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Abstract. In this paper we present a Bayesian framework for parsing images into their constituent visual patterns.
The parsing algorithm optimizes the posterior probability and outputs a scene representation as a “parsing graph”, in
a spirit similar to parsing sentences in speech and natural language. The algorithm constructs the parsing graph and
re-configures it dynamically using a set of moves, which are mostly reversible Markov chain jumps. This computa-
tional framework integrates two popular inference approaches—generative (top-down) methods and discriminative
(bottom-up) methods. The former formulates the posterior probability in terms of generative models for images
defined by likelihood functions and priors. The latter computes discriminative probabilities based on a sequence
(cascade) of bottom-up tests/filters. In our Markov chain algorithm design, the posterior probability, defined by the
generative models, is the invariant (target) probability for the Markov chain, and the discriminative probabilities are
used to construct proposal probabilities to drive the Markov chain. Intuitively, the bottom-up discriminative proba-
bilities activate top-down generative models. In this paper, we focus on two types of visual patterns—generic visual
patterns, such as texture and shading, and object patterns including human faces and text. These types of patterns
compete and cooperate to explain the image and so image parsing unifies image segmentation, object detection, and
recognition (if we use generic visual patterns only then image parsing will correspond to image segmentation (Tu
and Zhu, 2002. IEEE Trans. PAMI, 24(5):657-673). We illustrate our algorithm on natural images of complex city
scenes and show examples where image segmentation can be improved by allowing object specific knowledge to
disambiguate low-level segmentation cues, and conversely where object detection can be improved by using generic
visual patterns to explain away shadows and occlusions.

Keywords: image parsing, image segmentation, object detection, object recognition, data driven Markov Chain
Monte Carlo, AdaBoost
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1. Introduction
1.1.  Objectives of Image Parsing

We define image parsing to be the task of decom-
posing an image I into its constituent visual patterns.
The output is represented by a hierarchical graph
W —called the “parsing graph”. The goal is to optimize
the Bayesian posterior probability p(W | I). Figure 1 il-
lustrates a typical example where a football scene is first
divided into three parts at a coarse level: a person in
the foreground, a sports field, and the spectators. These
three parts are further decomposed into nine visual pat-
terns in the second level: a face, three texture regions,
some text, a point process (the band on the field), a
curve process (the markings on the field), a color re-
gion, and a region for nearby people. In principle, we
can continue decomposing these parts until we reach a
resolution limit (e.g. there is not sufficient resolution to
detect the blades of grass on the sports field). The pars-
ing graph is similar in spirit to the parsing trees used
in speech and natural language processing (Manning
and Schiitze, 2003) except that it can include horizon-
tal connections (see the dashed curves in Fig. 1) for
specifying spatial relationships and boundary sharing
between different visual patterns.

As in natural language processing, the parsing graph
is not fixed and depends on the input image(s). An im-
age parsing algorithm must construct the parsing graph
on the fly.! Our image parsing algorithm consists of a
set of reversible Markov chain jumps (Green, 1995)
with each type of jump corresponding to an opera-
tor for reconfiguring the parsing graph (i.e., creating
or deleting nodes or changing the values of node at-
tributes). These jumps combine to form an ergodic and
reversible Markov chain in the space of possible pars-
ing graphs. The Markov chain probability is guaranteed
to converges to the invariant probability p(W |I) and
the Markov chain will simulate fair samples from this
probability.> Our approach is built on previous work on
Data-Driven Markov Chain Monte Carlo (DDMCMC)
for recognition (Zhu et al., 2000), segmentation (Tu
and Zhu, 2002a), grouping (Tu and Zhu, 2002b) and
graph partitioning (Barbu and Zhu, 2003, 2004).

Image parsing seeks a full generative explanation of
the input image in terms of generative models, p(I| W)
and p(W), for the diverse visual patterns which occur
in natural images, see Fig. 1. This differs from stan-
dard approaches to computer vision tasks—such as
segmentation, grouping, and recognition—which usu-
ally involve isolated vision modules which only explain
different parts (or aspects) of the image. The image
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Figure 1. Image parsing example. The parsing graph is hierarchical and combines generative models (downward arrows) with horizontal
connections (dashed lines), which specify spatial relationships between the visual patterns. See Fig. 4 for a more abstract representation

including variables for the node attributes.
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Figure 2. Examples of image segmentation failure by an algorithm (Tu and Zhu, 2002a) which uses only generic visual patterns (i.e. only
low-level visual cues). The results (b) show that low-level visual cues are not sufficient to obtain good intuitive segmentations. The limitations
of using only generic visual patterns are also clear in the synthesized images (c) which are obtained by stochastic sampling from the generative
models after the parameters have been estimated by DDMCMC. The right panels (d) show the segmentations obtained by human subjects who,
by contrast to the algorithm, appear to use object specific knowledge when doing the segmentation (though they were not instructed to) (Martin
et al., 2001). We conclude that to achieve good segmentation on these types of images requires combining segmentation with object detection

and recognition.

parsing approach enables these different modules to
cooperate and compete to give a consistent interpreta-
tion of the entire image.

The integration of visual modules is of increasing
importance as progress on the individual modules starts
approaching performance ceilings. In particular, work
on segmentation (Shi and Malik, 2000; Tu and Zhu,
2002; Fowlkes and Malik, 2004) and edge detection
(Konishi and Coughlan, 2003; Bowyer et al., 2001) has
reached performance levels where there seems little
room for improvement when only low-level cues are
used. For example, the segmentation failures in Fig. 2
can only be resolved by combining segmentation with
object detection and recognition. Combining these cues
is made easier because of recent successful work on
the detection and recognition of objects (Lowe, 2003;
Weber et al., 2000; Ponce et al., 2004; Belongie et al.,
2002; Viola and Jones, 2001; Wu et al., 2004) and the
classification of natural scenes (Barnard and Forsyth,
2001; Murphy et al., 2003) using, broadly speaking,
discriminative methods based on local bottom-up tests.

But combining different visual modules requires
a common framework which ensures consistency.
Despite the effectiveness of discriminative methods
for computing scene components, such as object la-
bels and categories, they can also generate redundant
and conflicting results. Mathematicians have argued
(Blanchard and Geman, 2003) that discriminative
methods must be followed by more sophisticated pro-
cesses to (i) remove false alarms, (ii) amend missing

objects by global context information, and (iii) rec-
oncile conflicting (overlapping) explanations through
model comparison. In this paper, we impose such pro-
cesses by using generative models for the entire image.

As we will show, our image parsing algorithm is able
to integrate discriminative and generative methods so
as to take advantage of their complementary strengths.
Moreover, we can couple modules such as segmenta-
tion and object detection by our choice of the set of
visual patterns used to parse the image. In this paper,
we focus on two types of patterns:—generic visual pat-
terns for low/middle level vision, such as texture and
shading, and object patterns for high level vision, such
as frontal human faces and text.

These two types of patterns illustrate different ways
in which the parsing graph can be constructed (see
Fig. 20 and the related discussion). The object patterns
(face and text) have comparatively little variability so
they can often be effectively detected as a whole by
bottom-up tests and their parts can be located subse-
quentially. Thus their parsing sub-graphs can be con-
structed in a “decompositional” manner from whole to
parts. By contrast, a generic texture region has arbi-
trary shape and its intensity pattern has high entropy.
Detecting such a region by bottom-up tests will re-
quire an enormous number of tests to deal with all this
variability, and so will be computationally impracti-
cal. Instead, the parsing subgraphs should be built by
grouping small elements in a “compositional” manner
(Bienenstock et al., 1997).
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We illustrate our algorithm on natural images of
complex city scenes and give examples where image
segmentation can be improved by allowing object spe-
cific knowledge to disambiguate low-level cues, and
conversely object detection can be improved by using
generic visual patterns to explain away shadows and
occlusions.

This paper is structured as follows. In Section 2, we
give an overview of the image parsing framework and
discuss its theoretical background. Then in Section 3,
we describe the parsing graph and the generative mod-
els used for generic visual patterns, text, and faces.
In Section 4 we give the control structure of the im-
age parsing algorithm. Section 5 gives details of the
components of the algorithm. Section 6 shows how we
combine AdaBoost with other tests to get proposals for
detecting objects including text and faces. In Section 7
we present experimental results. Section 8 addresses
some open problems in further developing the image
parser as a general inference engine. We summarize the
paper in Section 9.

2. Overview of Image Parsing Framework
2.1. Bottom-Up and Top-Down Processing

A major element of our work is to integrate discrimina-
tive and generative methods for inference. In the recent
computer vision literature, top-down and bottom-up
procedures can be broadly categorized into two popu-
lar inference paradigms—generative methods for “top-
down” and discriminative methods for “bottom-up”,
illustrated in Fig. 3. From this perspective, integrating
generative and discriminative models is equivalent to
combining bottom-up and top-down processing.’

