
�jn�d� � p
m��jI�d�
q
n� m�q
�jm�d� � p
n� �jI�d� �� 
��

In all designs� we have X
m�C�n�

q
n� m� � � �n�

The Markov transition probability is

P 

n� �� � 
m����d� � q
n� m�q
�jm�d� 


n� �� � 
m�����

Then for any two Borel sets A 	 �n and B 	 �m� the detailed balance equation holds

Z
A
p
n� �jI�d�

Z
B
P 

n� ��� 
m����d� �

Z
B
p
m��jI�d�

Z
A
P 

m���� 
n� d���d�� 
��

We can view the subspaces �n��m as discrete points with probabilities�

�
n� �

Z
�n

p
n� �jI�d�� �
m� �

Z
�m

p
m��jI�d��

the discrete transition matrix is P with each element

Pn�m � P 
n� m� �

���
��
R
�n

p
n� �jI�d� R�m P 

n� �� � 
m����d�� if m � C
n��

�� else

��

Then we have an irreducible and aperiodic Markov chain with detailed balance

�
m�P 
m� n� � �
n�P 
n� m�� �n�m�

Thus we have the following conclusion from the Perron�Frobenius theorem 
see �����
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Theorem � Suppose the total number k of object is �nite in a scene� the three types of

jumps �model switching� split� and merge� realize an irreducible and aperiodic Markov chains

with a �nite stochastic matrix P � Then starting with an arbitrary initial distribution �o�

after M jumps� the Markov chain state follows a probability that approaching � as the unique

invariant probability�

�oP
M � � � O
j
�jM ��

� 
 j
�j � � is the second largest eigenvector modulus �SLEM� of P �

Thus the Markov chain visits each subspace �n at probability �
n� after some burning

period M �Mo�

�� Stochastic di�usions

But not every two points � � �n and � � �m are connected directly by the three jumps�

Thus stochastic di�usion 
or Langevin� equations are used to sample 
or minimize� in each

subspace �n� As n � 
k� ��� ���� �k� is �xed� the energy functional E
W � becomes

E��� � E
x�� ���� xk��� ��� ���� �k� �
�

���

kX
i��

Z xi

xi��


I
x�� Io
x� �i� �i��
�dx � const�

The Langevin equation is a steepest descent driven by Gaussian random force dwt 
Brownian

motion� with temperature T �

d�t � �dE���

d�
dt �

q
�T 
t�dwt� dwt � N
�� 
dt����

The following conclusion is well known in the literature 
see ���� and refs therein��

Theorem � The continuous Langevin equation above simulates a Markov chain with sta�

tionary density

�
�� � e�E����T �

For example� the movement of changing point is driven by

dxi
t�

dt
�

�

���


I
x�� Io
x� �i��� �i����

� � 
I
x�� Io
x� �i� �i��
�� �

q
�T 
t�N
�� ���

This is the �D case of the region competition equation����� In practice� the Brownian motion

is found to be useful to avoid local pitfalls� For �i� i � �� ����� k� it may appear that we can

�t the best �i for each interval �xi��� xi� instead of running the di�usion� But This usually

is an �over�commitment� because the current interval may contain more than one object�

Thus a question rises for how long we should run the di�usion between the jumps�
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	� The coordination of jumps and di�usions

The continuous di�usion is interrupted by some jumps at time instances t� � t� � � � � �
tM ��� as Poisson events� In practice� the di�usion always runs in discrete time steps with

�t� Thus the discrete waiting time �j between two consecutive jumps is

w �
tj�� � tj

�t
� p
w� � e��

�w

w 
�

with the expected waiting time E�w� � � which controls the frequency of jumps� Then

the two processes realize ergodic Markov chain sampling the posterior probability p
W jI�
over the solution space ���
�� Due to the strong structures in real world signals!scenes�

the posterior probability is often very �cold�� thus one may have to raise the temperature

slightly 
T � � ��� and reduce it gradually to 
T � ��� �� to �nd a nearly global optimum�
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Thick Curve:  Hough Transform and Edge Detection

Thin Curve:  Hough Transform only

Figure �� The plots of the energy E
W � against running time t of two Markov chain trials

on the signal in �g���

Figure � shows two trials 
thin and thick curves respectively� of the jump�di�usion

process running on the input �D range data in Figure �� The energy plots go up and down


i�e� not greedy� and the continuous energy curves are interrupted by jumps�

To summarize the jump�di�usion process� we draw �gure � to illustrate the Markov

chain dynamics� In �gure �� three two dimensional subspaces �m��n� �p are illustrated

with some probabilities represented by the landscapes� At each subspace� some trials of the

di�usion equations are simulated from a point 
see several pathes�� Then the Markov chain

can jump between these subspaces as the large arrows show�
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Figure �� An illustration of the jump�di�usion process�

��� Data�driven techniques and convergence evaluation

Though the jump�di�usion is a general tool for energy minimization� Its applications to

computer vision have been very limited 
indeed prohibited� by its computing speed� There

are some theorems for bounding the second largest eigenvalue 
� by the conductance of

the transition graph given by the stochastic matrix Pn�m���� Such analysis provides us with

some intuition of improving the speed�

We observed that the bottlenecks are in the jumps a�ected by the design of proposal

probabilities� q
�jm� and q
�jn� in equation 
��� More speci�cally�

q
� jm� �

������
�����

q
�ij�i� �xi��� xi�� switch �xi��� xi� to model 
�i� �i��

q
�j�� �xi��� xi�� merge to a model 
�� ���

q
xj�xi��� xi��q
�aj�a� �xi��� x��q
�bj�b� �x� xi�� split �xi��� xi� into 
�a� �a� and 
�b� �b� at x�



�

In statistical literature
Grenander and Miller �� and Green ���� the proposal probabili�

ties were taken mostly as uniform distributions� That is to jump to randomly selected lines

or!and circles for new models� Such proposals are almost always rejected because the ratio

p
m��jI��p
n� �jI� � e�	E is close to zero�

To have smart jumps� the Markov chain must be equipped with some domain knowledge


or heuristics�� Recently the authors introduced a data�driven Markov chain Monte Carlo

scheme���� which computes the proposal probabilities by bottom�up method in each of the

parameter space for x� 
line� s� �� and 
arc� �� �� 	��

�� Hough transform in the model spaces� For example� Figure ��a is the Hough transform����

��



Line Hough Transform for signal No.19
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Figure �� Results of Hough transforms on the signal in Fig� ���a a�� on the line model space


s� ��� b�� in the circle model space 
�� �� 	��

�� in the line space 
i�e� plane � � 
s� ���� The crosses are detected as candidates

�
���
line� �

���
line� ���� �

�Nline�
line � Figure ��b is the Hough transform results on the circular arc space

� � 
�� �� 	� with bounds� The balls are candidate circles �
���
arc� �

���
arc� ���� �

�Narc�
arc with the sizes

representing the weights 
total number of votes received�� Thus� when we propose a new

model for an interval �a� b�� we compute the importance proposal probability by Parzen win�

dows centered at the candidates�

q
� j �� �a� b�� �
N�X
i��

�iG
� � �
�i�
� �� � � fline� arcg�

�i is the accumulated weights voted from the data in �a� b��

�� Edge detection in the x space� For example� Figure ��b shows the result of an edge

strength f
xjrG�I�r�G�I� based on two �lters� the �st and �nd derivatives of Gaussians�

Instead of making a hard decision which is bound to be unreliable� we treat the strength

measure as a probability� Thus the proposal for changing point is

q
x j �a� b�� �
f
xjrG � I�r�G � I�R b

a f
xjrG � I�r�G � I�dx
At present we are not able to link the design of q
�"s to the convergence rate analytically�

Thus we seek empirical comparison�� An ensemble of ��� �D range data 
like Fig� �� are

�The simulation on this pilot example was implemented by a MS student Qiming Luo� and the results

were �rst reported in a unpublished technical report �Zhu� Luo and Zhang� ������
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simulated randomly with the truth segmentation 
global minimum� known� Three Markov

chain designs are compared over the ��� �D range data�


 MCMC I� use uniform distributions for q
�"s� no data�driven heuristics�


 MCMC II� use Hough transform results for q
� j �� �a� b�� and uniform distribution for

q
xj�a� b���


 MCMC III� use both Hough transform and edge detections for proposals�
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Figure 
� The energy curves of MCMC II 
thin� and MCMC III 
thick� averaged over ���

randomly generated signals in a�� ������ steps� and b�� ����� steps�

Figure ��d displays the optimal solution W � found by MCMC III� Figure � shows the

energy E
W � against running time for the input in Figure ��a by the thin curve 
MCMC II�

and thick curves 
MCMC III�� Figure 
 plots the energy changes averaged over ��� signals

for ��� ��� steps� the energy jumps disappear because of averaging� The dotted curve is for

MCMC I� the dash�dotted curve is for MCMC II� and the solid curve is for MCMC III� The

bottom line is the average �true� global optimal energy� Figure 
�b is a zoom�in view of

the �rst ����� steps of MCMC II and MCMC III�

To summarize� the importance proposal probabilities exponentially improve the conver�

gence speed� In this experiment� the improvement is mostly from the Hough transform

as the edge detection heuristics has rather high entropy 
see Fig� ��b�� The so designed

jump�di�usion process is capable of �nding nearly global minima regardless of initial states�
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� Bayesian Formulation� integrating cues� models and prior

In this section� we formulate the problem of �D range segmentation and surface reconstruc�

tion under the Bayesian framework by integrating two cues� �ve families of surface models�

and various prior models�

��� Problem formulation

We denote an image lattice by # � f
i� j� � � 
 i 
 L�� � 
 j 
 L�g� A ranger scanner

captures two images� One is the �D range data which is a mapping from lattice # to a �D

point�

D � # � R
� D
i� j� � 
x
i� j�� y
i� j�� z
i� j���


i� j� indexes a laser ray that hits a surface point 
x� y� z� and returns� The other is a

re	ectance map

I � # � f�� �� ���� Gg

I
i� j� is the portion of laser energy returned from point D
i� j�� I
i� j� measures some

material properties� For example� surfaces of high specularities� such as glass� ceramics�

metals� appear dark in I� I
i� j� � � for mirrors and surfaces at in�nity� such as the sky�

D
i� j� is generally very noisy and thus unreliable when I
i� j� is low� and is considered a

missing point if I
i� j� � ��

The objective is to partition the image lattice into an unknown number of K disjoint

regions�

# � �Kn��Rn� Rn �Rm � � �m �� n�

As natural scenes contain objects 
or surfaces� of di�erent types� like the �D example� at

each region R� the range data �t to a surface model of type �D with parameter �D and

the re	ectance �t to a re	ectance model of type �I with parameter �I � Thus a solution is

denoted by

W � 
K� fRi � i � �� �� ����Kg� f
�Di ��D
i �� 
�Ii ��

I
i � � i � �� �����Kg��

The objective is to maximize a posterior probability over a solution space � �W �

W � � arg max
��W

p
W jD� I� � arg max
��W

p
D� IjW �p
W ��

In practice� two regions Ri� Rj may share the same surface model but with di�erent

re	ectance� that is� 
�Di ��
D
i � � 
�Dj ��

D
j � but 
�Ii ��

I
i � �� 
�Ij ��

I
j �� For example� a painting

��



or a piece of cloth hung on a wall� a thin book or paper on a desk� may �t to the same

surfaces as the wall or desk respectively� but they have di�erent re	ectance� It is also

possible that 
�Di ��
D
i � �� 
�Dj ��

D
j � but 
�Ii ��

I
i � � 
�Ij ��

I
j �� To minimize the coding length

���� and to pool information from pixels over large areas� we shall allow adjacent regions to

share either depth or re	ectance models� Thus a boundary between two regions could be

labelled as a re
ectance boundary� a depth boundary� or both�

In the following� we brie	y describe the likelihood model p

D� I�jW � and the prior

probability p
W ��

��� Likelihood coupling a mixture of surface and re�ectance models

In the literature� there are many ways for representing a surface� such as implicit polynomials

��� ���� superquadrics ����� and other deformable models� In this paper� �ve types of surface

models are chosen to account for various shapes in natural scenes� New models can be

added under the same formulation and algorithm�

�� Family D�� planar surfaces with unit normal 
a� b� c� and interception d�

ax � by � cz � d� a� � b� � c� � ��

Thus it is speci�ed by three parameters � � 
a� b� d�� We denote by �D
� � � as the

space of all planes�

�� Family D�� conic surfaces � spheres� ellipsoids� cylinders� cones� and tori for many

man�made objects and parts� We adopt the representation in 
Marshal et al� ������

These surfaces are speci�ed by � parameters � � 
�� �� �� k� s� �� ��� We refer to ����

for detailed discussions and �tting methods� We denote by �D
� � � the space of

family D��

�� Family D
� B�spline surfaces with � control points� As surfaces in a natural scene have

a broad range of sizes and orientation� we choose a reference plane � � ax�by�cz � d

which approximately �ts to the surface normal� Then a rectangular domain ��� �� �
��� �� is adaptively de�ned on � to just cover the surface indexed by two parameters


u� v�� In practice� a domain much larger than the surface will be hard to control�

Then a grid of h � w control points are chosen on this rectangular domain� and a

��



B�spline surface is

s
u� v� �
hX
s��

wX
t��

ps�tBs
u�Bt
v��

where ps�t � 
�s�t� �s�t� �s�t� is a control point with 
�s�t� �s�t� being coordinates on �

and �s�t is the degree of freedom at a point� By choosing h � w � �� a surface in D
 is

speci�ed by � parameters � � 
a� b� d� �� �� ���� � ����� ����� ������ We denote by �D

 � �

the space of family D
�

�� Family D�� B�spline surfaces with � control points� Like D
� it is a reference plane �

and a �� � grid� It is speci�ed by �� parameters � � 
a� b� d� �� �� ���� � ���� ������

�� Family D�� cluttered surfaces� Some objects in natural scenes� such as trees and

bushes have very noisy range depth� To the best of our knowledge� there is no

e�ective models in the literature for such surfaces� Motivated by the success of

non�parametric intensity histogram in intensity and texture modeling ����� we adop�

t a non�parametric �D histogram for this kind of surfaces� It is speci�ed by � �


hu� � h
u
� � ���� h

u
Lu
� hv�� h

v
�� ���� h

v
Lv
� hw� � h

w
� � ���� h

w
Lw

�� where Lu� Lv and Lw are the number

of bins on u� v� w directions respectively� We denote by �D
� � � the space of family

D��

Fig � displays some typical surfaces for the �ve families�

For the re	ectance image I� we use three families of models� denoted by �I
i � i � �� �� �

respectively�

�� Family I�� regions with constant re	ectance � � � ��I
i � They represent most of the

surfaces with uniform material properties� or surfaces where range data is missing and