The role of bottom-up and top-down processing
in vision has been often discussed. There is grow-
ing experimental evidence (see Thorpe et al., 1996;

Generative methods

W =W, w,,...w,)

I PWID)

joint posterior probability

Li et al., 2003) that humans can perform high level
scene and object categorization tasks as fast as low
level texture discrimination and other so-called pre-
attentive vision tasks. This suggests that humans can
detect both low and high level visual patterns at
early stages in visual processing. It contrasts with tra-
ditional bottom-up feedforward architectures (Marr,
1982) which start with edge detection, followed by
segmentation/grouping, before proceeding to object
recognition and other high-level vision tasks. These ex-
periments also relate to long standing conjectures about
the role of the bottom-up/top-down loops in the visual
cortical areas (Mumford, 1995; Ullman, 1995), visual
routines and pathways (Ullman, 1984), the binding of
visual cues (Treisman, 1986), and neural network mod-
els such as the Helmholtz machine (Dayan et al., 1995).
But although combining bottom-up and top-down pro-
cessing is clearly important, there has not yet been a
rigorous mathematical framework for how to achieve it.

In this paper, we combine generative and discrimi-
native approaches to design an DDMCMC algorithm
which uses discriminative methods to perform rapid in-
ference of the parameters of generative models. From
a computer vision perspective, DDMCMC combines
bottom-up processing, implemented by the discrimi-
native models, together with top-down processing by
the generative models. The rest of this section gives an
overview of our approach.

2.2.  Generative and Discriminative Methods

Generative methods specify how the image I is gen-
erated from the scene representation W € . It com-
bines a prior p(W) and a likelihood function p(I| W) to
give a joint posterior probability p(W | I). These can be
expressed as probabilities on graphs, where the input
image I is represented on the leaf nodes and W denotes

Discriminative methods

1
1
M q(w,|Tst, (1) = p(w, | 1)
1 =1k

marginal posterior probabilities

Figure 3. Comparison of two inference paradigms: Top-down generative methods versus bottom- up discriminative methods. The generative
method specifies how the image I can be synthesized from the scene representation W. By contrast, the discriminative methods are based by
performing tests Tstj(I) and are not guaranteed to yield consistent solutions, see crosses explained in the text.



the remaining nodes and node attributes of the graph.
The structure of the graph, and in particular the number
of nodes, is unknown and must be estimated for each
input image.

To perform inference using generative methods re-
quires estimating W* = arg max P(W |I). This is of-
ten computationally demanding because there are usu-
ally no known efficient inference algorithms (certainly
not for the class of P(W |I) studied in this paper).

In this paper, we will perform inference by stochastic
sampling W from the posterior:

W~ p(W D) o p(| W)p(W). ey

This enables us to estimate W* = arg max P(W |I).
Stochastic sampling is attractive because it is a general
technique that can be applied to any inference prob-
lem. Moreover, it generate samples that can be used to
validate the model assumptions. But the dimension of
the sample space €2 for image parsing is very high and
so standard sampling techniques are computationally
expensive.

By contrast, discriminative methods are very fast to
compute. They do not specify models for how the im-
age is generated. Instead they give discriminative (con-
ditional) probabilities g(w; | Tst;(I)) for components
{w;} of W based on a sequence of bottom-up tests
Tst; (I) performed on the image. The tests are based on
local image features {F; ,(I)} which can be computed
from the image in a cascade manner (e.g. AdaBoost
filters, see Section 6),

Tst;(D = (F; (D), Fj2D, ..., F;,D),
j=12,... K. )

The following theorem shows that the KL-
divergence between the true marginal posterior
p(w; |I) and the optimal discriminant approximation
q(w; | Tst(I)) using test Tst(I) will decrease monoton-
ically as new tests are added.*

Theorem 1.  The information gained for a variable w
by anew test Tst () is the decrease of Kullback-Leibler
divergence between p(w | 1) and its best discriminative
estimate q(w | Tst(I)) or the increase of mutual infor-
mation between w and the tests.

Ey[KL(p(w [ D) || g(w | Tst()))]
—Ef[KL(p(w | D) || g(w | Tst(D), Tst;.(I)))]
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= MI(w | Tst, T'sty) — MI(w || Tst)
= Erg 1o, [KL(g(w | Tst, T'sty) || g(w | Tst))] > 0,

where Ej is the expectation with respect to P(I), and
Etg,1st, is the expectation with respect to the probabil-
ity on the test responses (Tst, Tsty) induced by P(I).

The decrease of the Kullback-Leibler divergence
equals zero if and only if Tst(I) are sufficient statis-
tics with respect to w.

In practice discriminative methods, particularly stan-
dard computer vision algorithms—see Section 4.1, will
typically only use a small number of features for com-
putational practicality. Also their discriminative prob-
abilities g(w; | Tst(I)) will often not be optimal. Fortu-
nately the image parsing algorithm in this paper only
requires the discriminative probabilities g(w; | Tst(I))
to be rough approximations to p(w; | I).

The difference between discriminative and gener-
ative models is illustrated in Fig. 3. Discriminative
models are fast to compute and can be run in parallel
because different components are computed indepen-
dently (see arrows in Fig. 3). But the components {w;}
may not yield a consistent solution W and, moreover,
W may not specify a consistent model for generating
the observed image I. These inconsistencies are indi-
cated by the crosses in Fig. 3. Generative models ensure
consistency but require solving a difficult inference
problem.

It is an open problem whether discriminative meth-
ods can be designed to infer the entire state W for
the complicated generative models that we are deal-
ing with. Recent work (Kumar and Hebert, 2003) is a
step in this direction. But mathematicians (Blanchard
and Geman, 2003) have argued that this will not be
practical and that discriminative models will always
require additional post-processing.

2.3. Markov Chain Kernels and Sub-Kernels

Formally, our DDMCMC image parsing algorithm
simulates a Markov chain MC =< Q, v, K > with
kernel K in space €2 and with probability v for the start-
ing state. An element W € 2 is a parsing graph. We
let the set of parsing graphs €2 be finite as images have
finite pixels and grey levels.

We proceed by defining a set of moves for reconfigur-
ing the graph. These include moves to: (i) create nodes,
(ii) delete nodes, and (iii) change node attributes. We
specify stochastic dynamics for these moves in terms
of transition kernels.’
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For each move we define a Markov Chain sub- kernel
by a transition matrix /C,(W' | W : I) with a € A being
an index. This represents the probability that the sys-
tem makes a transition from state W to state W’ when
sub-kernel a is applied (i.e. Y, KC, (W' |W:I) =
1,V W). Kernels which alter the graph structure are
grouped into reversible pairs. For example, the sub-
kernel for node creation K, (W' | W : 1) is paired with
the sub- kernel for node deletion /C, ;(W’ | W :1). This
can be combined into a paired sub-kernel K, =
par’ca,r(W/ | W I)+pallca,l(W, | W :D(par+pa = 1)
This pairing ensures that }C, (W’ | W : T) =0 if, and only
if, K,(W | W' :I) = O for all states W, W € . The
sub-kernels (after pairing) are constructed to obey the
detailed balance condition:

p(W DK W' |W:I) = p(W | DK, (W [ W': D).

3)
The full transition kernel is expressed as:
KW W D)= pla:DK (W' |W:T),
Y p@:h=1, pla:1)>0. )

To implement this kernel, at each time step the al-
gorithm selects the choice of move with probability
o(a :T) for move a, and then uses kernel /I, (W' | W; 1)
to select the transition from state W to state W’'. Note
that both probabilities p(a :I) and K, (W' | W;1) de-
pend on the input image I. This distinguishes our DDM-
CMC methods from conventional MCMC computing
(Liu, 2001; Bremaud, 1999).

The full kernel obeys detailed balance, Eq. (3), be-
cause all the sub- kernels do. It will also be ergodic,
provided the set of moves is sufficient (i.e. so that we
can transition between any two states W, W' € Q us-
ing these moves). These two conditions ensure that
p(W 1) is the invariant (target) probability of the
Markov Chain (Bremaud, 1999) in the finite space €2.

Applying the kernel () updates the Markov chain
state probability (W) at step ¢ to (W) at t + 16:

et (W) =" Koy W' [ W : D (W) (5)
w

In summary, the DDMCMC image parser simulates
a Markov chain MC with a unique invariant probability
p(W | I). Attime ¢, the Markov chain state (i.e. the parse

graph) W follows a probability i, which is the product
of the sub-kernels selected up to time ¢,

W~ 1 (W) = v(W,) - [Kaaty © Ka@ 0 -+ 0 Ka]
(W,, W) = p(W D). (6)

where a(t) indexes the sub-kernel selected at time ¢. As
the time ¢ increases, u,(W) approaches the posterior
p(W |I) monotonically (Bremaud, 1999) at a geomet-
ric rate (Diaconis and Hanlon, 1992) independent of
the starting configuration. The following convergence
theorem is useful for image parsing because it helps
quantify the effectiveness of the different sub-kernels.