I is close to zero�

�� Family I�� regions with smooth variation of re	ectance� modelled by a B�spline model

as in family D
�

�� Family I
� This is a cluttered region with a non�parametrichistogram � � 
h�� h�� ���� hL�

for its intensity with L being the number of bins�

For the surface and re	ectance models above 
except the histogram models�� the likeli�

hood model for a solution W assumes the �tting residues to be Gaussian noise subject to

��



a� plane b� sphere!ellipsoid c� cylinder d� cone

e� torus f� ��point spline g� ��point spline h�clutter

Figure �� Some typical surfaces for the �ve families of surfaces�

some robust statistics treatment�
��

p
D� I jW � �
KY
n��

p
DRn � IRn � 
�Dn ��
D
n �� 
�In��

I
n�� 
��

�
KY
n��

expf�
X

�i�j��Rn

E
D
i� j�� I
i� j�� 
�Dn ��
D
n �� 
�In��

I
n��g� 
��

At each pixel 
i� j� in Rn� the data energy Ei�j � E
D
i� j�� I
i� j�� 
�Dn ��
D
n �� 
�In��

I
n�� is the

squared distance from the �D point D
i� j� � 
x
i� j�� y
i� j�� z
i� j�� to the �tting surface

S
�Dn ��
D
n � plus the �tness distance of re	ectance I
i� j� to the re	ectance model J
�In��

I
n��

Ei�j � d�
D
i� j�� S
�Dn ��
D
n �� � �I�i�j���� � d�
I
i� j�� J
�In��

I
n��

The depth data D
i� j� is considered missing if the re	ectance I
i� j� is lower than a threshold

� � i�e �
I
i� j� � �� � ��

In practice� we use a robust statistics method to handle outliers�
�� We adopt a two�

step procedure� Firstly� we truncate points that are less than ��$ of the maximum error�

Secondly� truncate points at trough or plateau� Furthermore� the least median of squares

method based on orthogonal distance in ���� has been adopted�

Of course� there are alterative likelihood models for laser radar range data that have

been developed by Shapiro� Green� and their colleagues ���� ��� which could also be used

�




here�

��� Priors on surfaces� boundaries and corners

Generally speaking� the prior model p
W � should penalize model complexity� enforce sti��

ness of surfaces� and enhance smoothness of the boundaries� and form canonical corners�

In this paper� the prior model for W is

p
W � � p
K�p
�K�
KY
n��

p
�Dn �p
�D
n j�Dn �p
�In�p
�I

nj�In��

�K � 
R�� ���� RK� denotes a K�partition of the lattice #� which forms a planar graph with

K faces for the regions� a number of M edges for boundaries� and N vertices for corners�

�K � 
Rk� k � �� ����K� %m�m � �� ����M � Vn� n � �� ���� N�

Thus p
�K� �
QK
k�� p
RK�

QM
m�� p
%m�

QN
n�� p
Vn� since Rk� %m� and Vn are being treated

as independent here� We �nd that some previous prior models used by Leclerc and Fischler

���� for computing �D wireframe from line drawings quite relevant to our prior models�

Leclerc and Fischler used planarity and symmetry of �D angles at each vertex to recover

�D wireframes from �D drawings� Of course� natural scenes are much more complex than

the �wireframe world�� Our prior probability p
W � consists of four parts�

�� Prior on surface number and sizes for surface model complexity

It is well known that a higher order model always �ts a surface better than a lower order

model� but the former could be less stable in the presence of noise� Some conventional model

complexity criteria in model selection and merging techniques include MDL 
minimum

description length������ AIC 
Akaike Information Criterion� ���� BIC 
Bayesian information

criterion����� A survey study for range surface �tting is reported in 
Bubna� ���������

According to such criteria� model complexity is regularized by three factors� which penalizes

the number of surface K� the number of parameters in each surface model �j�j respectively�

p
K� � e��oK � p
�D
n j �Dn � � e��

D�j
D
n j� and p
�I

n j �In� � e��
I�j
I

nj� �n�

However� in our experiments as well as in our previous experiments on segmenting in�

tensity images����� we observed that such criteria are not appropriate in comparison with

human segmentation results� Conventional model complexity criteria� like MDL� are mo�

tivated by shortest image coding� But the task of segmentation and image understanding

��



is very di�erent from coding� The extent to which an object is segmented depends on the

importance and familiarity of the object in the scene and the task� In particular� a natural

scene contains objects of very broad range of sizes measured by their areas� Unfortunately�

it is impractical to de�ne the importance of each types of objects in a general purpose

segmentation algorithm� We adopt a statistical model on the surface areas jRnj

p
Rn� � e��jRnj
c

� �n � �� �� ����K� 
��

c being a constant and 
 being the a scale factor to control the scale of the segmentation�

In our experiments� 
 is the only parameter that is left to be set� All other parameters are

set to a value for all experiments�

�� Prior on B�spline control points for surface sti�ness

For all the B�spline models� a prior is imposed on the control points f�s�t � � 
 s� t 

� or �g such that the surface is close to be planar� We triangulate the spline grid on the ��

plane� and every adjacent three control points form a plane� The prior energy terms enforce

the normals of adjacent planes to be parallel to each other� A similar prior was used in the

wireframe reconstruction�����

�� Prior for surface boundary smoothness

Due to the heavy noise of the range data along surface boundaries� thus a boundary

smoothness prior is adopted� like in the SNAKE ���� or region competition model����� Let

%
s� � 
x
s�� y
s��� s � �a� b� be a boundary between two surfaces�

p
%
s�� � expf�
Z
�
 &%
s�� � �
'%
s��dsg� or p
%
s�� � expf�

Z q
&x�
s� � &y�
s�ds�

�
� is a quadratic function with 	at tails to account for sharp L�shaped turns in boundaries�

�� Prior for canonical corners

A prior is imposed on each vertex Vn by p
Vn�� n � �� �� � � � � N � Since the natural scene

is regular and symmetric in most cases� the angles at a corner should be more or less equalas

in �����

To summarize� the Bayesian framework provides a convenient way for integrating multi�

ple generative models� for coupling two cues� and for introducing prior models� This enables

us to deal with complex natural scenes�

��



� Computing globally optimal solutions by Jump�di�usion

Obviously the posterior probability is again distributed over a countable number of sub�

spaces of varying dimensions� In the literature of range segmentation� methods� such as

edge detection ����� region growing ���� ��� clustering ���� ���� and some energy minimiza�

tion methods� generalized Hough transforms� can produce useful information� but none of

these methods are capable of exploring such complex spaces thoroughly� let alone �nding a

global optimum�

Our algorithm is a straight�forward extension from the �D range examples in section 
���

It engages six Markov chain jump and di�usion processes� To speed up the MCMC search�

we use data clustering in each model space and an edge detection!partition on the lattice

#� These are discussed in the following three subsections�

	�� Ergodic Markov chain search by six dynamics

In this subsection� we brie	y present the six types of moves!dynamics which form an ergodic

Markov chain in exploring the solution space�

Dynamics �� di�usion of region boundary � stochastic region competition�

Within a subspace of �xed dimension 
i�e� the number of surfaces and their models are

given�� the boundaries evolve according to a region competition equation���� as a group of

stochastic partial di�erential equations 
sPDE�� Let %ij
s� � 
x
s�� y
s��� s � 
a� b� denote

the boundary between two regions Ri and Rj� and let 
�Di ��
D
i � �

I
i ��

I
i � and 
�Dj ��

D
j � �

I
j ��

I
j �

be the models of the two regions respectively� The motion of curve %ij
s� follows the

following equation�����

d%ij
s�

dt
� �� log p
W jD� I�

�%ij
s�
�
q

�T 
t�dwt�n
s�� dwt � N
�� 
dt���� 
���

The Brownian motion is always along the curve normal direction �n
s� � 
� &y
s�� &x
s���
p

&x�
s� � &y�
s��

at each point s�

To couple the continuous representation of curves %ij � we assume the lattice # to be a

continuous �D plane� The curve %ij
s� is involved in three terms in the posterior p
W jD� I��

the smoothness prior and the likelihood on two regions Ri and Rj�

�� log p
W jD� I�

�%ij
s�
� ��p
%ij
s��

�%ij
� �

�%ij
flog p
DRi � IRi � �Di ��

D
i � �

I
i ��

I
i �g

� �

�%ij
flog p
DRj � IRj � �Dj ��

D
j � �

I
j ��

I
j �g

��



�
�

�%ij
f�
Z b

a

q
&x�
s� � &y�
s�dsg

�
�

�%ij
f
Z Z

Ri
� log p
DRi
x� y�� IRi
x� y� � �Di ��

D
i � dxdyg

�
�

�%ij
f
Z Z

Rj

� log p
DRj 
x� y�� IRj 
x� y� � �Dj ��
D
j � dxdyg�

By a Green"s theorem and an Euler�Lagrange equation� the gradient is

d%ij
s�

dt
� f ����
s� � log

p
D
x
s�� y
s��� 
lDi ��
D
i ��

p
D
x
s�� y
s��� 
lDj ��
D
j ��

� �
I
x
s�� y
s�� � ��

� log
p
I
x
s�� y
s��� lIi ��

I
i �

p
I
x
s�� y
s��� lIj ��
I
j �

�
q

�T 
t�
dwt
dt

g�n
s��

In the above equations �
s� is its curvature� At each point 
x
s�� y
s�� along the curve� two

local log�likelihood ratio tests are done to compare the �tness of the two region models� one

for the surface model and the other for the re	ectance model� When the range data is less

reliable� i�e� �
I
x
s�� y
s�� � �� � �� its log�likelihood ratio test is not used� Thus the two

cues are tightly coupled which is desirable in Bayesian cue integration�����

Dynamics �� di�usion of vertices�

A vertex V � 
x� y� refers to an intersection of more than two regions� It involves some

prior model p
V � for canonical corners in previous section� and the curvature is ill�de�ned

at such point� Its di�usion is implemented by the Gibbs sampler����� That is� we consider