Theorem 2. The Kullback-Leibler divergence be-
tween the posterior p(W | 1) and the Markov chain state
probability decreases monotonically when a sub-kernel
Kawy, Ya(t) € A is applied,

KL(p(W | Dl ts(W)) = KL(p(W | D) || pt141(W)) = O
(N

The decrease of KL- divergence is strictly positive and
is equal to zero only after the Markov chain becomes
Stationary, i.e. (L = p.

[Proof] See Appendix A.

The theorem is related to the second law of ther-
modynamics (Cover and Thomas, 1991), and its proof
makes use of the detailed balance Eq. (3). This KL
divergence gives a measure of the “power” of each
sub-kernel /C, () and so it suggests an efficient mech-
anism for selecting the sub-kernels at each time step,
see Section 8. By contrast, classic convergence analy-
sis (see Appendix B) show that the convergence of the
Markov Chain is exponentially fast, but does not give
measures of power of sub-kernels.

2.4. DDMCMC and Proposal Probabilities

We now describe how to design the sub-kernels using
proposal probabilities and discriminative models. This
is at the heart of DDMCMC.

Each sub- kernel” is designed to be of Metropolis-
Hastings form (Metropolis et al., 1953; Hastings,
1970):

KaW' | W 1) = Qu(W' | W : Tsty(I))
pW DO (W | W' : Tsta(D) }
" p(W DQ (W | W :Tst,(D) |’
W £W (8)

X min{l



where a transition from Wto W’ is proposed (stochasti-
cally) by the proposal probability Q,(W | W' : Tst,(I))
and accepted (stochastically) by the acceptance
probability:

a(W' | W:1)
_ { pW DQu(W | W’:Tsta(l))}
= min {1, .
pP(WIDQa(W| W : Tsta(I))

The Metropolis-Hastings form ensures that the sub-
kernels obey detailed balance (after pairing) (Bremaud,
1999).

The proposal probabilities Q,(W’' | W : Tst,(I)) will
be built from discriminative probabilities using tests
Tst, (I) performed on the image. The design of the pro-
posal probabilities is a trade-off. Ideally the proposals
would be sampled from the posterior p(W’ | I), but this
is impractical. Instead the trade-off requires: (i) it is
possible to make large moves in 2 at each time step,
(ii) the proposals should encourage moves to states with
high posterior probability, and (iii) the proposals must
be fast to compute.

More formally, we define the scope 2,(W) = {W' €
Q: I, (W | W:I) > 0} to be the set of states which can
be reached from W in one time step using sub-kernel
a. We want the scope S,(W) to be large so that we can
make large moves in the space 2 at each time step (i.e.
jump towards the solution and not crawl). The scope
should also, if possible, include states W’ with high
posterior p(W'|I) (i.e. it is not enough for the scope to
be large, it should also be in the right part of €2).

The proposals Q. (W’ | W : Tst,(I)) should be cho-
sen so as to approximate

p(W'|T)
ZW”QQ“(W) p(W" 1)

if W e Q,(W),

= 0, otherwise. (10)

The proposals will be functions of the discriminative
models for the components of W’ and of the generative
models for the current state W (because it is compu-
tationally cheap to evaluate the generative models for
the current state). The details of the model p(W | I) will
determine the form of the proposals and how large we
can make the scope while keeping the proposals easy
to compute and able to approximate Eq. (10). See the
detailed examples given in Section 5.

This description gives the bare bones of DDMCMC.
We refer to Tu and Zhu (2002) for further details of
these issues from an MCMC perspective. In the discus-
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sion section, we describe strategies to improve DDM-
CMC. Preliminary theoretical results for the conver-
gence of DDMCMC are encouraging for a special case
(see Appendix C).

Finally, in Appendix D, we address the important
practical issue of how to maintain detailed balance
when there are multiple routes to transition between
two state W and W’'. We describe two ways to do this
and the trade-offs involved.

3. Generative Models and Bayesian Formulation

This section describes the graph structure and the gen-
erative models used for our image parsing algorithm in
this paper.

Figure 1 illustrates the general structure of a parsing
graph. In this paper, we use a two-layer-graph illus-
trated in Fig. 4. The top node (“root”) of the graph
represents the whole scene (with a label). It has K in-
termediate nodes for the visual patterns (face, text, tex-
ture, and shading). Each visual pattern has a number of
pixels at the bottom (“leaves”). In this graph no hori-
zontal connections are considered between the visual
patterns except the constraint that they share bound-
aries and form a partition of the image lattice (see Tu
and Zhu (2002) for an example of image parsing where
horizontal connections are used, but without object

patterns).
The number K of intermediate nodes is a random
variable, and each node i = 1,..., K has a set of

Figure 4. Abstract representation of the parsing graph used in this
paper. The intermediate nodes represent the visual patterns. Their
child nodes correspond to the pixels in the image.
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attributes (L;, ¢;, ®;) defined as follows. L; is the shape
descriptor and determines the region R; = R(L;) of the
image pixels covered by the visual pattern of the inter-
mediate node. Conceptually, the pixels within R; are
child nodes of the intermediate node i. (Regions may
contain holes, in which case the shape descriptor will
have internal and external boundaries). The remaining
attribute variables (¢;, ®;) specify the probability mod-
els p(Igr,y | &i, Li, ®;) for generating the sub-image
Ig(z,) in region R(L;). The variables ¢; € {1, ..., 66}
indicate the visual pattern type (3 types of generic vi-
sual patterns, 1 face pattern, and 62 text character pat-
terns), and ®; denotes the model parameters for the
corresponding visual pattern (details are given in the
following subsections). The complete scene descrip-
tion can be summarized by:

W=(K,{(& Li,®):i=12,...,K}).

The shape descriptors {L;:i = 1,..., K} are re-
quired to be consistent so that each pixel in the image is
a child of one, and only one, of the intermediate nodes.
The shape descriptors must provide a partition of the
image lattice A = {(m,n):1 < m < Height(I),1 <
n < Width(I)} and hence satisfy the condition

K
A= U R(L), R(LHONRL) =W, Vi#j.
i=1

The generation process from the scene description
W to I is governed by the likelihood function:

K
pdIW) = HP(IR(L,») |&iLi, ©).

i=1

The prior probability p(W) is defined by

K
p(W) = p(K)[ [ p(L)p(&i | Li)p(©; | £)).
i=1

In our Bayesian formulation, parsing the image cor-
responds to computing the W* that maximizes a pos-
teriori probability over €2, the solution space of W,

W* = arg max p (W |I) = arg max p (I| W)p(W).
WeQ WeQ

(1)

It remains to specify the prior p(W) and the likeli-
hood function p(I | W). We set the prior terms p(K)

and p(®; |¢;) to be uniform probabilities. The term
p(&i | L;) is used to penalize high model complexity
and was estimated for the three generic visual patterns
from training data in Tu and Zhu (2002).

3.1. Shape Models

We use two types of shape descriptor in this paper.
The first is used to define shapes of generic visual
patterns and faces. The second defines the shapes of
text characters.

1. Shape Descriptors for Generic Visual Patterns
and Faces
In this case, the shape descriptor represents the
boundary® of the image region by a list of pixels
L; = 0R;. The prior is defined by:

p(Li) ocexp{—y | R(L)|* = AlLi[}.  (12)

In this paper, we set @ = 0.9. For computational
reasons, we use this prior for face shapes though more
complicated priors (Cootes et al., 2001) can be applied.

2. Shape Descriptors for Text Characters

We model text characters by 62 deformable tem-
plates corresponding to the ten digits and the twenty six
letters in both upper and lower cases. These deformable
templates are defined by 62 prototype characters and
a set of deformations. The prototypes are represented
by an outer boundary and, at most, two inner bound-
aries. Each boundary is modeled by a B-spline using
twenty five control points. The prototype characters are
indexed by c; € {1, ..., 62} and their control points are
represented by a matrix TP(c;).

We now define two types of deformations on the
templates. One is a global affine transformation, and
the other is a local elastic deformation. First we allow
the letters to be deformed by an affine transform M;.
We put a prior p(M;) to penalize severe rotation and
distortion. This is obtained by decomposing M; as:

M o, 0\ /cos@ —sinB\/1 h
"7 \0 o,/\sind coso 0 1)
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Figure 5. Random samples drawn from the shape descriptors for text characters.

where 6 is the rotation angle, o, and o, denote scaling,
and 4 is for shearing. The prior on M; is

2
p(M;) cxexp{ —alo)? _b<& + ﬂ) —chz},

oy Oy

where a, b, ¢ are parameters.

Next, we allow local deformations by adjusting
the positions of the B-spline control points. For a
digit/letter ¢; and affine transform M;, the contour
points of the template are given by Grp(M;, c;) =
U x My x M; x TP(c;). Similarly the contour points
on the shape with control points S; are given by
Gi(M;,C;) = U x Mg x §; (U and M; are the
B-Spline matrices). We define a probability distribu-
tion p(S; | M;, C;) for the elastic deformation given by
Si

p(Si | M;, ¢c;) cexp{—y | R(L;)|*
—D(Gs(M;, c)Grp(M;, c;))},

where D(Gs(M;, ¢;)||Grp(M;, c;)) is the overall dis-
tance between contour template and the deformed con-
tour (these deformations are small so the correspon-
dence between points on the curves can be obtained by
nearest neighbor matches, see Tu and Yuille (2004) for
how we can refine this). Figure 5 shows some samples
drawn from the above model.

In summary, each deformable template is indexed by
¢i € {1...62} and has a shape descriptor:

L = (¢;, M;, Sp),
The prior distribution on L; is specified by:

p(L;) = plei))p(Mi)p(Si | M;, c;).

N

Here p(c;) is a uniform distribution on all the dig-
its and letters (we do not place a prior distribution on
text strings, though it is possible to do so (Klein and
Manning, 2002)).

3.2.  Generative Intensity Models

We use four families of generative intensity models for
describing intensity patterns of (approximately) con-
stant intensity, clutter/texture, shading, and face. The
first three are similar to those defined in Tu and Zhu
(2002).

1. Constant Intensity Model { = 1. This assumes
that pixel intensities in a region R are subject to in-
dependently and identically distributed (iid) Gaussian
distribution,

pi(leey [ =1,L,0) = [] GO — 07,
veR(L)

0 =(u,o0)

2. Clutter/Texture Model ( = 2. This is a non-
parametric intensity histogram h() discretized to take G
values (i.e. is expressed as a vector (hy, ha, ..., hg)).
Let n; be the number of pixels in R(L) with intensity
value j.

G .
p2(lray| ¢ =2,L,0) = 1_[ h(,) = Hh;’:’,
Jj=1

veR(L)

O = (hy, hy, ..., hg).

3. Shading Model { =3 and { = 5,...,66. This
family of models are used to describe generic shading
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Figure 6. Random samples drawn from the PCA face model.

patterns, and text characters. We use a quadratic form
J(x,v;0) = ax* + bxy + ¢y* +dx + ey + f,

with parameters ® = (a, b, ¢, d, e, f, o). Therefore,
the generative model for pixel (x, y) is

p3(lray [ £ €13.(5,...,66)}, L, ©)

= l_[ G(IU_JU;02)7®=(aab,cad’e’ f,U).
veR(L)

4. The PCA face model { = 4. The generative
model for faces is simpler and uses Principal Com-
ponent Analysis (PCA) to obtain representations of the
faces in terms of principal components { B; } and covari-
ances X. Lower level features, also modeled by PCA,
can be added (Moghaddam and Pentland, 1997). Fig-
ure 6 shows some faces sampled from the PCA model.
We also add other features such as the occlusion pro-
cess, as described in Hallinan et al. (1999).

pa(r(D)IIE =4,L, 0)

= G<1R(L) — Y kB 2>,

O =, ., hn, D).

4. Overview of the Algorithm

This section gives the control structure of an image
parsing algorithm based on the strategy described in
Section 2, and Fig. 8 shows the diagram. Our algorithm

il
s

’J-ﬁ‘.

L2 =

Ez:

must construct the parse graph on the fly and to estimate
the scene interpretation W.

Figure 7 illustrates how the algorithm selects the
Markov chain moves (dynamics or sub-kernels) to
search through the space of possible parse graphs of
the image by altering the graph structure (by deleting
or adding nodes) and by changing the node attributes.
An equivalent way of visualizing the algorithm is in
terms of a search through the solution space €2 see (Tu
and Zhu 2002a, 2002b) for more details of this view-
point.

We first define the set of moves to reconfigure the
graph. These are: (i) birth or death of face nodes,
(ii) birth or death of text characters, (iii) splitting or
merging of regions, (iv) switching node attributes (re-
gion type ¢; and model parameters ©;), (v) boundary
evolution (altering the shape descriptors L; of nodes
with adjacent regions). These moves are implemented
by sub-kernels. The first four moves are reversible
jumps (Green, 1995), and will be implemented by the
Metropolis-Hastings Eq. (8). The fifth move, bound-
ary evolution, is implemented by a stochastic partial
differential equation.

The sub-kernels for these moves require pro-
posal probabilities driven by elementary discriminative
methods, which we review in the next subsection. The
proposal probabilities are designed using the criteria in
Section 2.4, and full details are given in Section 5.

The control structure of the algorithm is described
in Section 4.2. The full transition kernel for the im-
age parser is built by combining the sub-kernels, as
described in Section 2.3 and Fig. 8. The algorithm
proceeds (stochastically) by selecting a sub-kernel, se-
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Figure 7. Examples of Markov chain dynamics that change the graph structure or the node attributes of the graph giving rise to different ways
to parse the image.
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Figure 8. Integrating generative (top-down) and discriminative (bottom-up) methods for image parsing. This diagram illustrates the main
points of the image parser. The dynamics are implemented by an ergodic Markov chain X, whose invariant probability is the posterior p(W ||I),
and which is composed of reversible sub-kernels C, for making different types of moves in the parse graph (e.g. giving birth to new nodes
or merging nodes). At each time step the algorith-m selects a sub-kernel stochastically. The selected sub-kernel proposes a specific move (e.g.
to create or delete specific nodes) and this move is then evaluated and accepted stochastically, see Eq. (8). The proposals are based on both
bottom-up (discriminative) and top-down (generative) processes, see Section 2.4. The bottom-up processes compute discriminative probabilities
q(w;||Tst;(X)), j = 1,2,3,4 from the input image I based on feature tests Tst;(I). An additional sub-kernel for boundary evolution uses a
stochastic partial differential equation will be described later.
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lecting where in the graph to apply it, and then deciding
whether or not to accept the operation.

4.1. The Discriminative Methods

The discriminative methods give approximate posterior
probabilities g(w;||Tst;(I)) for the elementary com-
ponents w; of W. For computational efficiency, these
probabilities are based only on a small number of sim-
ple tests Tst;(I).

We briefly overview and classify the discriminative
methods used in our implementation. Section 5 shows
how these discriminative methods are composed, see
crosses in Fig. 8, to give proposals for making moves
in the parsing graph.

1. Edge Cues. These cues are based on edge de-
tectors (Canny, 1986; Bowyer et al., 2001; Konishi
et al., 2003). They are used to give proposals for re-
gion boundaries (i.e. the shape descriptor attributes of
the nodes). Specifically, we run the Canny detector at
three scales followed by edge linking to give partitions
of the image lattice. This gives a finite list of candidate
partitions which are assigned weights, see Section 5.2.3
and (Tu and Zhu, 2002a). The discriminative proba-
bility is represented by this weighted list of particles.
In principle, statistical edge detectors (Konishi et al.,
2003) would be preferable to Canny because they give
discriminative probabilities g(w; | Tst;(I)) learnt from
training data.

2. Binarization Cues. These cues are computed us-
ing a variant of Niblack’s algorithm (Niblack, 1986).
They are used to propose boundaries for text characters
(i.e. shape descriptors for text nodes), and will be used
in conjunction with proposals for text detection. The
binarization algorithm, and an example of its output,
are given in Section 6. Like edge cues, the algorithm is
run at different parameters settings and represents the
discriminative probability by a weighted list of parti-
cles indicating candidate boundary locations.

3. Face Region Cues. These cues are learnt by
a variant of AdaBoost (Schapire 2002; Viola and
Jones, 2001) which outputs discriminative probabili-
ties (Friedman et al. 1998), see Section 6. They propose
the presence effaces in sub-regions of the image. These
cues are combined with edge detection to propose the
localization of faces in an image.

4. Text Region Cues. These cues are also learnt by a
probabilistic version of AdaBoost, see Section 6. The
algorithm is applied to image windows (at a range of
scales). It outputs a discriminative probability for the
presence of text in each window. Text region cues are
combined with binarization to propose boundaries for
text characters.

5. Shape Affinity Cues. These act on shape bound-
aries, produced by binarization, to propose text char-
acters. They use shape context cues (Belongie et al.,
2004). and information features (Tu and Yuille, 2004)
to propose matches between the shape boundaries and
the deformable template models of text characters.