a local lattice� say � � � pixels� and randomly select a position subject to the posterior

probability� We also implement a corner detection method which may provides bottom�up

heuristics for the right position of the vertices� But somehow in experiments we did not

observe signi�cant improvement using such heuristics�

Dynamics 	� di�usion of surface and re
ectance models�

This is the di�usion of the parameters 

�D
n ��

I
n�� for a region Rn� n � �� �� ����K with

other variables in W �xed�

d
�D
n ��

I
n�

dt
�

d log p
DRn � IRn � �Dn ��
D
n � �

I
n��

I
n�

d
�D
n ��

I
n�

Some robust statistics method is used in calculating the gradient and some range pixels do

not contribute to the surface �tting if the re	ectance is low� We found the Brownian motion

may not be necessary in such spaces�

dynamic 
� switching a surface or re
ectance model �Dn or �In�

��



This is similar to the �D example but we have more families of model to choose� Suppose

at a time instance� a region Rn is selected to switch to a model �Dn � Then we need some

heuristic information for the new model �D
n � The importance proposal probability is calcu�

lated� like q
� jm� in equation 
��� based on a number of candidate surfaces pre�computed

by a data clustering approach� As we shall discuss below� data clustering is a better method

than Hough transform in high dimensional spaces�

Dynamics � and �� split and merge of regions�

Split and merge are a pair of reversible moves to realize the jump process between

subspaces� Assume a region Rk with model 
�D
k ��

I
k� will be split into two regions Ri and

Rj with models 
�D
i ��

I
i � and 
�D

j ��
I
j �� Then the present state of the Markov chain W

and the new state W � are

W � 
K�Rk� 
l
D
k ��

D
k �� 
lIk��

I
k��� W���

W � � 
K � �� Ri� Rj� 
l
D
i ��

D
i �� 
lIi ��

I
i �� 

l

D
j ��

D
j �� 
lIj ��

I
j �� W���

W� is the other variables in W that remain unchanged during this jump� The split and

merge are proposed with probability G
W �W ��dW � and G
W � �W �dW � while the split

move is accepted with probability



W � dW �� � min
��
G
W � �W �dWp
W �jI�dW �

G
W �W ��dW �p
W jI�dW ��

The merge proposal probability is�

G
W � � W � � q

�q
Ri� Rj�q
�
D
k ��

D
k jRk�q
�Ik��

I
k jRk��

q

� is the probability for choosing merge move� and q
Ri� Rj� is the probability for choosing

Ri� Rj � q
�
D
k ��

D
k jRk� is the probability for a new surface model which are selected from a

set of bottom�up candidates according to a probability which is summed votes from pixels

in the new region Rk�

Similarly� the split proposal G
W �W �� is�

q
��q
Rk�q
%ij jRk�q
�Di ��
D
i jRi�q
�

I
i ��

I
i jRi�q
�

D
j ��

D
j jRj�q
�

I
j ��

I
j jRj��

Once Rk is chosen to split� %ij is a candidate splitting boundary� In �D example� this is

randomly chosen by an edge strength function� In �D this is selected from a set of candidate

partition pre�computed by edge detection�

��



In the following� we focus on the computation of two importance proposal probabilities

used above� ��� q
% jR� � splitting boundary of a region R ��� q
��� jR� � the new model

of a region 
surface or re	ectance�� As we noted before� natural scenes contain objects of

broad range of sizes� the bottom�up computation shall be done in multiple scales�

	�� Coarse�to�
ne Edge Detection and Partition

range image scale � scale � scale �

Figure �� Computed edge maps based on the range cue at three scales for one curved scene

and one polyhedral scene in Florida dataset respectively�

In this section� we detect potential edges based on local edge cues� and trace the edges

to form a partition of the lattice which will be used as candidate boundaries in splitting

regions� We organize the edge maps in three scales according to some edge strength measure�

For example� �gures � and � display one example for each of the three database� polyhedra�

conics� and real scenes� The edges in �gures � are based on range data only� while edges

in �gures � combine both range and re	ectance measures� We observe that edge detection

does provide useful information about the boundaries� especially on occlusion 
step edges��

However� such local detection is not reliable enough to be the �nal result� and there are

fundamental upper bounds���� on the errors which one cannot go beyond without involving

the global models�

Edges in the re	ectance image indicate abrupt changes of surface materials� and are often

step edges� In range depth images� edges could be surface discontinuities or surface normal

��



a�� range image of an o�ce scene b�� edge detection and partition scale ��

c�� edge detection and partition scale �� d�� edge detection and partition scale �

Figure �� Computed edge maps at three scales for an o�ce scene�

discontinuities� Because of the noisy nature� the surface normal at each point is estimated

over a small window� say a � � � patch �� by principle component analysis method 
see