6. Region Affinity Cues. These are used to estimate
whether tworegions R;, R; are likely to have been gen-
erated by the same visual pattern family and model pa-
rameters. They use an affinity similarity measure (Shi
and Malik, 2000) of the intensity properties Ig,, Ig;.

7. Model Parameter and Visual Pattern Family Cues.
These are used to propose model parameters and visual
pattern family identity. They are based on clustering
algorithms, such as mean-shift (Comaniciu and Meer,
1999). The clustering algorithms depend on the model
types and are described in Tu and Zhu (2002a).

In our current implementation, we conduct all the
bottom-up tests Tst;(I), j = 1,2,..., K at an early
stage for all the discriminative models g;(w; || Tst;(I)),
and they are then combined to form composite tests
Tst,(I) for each subkernel &, in Egs. (8 and 9). It may
be more efficient to perform these test as required, see
discussion in Section 8.

4.2.  Control Structure of the Algorithm

The control strategy used by our image parser is illus-
trated in Fig. 8. The image parser explores the space
of parsing graphs by a Markov Chain Monte Carlo
sampling algorithm. This algorithm uses a transition
kernel K which is composed of sub-kernels /C, cor-
responding to different ways to reconfigure the pars-
ing graph. These sub-kernels come in reversible pairs’
(e.g., birth and death) and are designed so that the target
probability distribution of the kernel is the generative
posterior p(W | I). At each time step, a sub-kernel
is selected stochastically. The sub-kernels use the
Metropolis-Hasting sampling algorithm, see Eq. (8),
which proceeds in two stages. First, it proposes



a reconfiguration of the graph by sampling from
a proposal probability. Then it accepts or rejects
this reconfiguration by sampling the acceptance
probability.

To summarize, we outline the control strategy of
the algorithm below. At each time step, it specifies
(stochastically) which move to select (i.e. which sub-
kernel), where to apply it in the graph, and whether
to accept the move. The probability to select moves
p(a : I) was first set to be independent of I, but we
got better performance by adapting it using discrim-
inative cues to estimate the number of faces and text
characters in the image (see details below). The choice
of where to apply the move is specified (stochastically)
by the sub-kernel. For some sub-kernels it is selected
randomly and for others is chosen based on a fitness
factor (see details in Section 5), which measures how
well the current model fits the image data. Some an-
nealing is required to start the algorithm because of the
limited scope of the moves in the current implemen-
tation (the need for annealing will be reduced if the
compositional techniques described in Barbu and Zhu
(2003)) are used).

We improved the effectivenss of the algorithm by
making the move selection adapt to the image (i.e.
by making p(a:I) depend on I). In particular, we
increased the probability of giving birth and death
of faces and text, p(1) and p(2), if the bottom-up
(AdaBoost) proposals suggested that there are many
objects in the scene. For example, let N(I) be the
number of proposals for faces or text above a thresh-
old T,. Then we modify the probabilities in the ta-
ble by p(a)) — {(p(a1) + kg(ND)}/Z, p(az) —
{p(@) + kg(N)}/Z, p(az) — p(a3)/Z, plas) —
play)/Z, where g(x) = x,x < Tpg(x) = Tp,x >
T, and Z = 1 + 2k is chosen to normalize the
probability.

The basic control strategy of the image parsing
algorithm

1. Initialize W (e.g. by dividing the image into four re-
gions), setting their shape descriptors, and assigning
the remaining node attributes at random.

2. Set the temperature to be Tjpj

3. Select the type a of move by sampling from a prob-
ability p(a), with p(1) = 0.2 for faces, p(2) = 0.2
for text, p(3) = 0.4 for splitting and merging,
p(4) = 0.15 for switching region model (type or
model parameters), and p(5) = 0.05 for boundary
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evolution. This was modified slightly adaptively, see
caption and text.

4. If the selected move is boundary evolution, then
select adjacent regions (nodes) at random and apply
stochastic steepest descent, see Section 5.1.

5. If the jump moves are selected, then a new solution
W’ is randomly sampled as follows:

— For the birth or death of a face, see Section 5.2.2,
we propose to create or delete a face. This in-
cludes a proposal for where in the image to do
this.

— For the birth of death of text, see Section 5.2.1,
we propose to create a text character or delete an
existing one. This includes a proposal for where
to do this.

— For region splitting, see Section 5.2.3, a region
(node) is randomly chosen biased by its fitness
factor. There are proposals for where to split it
and for the attributes of the resulting two nodes.

— Forregion merging, see Section 5.2.3, two neigh-
boring regions (nodes) are selected based on a
proposal probability. There are proposals for the
attributes of the resulting node.

— For switching, see Section 5.2.4, a region is se-
lected randomly according to its fitness factor
and a new region type and/or model parameters
is proposed.

e The full proposal probabilities, Q(W || W : 1)
and Q(W'||W :1) are computed.

e The Metropolis-Hastings algorithm, Eq. (8),
is applied to accept or reject the proposed
move.

6. Reduce the temperature T = 1 + Tiyy X exp(—t X
c||R])), where ¢ is the current iteration step, c is a
constant and || R|| is the size of the image.

7. Repeat the above steps and until the convergence cri-
terion is satisfied (by reaching the maximum num-
ber of allowed steps or by lack of decrease of the
negative log posterior).

5. The Markov Chain Kernels

This section gives a detailed discussion of the individ-
ual Markov Chain kernel, their proposal probabilities,
and their fitness factors.
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5.1. Boundary Evolution

These moves evolve the positions of the region bound-
aries but preserve the graph structure. They are im-
plemented by a stochastic partial differential equation
(Langevin equation) driven by Brownian noise and can
be derived from a Markov Chain (Gemam and Huang,
1986). The deterministic component of the PDE is ob-
tained by performing steepest descent on the negative
log-posterior, as derived in Zhu and Yuille (1996).

We illustrate the approach by deriving the determin-
istic component of the PDE for the evolution of the
boundary between a letter 7; and a generic visual pat-
ternregion R;. The boundary will be expressed in terms
of the control points {S,,} of the shape descriptor of
the letter. Let v denote a point on the boundary, i.e.
v(s) = (x(s), y(s)) on I'(s) = OR; N dR;. The de-
terministic part of the evolution equation is obtained
by taking the derivative of the negative log-posterior
—logp(W/I) with respect to the control points.

More precisely, the relevant parts of the negative log-
posterior, see Eq. (3) and (11) are given by E(R;) and
E(T;) where:

ER) = / / (— log p(I(x, )I6,)} dxdy
R;
+ )/|R,-|a + A|OR;].
and
E(T)) = f / ~log p(I(x., )l6,) dxdy
Lj
+ Y R — log p(L)).

Differentiating E(R;) + E(T;) with respect to the
control points {S,,} yields the evolution PDE:

dS,  SE(R) 8D(T))

dt 8Sm 8Sm
B SE(R) SE(T)] 1 J
‘/[‘ 50 ov }IJ(S)I ’
_ p(I(U);QG)
= /n(v) |:10g 7p(l(v);9;/.)

1 1
+ay< — )
(D1 1Dl

1
—k + D(Gs, (s)||GT(s))i| T 4

where J(s) is the Jacobian matrix for the spline func-
tion. (Recall that « = 0.9 in the implementation).
The log-likelihood ratio term log g5 imple-
ments the competition between the letter and the
generic region models for ownership of the boundary

pixels.

5.2.  Markov Chain Sub-Kernels

Changes in the graph structure are realized by Markov
chain jumps implemented by four different sub-kernels.

5.2.1. Sub-Kernel I: Birth and Death of Text. This
pair of jumps is used to create or delete text charac-
ters. We start with a parse graph W and transition into
parse graph W’ by creating a character. Conversely, we
transition from W’ back to W by deleting a character.

The proposals for creating and deleting text charac-
ters are designed to approximate the terms in Eq. (10).
We obtain a list of candidate text character shapes by
using AdaBoost to detect text regions followed by bi-
narization to detect candidate text character boundaries
within text regions (see Section 6.2). This list is repre-
sented by a set of particles which are weighted by the
similarity to the deformable templates for text charac-
ters (see below):

Si,(W) = {(Z(ll:),wil:)) /L:LZ,...,NU}.

Similarly, we specify another set of weighted particles
for removing text characters:

SuW) = {2 ) v=1,2,...,Nu}.
{z/"} and {z""} represent the possible (discretized)
shape positions and text character deformable tem-
plates for creating or removing text, and {wi’r‘)} and

{a)i‘;)} are their corresponding weights. The particles
are then used to compute proposal probabilities

/ w1, (W)
QW= )
Yy o)
w
Quww',p =
2ot oy

The weights o and o'} for creating new text char-

acters are specified by shape affinity measures, such as
shape contexts (Belongie et al., 2002) and informative



features (Tu and Yuille, 2004). For deleting text charac-
ters we calculate wﬁ‘;) directly from the likelihood and
prior on the text character. Ideally these weights will

. e PAWD p(WID
approximate the ratios ST and UL

5.2.2. Sub-Kernel II: Birth and Death of Face. The
sub-kernel for the birth and death of faces is very sim-
ilar to the sub-kernel of birth and death of text. We
use AdaBoost method discussed in Section 6.2 to de-
tect candidate faces. Face boundaries are obtained di-
rectly from using edge detection to give candidate face
boundaries. The proposal probabilities are computed
similarly to those for sub-kernel 1.

5.2.3. Sub-Kernel I11: Splitting and Merging Regions
This pair of jumps is used to create or delete nodes by
splitting and merging regions (nodes). We start with
a parse graph W and transition into parse graph W’
by splitting node i into nodes j and k. Conversely, we
transition back to W by merging nodes j and k into
node i. The selection of which region i to split is based
on arobust function on p(Ig,|¢;, L;, ©;) (i.e. the worse
the model for region R; fits the data, the more likely
we are to split it). For merging, we use a region affinity
measure (Shi and Malik, 2000) and propose merges
between regions which have high affinity.
Formally, we define W, W’:

W = (K, (&, L, ©r), W_)
=W = (K +1,&, Li, 9), (&, Lj, ©)), W-)

where W_ denotes the attributes of the remaining K —1
nodes in the graph.

We obtain proposals by seeking approximations to
Eq. 10 as follows.

We first obtain three edge maps. These are given by
Canny edge detectors (Canny, 1986) at different scales
(see Tu and Zhu (2002a), for details). We use these edge
maps to create a list of particles for splitting S3,.(W). A
list of particles for merging is denoted by S3;,(W’).

S (W) = {25, %)) s =1.2,.... Ny},

Sy(W') = {(zg?), wg‘;)) v=1,2,...,Ny.}
where {z3)} and {z3'} represent the possible (dis-
cretized) positions for splitting and merging, and their
weights {ws,}, {w3} will be defined shortly. In other
words, we can only split a region i into regions j and k
along a contour z, (i.e. zj, forms the new boundary).
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Template

Control
Points

Figure9. Theevolution of the region boundaries is implemented by
stochastic partial differential equations which are driven by models
competing for ownership of the regions.

Similarly we can only merge regions j and k into re-
gion i by deleting a boundary contour z4;. For example,
Figure 11 shows 7 candidate sites for splitting W and
5 sites for merging W'.

We now define the weights {ws,}, {w3}. These
weights will be used to determine probabilities for the
splits and merges by:

w3r(W/)
N3 (W)’
Euila)3r
w3 (W)
N- ) *
2wy

Qi (WW:1) =
Qu(WIW": 1) =

Again, we would like ), and @}, to approximate the

iae LAV D p(W' D) ; pPAWID 5 s
;anos AL and SOV 1D respectively. oav D 1S given
y:

p(W L) p(Ir 14, Li, ©;)p(Ig, | £j. L, ©))
p(W D PR, | &ks Li, )
PG, Li, ©®)p(), Lj, ©)) p(K +1)
P&, Lk, O) p(k)
This is expensive to compute, so we approximate

pW'|D p(W 1D .
sovin and ey by:

o — AR R))

T p(Tk, 1k Le ©%)
lg(L)q(&i, ©)1lg(Lj)q(E;, ©;)]

. . (13)
P&k, Ly, ©y)
(v) q(Rl" RJ)
Wy =
p(Ir 18, Li,©;)p(Ig, 1 £, Lj, ©))
q(Li)q &k, Or) (14)

p(&i, Li, O)p(;, L;, ©;)
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Figure 10. An example of the birth-death of text. State W consists of three generic regions and a character “T”. Proposals are computed for 3
candidate characters, “E”, “X”, and “T”, obtained by AdaBoost and binarization methods (see Section 6.2). One is selected, see arrow, which
changes the state to W’. Conversely, there are 2 candidate in state W’ and the one selected, see arrow, returns the system to state W.
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Figure 11. An example of the split- merge sub- kernel. State W consists of three regions and proposals are computed for 7 candidate splits.
One is selected, see arrow, which changes the state to W’. Conversely, there are 5 candidate merges in state W’ and the one selected, see arrow,

returns the system to state W.

Where ¢(R;, R;) is an affinity measure (Shi and
Malik, 2000) of the similarity of the two regions R;
and R; (it is a weighted sum of the intensity dif-
ference |I; — I;|, and the chi-squared difference be-
tween the intensity histograms), g(L;) is given by the
priors on the shape descriptors, and ¢(¢;, ®;) is ob-
tained by clustering in parameter space (see Tu and Zhu
(2002)).

5.2.4. Jump II: Switching Node Afttributes. These
moves switch the attributes of a node i. This involves

changing the region type ¢; and the model parameters
O;.

The move transitions between two states:

W = ((Cia Lia ®i)7 W—) \__\ W’ = ((Ci/a L:a 61)7 W—)

The proposal, see Eq. (10), should approximate:

pW' D _ p(Ik |8, Li, ©)p(, L}, ©))
pPWID  p(Ig, | & Li, ©;)p(&i, Li, ©))

We approximate this by a weight wf(‘ ) given by

() q(L)q(&, ©))
CL)4 = )
p(Ir &, Li, ©;)p(&i, Li, ©))




where g(L})q(¢/, ©®}) are the same functions used in
the split and merge moves. The proposal probabil-
ity is the weight normalized in the candidate set,
QW' | W : ) = &

Ny () *
Zu:l Wy

6. AdaBoost for Discriminative Probabilities
for Face and Text

This section describes how we use AdaBoost tech-
niques to compute discriminative probabilities for de-
tecting faces and text (strings of letters). We also de-
scribe the binarization algorithm used to detect the
boundaries of text characters.

6.1. Computing Discriminative Probabilities
by Adaboost

The standard AdaBoost algorithm, for example for
distinguishing faces from non-faces (Viola and Jones,
2001), learns a binary-valued strong classifier-Haga by
combining a set of n binary-valued “weak classifiers” or
feature tests Tstaga(X) = (b1 (D), ..., h,(I)) using a set
of weights apag, = (avy, - . ., ) (Freund and Schapire,
1996).

Haga(Tstaga(D) = sign( > aihi<l>)
i=1
= sign < Qada, TStadga@) > . (15)

The features are selected from a pre-designed dic-
tionary Aaga. The selection of features and the tuning
of weights are posed as a supervised learning prob-
lem. Given a set of labeled examples, {(I;, ¢;) : i =
1,2,..., M} (; = %1), AdaBoost learning can be for-
mulated as greedily optimizing the following function
(Schapire, 2002).

(aZda’ TStT\da)

M
= arg min argmin E exp b =i Tsthal)>
Tstaaa CAAda S

(16)

To obtain discriminative probabilities we use a the-
orem (Friedman et al., 1998) which states that the fea-
tures and test learnt by AdaBoost give (asymptotically)
posterior probabilities for the object labels (e.g. face or
non-face). The AdaBoost strong classifier can be red-
erived as the log posterior ratio test.
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Theorem 3 (Friedman et al., 1998). With sufficient
training samples M and features n, AdaBoost learning
selects the weights oy, and tests Tstyy, to satisfy

el <, Tstaa(l)>

gt =+11T) =
e

<@ada, Tstaaal)> 4 o= <ada, Tstaga(li)>

Moreover, the strong classifier converges asymptoti-
cally to the posterior probability ratio test

Hpga(Tstaga(I)) = sign(< aada, Tstaga(D) >)

. (q(£=+1|1)>
=sign| ——— .
gt =—-111)

In practice, the AdaBoost classifier is applied to win-
dows in the image at different scales. Each window is
evaluated as being face or non-face (or text versus non-
text). For most images the posterior probabilities for
faces or text are negligible for almost all parts of an
image. So we use a cascade of tests (Viola and Jones,
2001; Wuetal., 2004) which enables us to rapidly reject
many windows by setting their marginal probabilities
to be zero.

Of course, AdaBoost will only converge to approx-
imations to the true posterior probabilities p(¢ | I) be-
cause only a limited number of tests can be used (and
there is only a limited amount of training data).

Note that AdaBoost is only one way to learn a poste-
rior probability, see Theorem 1. It has been found to be
very effective for object patterns which have relatively
rigid structures, such as faces and text (the shapes of
letters are variable but the patterns of a sequence are
fairly structured (Chen and Yuille, 2004).