������

Let fpi � 
xi� yi� zi� � 
m�n� � �
x� y�� i � �� �� ���� j�jg be a set of �D points in a local

patch � centered at 
x� y�� and (p their mass center� One can estimate the local surface

normal by minimizing the quadratic error function

n� � arg min
n

n�Sn� with S �
X
i


pi � (p�
pi � (p���

n� is equal to the eigen�vector of the scatter matrix S which corresponds to the smallest

eigen�value 
min� With the normal� a local plane ax � by � cz � d 
c �
p

�� a� � b�� is

�tted to the patch�

An edge strength is computed on vector space s � 
a� b� d�"s of adjacent pixels using a

technique of 
Nitzberg et al� ������ Firstly we compute a �� � matrix at each point 
x� y��

)
x� y� �

Z Z
	�x�y�

�
rxs

�� rxsrys

rxsrys� rxs�

�
�
u� x� v � y� dudv� 
���

where �
u � x� v � y� is a Parzen window centered at 
x� y�� Let 
� and 
� 

� 
 
�� be

the two eigenvalues of the matrix� and v� and v� the corresponding eigenvectors� Then the

edge strength� orientation and cornerness are measured by e
�� �
�� and c respectively�

e
x� y� �
p

� � 
�� �
x� y� � arg
v��� c
x� y� � 
��

��



In addition to computing the edge maps from range images� we also apply standard edge

detection to the re	ectance image and obtain edge maps on three scales� We threshold the

edge strength e
� at three levels to generate the edge maps shown in �gures � and � after

tracing them with heuristic local information to form closed partitions�����

Given a region R to split� we superimpose R with one of the three edge maps depending

on the size of R 
large region will use coarse edge partition in general�� Then the edge

partition within R are candidate sub�regions� Thus the splitting boundaries % is chosen at

random from a set of candidates� We refer to our previous work on intensity segmentation

for detailed formulation�����

	�� Coarse�to�
ne surface clustering

Figure ��� A polyhedra and a conics range images each with six saliency maps for six

clustered surfaces�

��



We compute importance proposal probabilities on the parameter spaces �D
� � �D

� � �D

 �

�D
� and �D

� respectively� These probabilities are expressed by a set of candidate surface

models in non�parametric forms� But unlike the �D example represented in section 
��� we

shall use data clustering instead of Hough transforms for two reasons� ��� Hough transforms

become impractical in high dimensional space 
say more than three dimensions�� ��� Hough

transform assume a ��category detections and thus the peaks 
candidates� in the space can

be contaminated by each other� In contrast� data clustering is thus more general�

From edge detection in the previous subsection� each small patch � is �tted to a local

plane 
a� b� d� with mass center (p and the smallest eigen�value 
min� of the scatter matrix�

Therefore� we collect a set of patches�

Q � f
�j � aj � bj� dj � (pj� 
min�j � j � �� �� ���� J � j#j���g�

after subsampling the lattice # by a factor of �� In practice� we can discard patches which

have relatively large 
min� i�e� patches that are likely on the boundary� We can also use

adaptive patch sizes�

The patches in set Q are clustered into a set of C candidate surfaces in all �ve model

spaces

C � f�i � �i � �D
� � �D

� ��D

 � �D

� � �D
� � i � �� ���� C�g

by either the EM�clustering algorithm ���� or the mean�shift clustering algorithm ��
� ����

The EM algorithm is used here and the number of hypothetic clusters in each space is

chosen to be excessive�

For example� �gure �� shows six chosen clusters 
among many� for a polyhedra scene

and a conics scene� Each cluster is associated with a �saliency map� where the brightness

at a patch displays the probability that it �ts to the cluster 
or candidate model�� Such

probability comes automatically from the EM�clustering� It is very informative in such

simple scenes where the models are su�cient to describe the surfaces� and objects have

similar sizes�

In natural scene� the results are less satisfactory� Very often small objects� like a book on

the top of a desk can be easily assigned to a nearby large objects� To resolve this problem�

we compute the clusters in a coarse�to��ne strategy� For example� Fig� �� shows eight

chosen saliency maps for the most prominent clusters in the o�ce scene� which correspond

to the 	oor� desktop� furnace� windows� walls� and ceiling respectively� The total sum of the

probability over the lattice is a measure of how prominent a cluster is� Then for patch in Q

��



a�� range image b�� re	ectance image

Eight coarse clusters of the o�ce scene

A patch of the scene and six re�ned clusters

Figure ��� Saliency maps for o�ce scene at two scales� See text for explanation�

�




which do not �t very well to these prominent clusters� we re�ne the range data by sub�pixel

interpolation� and conduct the clustering on such areas� For example� �gure �� lower panel

shows six of the clusters for a sub�area 
indicated by a window�� such as� people� chairbacks�

small box etc�

These candidate models are used to form the importance proposal probabilities as it is

in the �D example� Give a region R� each pixel inside R votes for the candidate models

by a continuous probability� Then the proposed model is selected from the candidates

proportional to their votes and some random perturbations�

� Experiments

��� The datasets and preprocessing

We test the algorithm on three datasets� The �rst two are the standard Perceptron LADAR

camera images and K�T structured light camera images in the USF dataset� The third one

is a dataset from Brown University� where images are collected with a long range scanner