6.2. AdaBoost Training

We used standard AdaBoost training methods (Freund
and Schapire, 1996; Friedman et al., 1998) combined
with the cascade approach using asymmetric weighting
(Viola and Jones, 2001; Wu et al., 2004). The cascade
enables the algorithm to rule out most of the image
as face, or text, locations with a few tests and allows
computational resources to be concentrated on the more
challenging parts of the images.

The AdaBoost for text was designed to detect text
segments. Our test data was extracted by hand from
162 images of San Francisco, see Fig. 12, and con-
tained 561 text images, some of which can be seen
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Figure 12.  Some scenes from which the training text patches are extracted.
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a. Examples of text image from which we extracted text segments.

b. Examples of the faces in training.

Figure 13. Positive training examples for AdaBoost.

in Fig. 13. More than half of the images were taken
by blind volunteers (which reduces bias). We divided
each text image into several overlapping text segments
with fixed width-to-height ration 2:1 (typically con-
taining between two and three letters). A total of 7,000
text segments were used as the positive training set.
The negative examples were obtained by a bootstrap
process similar to Drucker et al. (1993) . First we se-
lected negative examples by randomly sampling from
windows in the image dataset. After training with these
samples, we applied the AdaBoost algorithm at a range
of scales to classify all windows in the training images.
Those misclassified as text were then used as negative
examples for the next stage of AdaBoost. The image
regions most easily confused with text were vegetation,

and repetitive structures such as railings or building fa-
cades. The features used for AdaBoost were image tests
corresponding to the statistics of elementary filters. The
features were chosen to detect properties of text seg-
ments that were relatively invariant to the shapes of
the individual letters or digits. They included averag-
ing the intensity within image windows, and statistics
of the number of edges. We refer to (Chen and Yuille,
2004) for more details.

Figure 14(a) shows some failure examples of Ad-
aboost for text detection. These correspond to situations
such as heavy shading, blurred images, isolated dig-
its, vertical commercial signs, and non-standard fonts.
They were not included in the training examples shown
in Fig. 13.
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b. Examples of difficult faces

Figure 14. Some failure examples of text and faces that Adaboost misses. The text image failures (a) are challenging and were not included
in our positive training examples. The face failures (b) include heavy shading, occlusion and facial features.

The AdaBoost posteriors for faces was trained in a
similar way. This time we used Haar basis functions
(Viola and Jones, 2001) as elementary features. We
used the FERET (Phillips et al., 1998) database for
our positive examples, see Fig. 13(b), and by allowing
small rotation and translation transformation we had
5,000 positive examples. We used the same strategy as
described above for text to obtain negative examples.
Failure examples are shown in Fig. 14.

Inboth cases, we evaluated the log posterior ratio test
on testing datasets using a number of different thresh-
olds (see (Viola and Jones, 2001)). In agreement with
previous work on faces (Viola and Jones, 2001), Ad-
aBoost gave very high performance with very few false
positives and false negatives, see Table 1. But these low
error rates are slightly misleading because of the enor-
mous number of windows in each image, see Table 1.

Table 1. Performance of AdaBoost at different thresholds.

Object False positive  False negative Images Subwindows

Face 65 26 162 355,960,040
Face 918 14 162 355,960,040
Face 7542 1 162 355,960,040
Text 118 27 35 20,183,316
Text 1879 ‘5 35 20,183,316

A small false positive rate may imply a large number
of false positives for any regular image. By varying the
threshold, we can either eliminate the false positives or
the false negatives but not both at the same time. We
illustrate this by showing the face regions and text re-
gions proposed by AdaBoost in Fig. 15. If we attempt
classification by putting a threshold then we can only
correctly detect all the faces and the text at the expense
of false positives.

When Adaboost is integrated with the generic region
models in the image parser, the generic region propos-
als can remove false positives and find text that Ad-
aBoost misses. For example, the ‘9’ in the right panel of
Fig. 15 is not detected because our AdaBoost algorithm
was trained on text segments. Instead it is detected as a
generic shading region and later recognized as a letter
‘9’, see Fig. 17. Some false positive text and faces in
Fig. 15 are removed in Figs. 17 and 19.

The AdaBoost algorithm for text needs to be supple-
mented with a binarization algorithm, described below,
to determine text character location. This is followed
by appling shape contexts (Belongie et al., 2002) and
informative features (Tu and Yuille, 2004) to the bina-
rization results to make proposals for the presence of
specific letters and digits.

In many cases, see Fig. 16, the results of binarization
are so good that the letters and digits can be detected im-
meadiately (i.e. the proposals made by the binarization
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Figure 15. The boxes show faces and text as detected by the AdaBoost log posterior ratio test with fixed threshold. Observe the false positives
due to vegetation, tree structure, and random image patterns. It is impossible to select a threshold which has no false positives and false negatives
for this image. As it is shown in our experiments later, the generative models will remove the false positives and also recover the missing text.

WETl  Maui
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Figure 16. Example of binarization on the detected text.

stage are automatically accepted). But this will not al-
ways be the case. We note that binarization gives far
better results than alternatives such as edge detection
(Canny, 1986).

The binarization algorithm is a variant of one pro-
posed by Niblack (1986). We binarize the image inten-
sity using an adaptive thresholding based on a adaptive
window size. Adaptive methods are needed because
image windows containing text often have shading,
shadow, and occlusion. Our binarization method de-
termines the threshold 7;(v) for each pixel v by the in-
tensity distribution of its local window r(v) (centered
on v).

Ty(v) = u(Lw) + k - std(L)),

where u(I,)) and std(I,,) are the intensity mean
and standard deviation within the local window. The
size of the local window is selected to be the smallest
possibble window whose intensity variance is above a

12Fdsom  tg Army
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Administration 3
Cashigr

? WRestrogme

fixed threshold. The parameter k = +0.2, where the
= allows for cases where the foreground is brighter or
darker than the background.

7. Experiments

The image parsing algorithm is applied to a number of
outdoor/indoor images. The speed in PCs (Pentium I'V)
is comparable to segmentation methods such as nor-
malized cuts (Malik et al., 2001) or the DDMCMC al-
gorithm in Tu and Zhu (2002a). It typically runs around
10-20 min. The main portion of the computing time is
spent in segmenting the generic patterns and by bound-
ary diffusion (Zhu and Yuille, 1996).

Figures 17, 18, and 19 show some challenging ex-
amples which have heavy clutter and shading effects.
‘We present the results in two parts. One shows the seg-
mentation boundaries for generic regions and objects,
and the other shows the text and faces detected with
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a. Input image b. Segmentation

c. Object recognition d. Synthesized image

Figure 17. Results of segmentation and recognition on two images. The results are improved compare to the purely bottom-up (AdaBoost)

results displayed in Fig. 15.

a. Input image

b. Synthesis 1

c. Synthesis 2

Figure 18. A close-up look of an image in Fig. 17. The dark glasses are explained by the generic shading model and so the face model does not
have to fit this part of the data. Otherwise the face model would have difficulty because it would try to fit the glasses to eyes. Standard AdaBoost
only correctly classifies these faces at the expense of false positives, see Fig. 15. We show two examples of synthesized faces, one (Synthesis
1) with the dark glasses (modelled by shading regions) and the other (Synthesis 2) with the dark glasses removed (i.e. using the generative face

model to sample parts of the face (e.g. eyes) obscured by the dark glasses.

text symbols to indicate text recognition, i.e. the letters
are correctly read by the algorithm. Then we synthesize
images sampled from the likelihood model p(I| W*)
where W* is the parsing graph (the faces, text, regions
parameters and boundaries) obtained by the parsing al-
gorithm. The synthesized images are used to visualize
the parsing graph W*, i.e. the image content that the
computer “understand”.

In the experiments, we observed that the face and text
models improved the image segmentation results by
comparison to our previous work (Tu and Zhu, 2002a)
which only used generic region models. Conversely,
the generic region models improve object detection
by removing some false alarms and recovering objects
which were not initially detected. We now discuss spe-
cific examples.

In Figure 15, we showed two images where the text
and faces were detected purely bottom-up using Ad-
aBoost. It is was impossible to select a threshold so
that our AdaBoost algorithm had no false positives or
false negatives. To ensure no false negatives, apart from
the ‘9’, we had to lower the threshold and admit false
positives due to vegetation and heavy shadows (e.g. the
shadow in the sign “HEIGHTS OPTICAL?”).

The letter ‘9’ was not detected at any threshold. This
is because our AdaBoost algorithm was trained to de-
tect text segments, and so did not respond to a single
digit.