LMS�Z��� by Riegl� The �eld of view is ��� vertically and ���� horizontally� Each image

contains ��� � ���� measurements with an angular separation of ���� degree as Figure �

shows�

In general� range data are contaminated by heavy noise� E�ective preprocessing must be

used to deal with all types of errors presented in the data acquisition� while preserving the

true discontinuities� In our experiments� we adopt the least median of squares 
LMedS� and

anisotropic di�usion ��
� to pre�process the range data� LMedS is related to the median

�lter used in image processing to remove impulsive noise from images and can be used

to remove strong outliers in range data� After that� the anisotropic di�usion is adopted

to handle the general noises while avoiding the side e�ects caused by simple Gaussian or

di�usion smoothing� like the decreasing of the absolute value of curvature and smoothing

of orientation discontinuities into spurious curved patch� Fig� �� shows a surface rendered

before and after the preprocessing�

��� Results and evaluation

We run the algorithm on three dataset under one parameter setting with only one free

parameter c in equation 
�� which controls the extent of the segmentation� The algorithm

��



a� b�

Figure ��� A range scene rendered by OpenGL� a� before and b� after preprocessing�

starts with arbitrary initializations�

Figure �� displays the segmentation results on four images in dataset �� Figure �� shows

two examples in dataset �� For the two datasets� we only use range data and the segments

are superimposed on the re	ectance images� For comparison� we also show in these �gures

a manual segmentation used in ���� and ����� In these two �gures� we also show the �D

reconstructed scenes based on our segmentation results and the �tted surface models in

OpenGL from a novel viewing angle� This is a good way to examine the su�ciency of

the models used� In these reconstructed �D scenes� the background and 	oor behind the

occluding objects are completed using the method discussed next� It is of no surprise that

the algorithm can parse such scene very well� because the image models are su�cient to

account for the surfaces in these two datasets�

The six examples on the Brown dataset are shown in �gures �� and �
� While the

trees are correctly segmented out as shown in Figure ��� we further show the �D clutter

histogram model by one image with very complex tree structures in �gure �
� All these

results show that the clutter model does well for such cluttered regions�

Range image is often incomplete due to partial occlusion or poor surface re	ectance�

This can be clearly seen from Fig� ��� in which the 	oor and the two walls have a lot of

missing points� Analysis and reconstruction of range images usually focuses on complex

objects completely contained in the �eld of view� little attention has been devoted so far to

the reconstruction of simply�shaped wide areas like parts of wall hidden behind furniture

and facility pieces in the indoor scene shown in Fig� �� ����� In the reconstructing process�

how to �ll the missing data points of surfaces behind occlusions is a challenging question�

��



Dataset �� example ��

Dataset �� example ��

Dataset �� example �

Dataset �� example ��

a� range data b� manual segment c� our result d�� reconstruction

Figure ��� Segmentation results compared with the manual segments provided in ����� We

only use range data and the segments are superimposed on the re	ectance images in c� The

reconstructions are shown in slightly di�erent views�

��



Dataset �� example �

Dataset �� example �

a� range b� manual segment c� our result d� reconstruction

Figure ��� Segmentation on the second dataset compared with manual segment provided

in����� We only use range data and the segments are superimposed on the re	ectance images

in c� The reconstruction are generated from novel views�

The completion of these depth information needs higher level understanding of the �D

models� To solve this problem� an algorithm also shall make inference about two things� ���

The types of boundaries as crease� occluding� and so on� ��� The ownership of the boundary

to a surface� In our reconstruction procedure� we only use a simple prior model to recover

the missing parts of the backgrounds 
like the walls and the 	oor� by assuming they are

rectangles� Since we can obtain the needed parameters to represent these rectangles from

the segmentation result� it is not di�cult to �ll the missing points�

	 Discussion

Our work reassure the representative power of the statistical Bayesian formulation which can

couple visual cues� engage many prior models� and incorporate many families of generative

models for natural scenes� It also shows that the jump�di�usion process is a general tool

for energy minimization in complex solution spaces� Furthermore� the convergence can be

accelerated exponentially by bottom�up heuristic information�

��



Dataset �� example �

Dataset �� example �

Dataset �� example �

Dataset �� example �

a� range b� re	ectance c� our result d� manual segment

Figure ��� Segmentation results for parts of the four scenes in Fig� ��

��



Dataset �� example �

range re	ectance

our result manual segment

Dataset �� example 	

range re	ectance

our result manual segment

Figure �
� Segmenting the most cluttered part of o�ce B in Fig�� and a scene with trees�

��



Some remaining problems that need to be resolved in future research�

��� The algorithm is still time consuming� It currently takes about � hour on a pentium

IV PC to segment a scene with arbitrary initial conditions� However� we feel there are many

engineering methods that can largely reduce the computational time�

��� The experiments reveal that when the models are not su�cient� then the segmenta�

tion is not good� For example� the cables in the air and railing on the lane to the door in

Fig� ��� are missing� Because they are �D structures not regions�

��� Better prior model for �D objects are needed to group surfaces into objects� and

therefore to complete surfaces behind the occluding objects�
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