By comparison, Fig. 17 shows the image pars-
ing results for these two images. We see that the
false alarms proposed by AdaBoost are removed be-
cause they are better explained by the generic region
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a. Input image b. Segmentation

e 9

¢. Object recognition d. Synthesized image

Figure 19. Results of segmentation and recognition on outdoor images. Observe the ability to detect faces and text at multiple scale.

models. The generic shading models help object de-
tection by explaining away the heavy shading on the
text “HEIGHTS OPTICAL” and the dark glasses on
the women, see Fig. 18. Moreover, the missing digit
‘9’ is now correctly detected. The algorithm first de-
tected it as a generic shading region and then reclassi-
fied as a digit using the sub-kernel that switches node
attributes.

The ability to synthesize the image from the parsing
graph W* is an advantage of the Bayesian approach.
The synthesis helps illustrate the successes, and some-
times the weaknesses, of the generative models. More-
over, the synthesized images show how much informa-
tion about the image has been captured by the models.
In Table 2, we give the number of variables used in our
representation W* and show that they are roughly pro-
portional to the jpeg bytes. Most of the variables in W*

are used to represent points on the segmentation bound-
ary, and at present they are counted independently. We
could reduce the coding length of W* substantially by
encoding the boundary points effectively, for example,
using spatial proximity. Image encoding is not the goal
of our current work, however, and more sophisticated
generative models would be needed to synthesize very
realistic images.

Table 2. The number of variables in W* for each image compared
to the JPG bytes.

Image Stop Soccer  Parking  Street =~ Westwood

jpgbytes 23,998 19,563 23,311 26,170 27,790
4 4,886 3,971 5,013 6,346 9,687
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Figure 20. Two mechanisms for constructing the parsing graph. See text for explanation.

8. Discussion

In this section, we describe two challenging techni-
cal problems for image parsing. Our current work ad-
dresses these issues.

1. Two mechanisms for constructing the parsing
graph

In the introduction to this paper we stated that the
parsing graph can be constructed in compositional and
decompositional modes. The compositional mode pro-
ceeds by grouping small elements while the decom-
positional approach involves detecting an object as a
whole and then locating its parts, see Fig. 20.

The compositional mode appears most effective for
Fig. 20(a). Detecting the cheetah by bottom-up tests,
such as those learnt by AdaBoost, seems difficult ow-
ing to the large variability of shape and photometric
properties of cheetahs. By contrast, it is quite practi-
cal using Swendsen-Wang Cuts (Barbu and Zhu, 2004)
to segment the image and obtain the boundary of the
cheetah using a bottom-up compositional approach and
a parsing tree with multiple levels. The parsing graph
is constructed starting with the pixels as leaves (there
are 46,256 pixels in Fig. 20(a)). The next level of the
graph is obtained using local image texture similarities
to construct graph nodes (113 of them) corresponding
to “atomic regions” of the image. Then the algorithm
contructs nodes (4 of them) for “texture regions” at the
next level by grouping the atomic regions (i.e. each
atomic region node will be the child of a texture region
node). Ateach level, we compute a discriminative (pro-

posal) probability for how likely adjacent nodes (e.g.
pixels or atomic regions) belong to the same object or
pattern. We then apply a transition kernel implement-
ing split and merge dynamics (using the proposals).
We refer to Barbu and Zhu (2004) for more detailed
discussion.

For objects with little variability, such as the faces
shown in Fig. 20(b), we can use bottom-up proposals
(e.g. AdaBoost) to activate a node that represents the
entire face. The parsing graph can then be constructed
downwards (i.e. in the decompositional mode) by ex-
panding the face node to create child nodes for the
parts of the face. These child nodes could, in turn, be
expanded to grandchild nodes representing finer scale
parts. The amount of node expansion can be made adap-
tive to depend on the resolution of the image. For ex-
ample, the largest face in Fig. 20(b) is expanded into
child nodes but there is not sufficient resolution to ex-
pand the face nodes corresponding to the three smaller
faces.

The major technical problem is to develop a mathe-
matical criterion for which mode is most effective for
which types of objects and patterns. This will enable
the algorithm to adapt its search strategy accordingly.

2. Optimal ordering strategy for tests and kernels

The control strategy of our current image parsing
algorithm does not select the tests and sub-kernels in
an optimal way. At each time step, the choice of sub-
kernel is independent of the current state W (though the
choice of where in the graph to apply the sub-kernel will
depend on W).
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Moreover, bottom-up tests are performed which are
never used by the algorithm.

It would be more efficient to have a control strategy
which selects the sub-kernels and tests adaptively, pro-
vided the selection process requires low computational
cost. We seek to find an optimal control strategy for
selection which is effective for a large set of images
and visual patterns. The selection criteria should select
those tests and sub-kernels which maximize the gain in
information.

We propose the two information criteria that we de-
scribed in Section 2.

The first is stated in Theorem 1. It measures the
information gained for variable w in the parsing
graph by performing a new test Tst;. The informa-
tion gain is §(w || Tstt) = KL(p(w | I)||g(w | Tst(I))) —
KL(p(w | D|lg(w | Tst,(I), F)), where Tst(I) denotes
the previous tests (and KL is the Kullback-Leibler di-
vergence).

The second is stated in Theorem 2. It measures the
power of a sub-kernel X, by the decrease of the KL-
divergence 8(Kq) = KL(pliur) — KL(pll:Kq). The
amount of decrease §, gives a measure of the power of
the sub-kernel /C, when informed by Tst,(I).

We need also take into account the computational
cost of the selection procedures. See (Blanchard and
Geman, 2003) for a case study for how to optimally
select tests taking into account their computational
costs.

9. Summary and Future Work

This paper introduces a computational framework for
parsing images into basic visual patterns. We formu-
lated the problem using Bayesian probability theory
and designed a stochastic DDMCMC algorithm to per-
form inference. Our framework gives a rigourous way
to combine segmentation with object detection and
recognition. We give proof of concept by implementing
a model whose visual patterns include generic regions
(texture and shading) and objects (text and faces). Our
approach enables these different visual patterns to com-
pete and cooperate to explain the input images.

This paper also provides a way to integrate dis-
criminative and generative methods of inference. Both
methods are extensively used by the vision and ma-
chine learning communities and correspond to the dis-
tinction between bottom-up and top-down processing.
Discriminative methods are typically fast but can give
sub-optimal and inconsistent results, see Fig. 3. By con-

trast, generative methods are optimal (in the sense of
Bayesian Decision Theory) but can be slow because
they require extensive search. Our DDMCMC algo-
rithm integrates both methods, as illustrated in Fig. 8§,
by using discriminative methods to propose generative
solutions.

The goal of our algorithm is to construct a parse
graph representing the image. The structure of the
graph is not fixed and will depend on the input im-
age. The algorithm proceeds by constructing Markov
Chain dynamics, implemented by sub-kernels, for dif-
ferent moves to configure the parsing graph—such as
creating or deleting nodes, or altering node attributes.
Our approach can be scaled-up by adding new sub-
kernels, corresponding to different vision models. This
is similar in spirit to Ullman’s concept of “visual rou-
tines” (Ullman, 1995). Overall, the ideas in this pa-
per can be applied to any other inference problem
that can be formulated as probabilistic inference on
graphs.

Other work by our group deals with a related se-
ries of visual inference tasks using a similar frame-
work. This includes image segmentation (Tu and Zhu,
2002), curve grouping (Tu and Zhu, 2002a), shape de-
tection (Tu and Yuille, 2004), motion analysis (Barbu
and Zhu, 2004), and 3D scene reconstruction (Han and
Zhu, 2003). In the future, we plan to integrate these
visual modules and develop a general purpose vision
system.

Finally, we are working on ways to improve the
speed of the image parsing algorithm as discussed
in Section 8. In particular, we expect the use of the
Swendsen-Wang cut algorithms (Barbu and Zhu, 2003,
2004) to drastically accelerate the search. We anticipate
that this, and other improvements, will reduce the run-
ning time of DDMCMC algorithms from 10-20 min
(Tu and Zhu, 2002a) to well under a minute.

Appendix A: Proof of Theorem 2

Proof: For notational simplicity, we ignore the de-
pendencies on the kernels and probabilities on the input
image I.

Let u,(W,) be the state probability at time step 7. Af-
ter applying a sub-kernel K,(W,41 | W,), its state be-
comes W, with probability:

M1 (Wigr) = ZM!(WI)K:a(WIJrl |Wo). (A7)

4



The joint probability pw(W,, W, ) for W, and W,
can be expressed in two ways as:

W, W) = (WK (Wit | W)
= 1 WD prmeWi [ W), (18)

where pac(W; | W;y1) is the “posterior” probability
for state W, at time step ¢ conditioned on state W, at
time step £ + 1.

This joint probability w(W,, W, ) can be compared
to the joint probability p(W,, W,;1) at equilibrium
(i.e. when w,(W;) = P(W;)). We can also express
wW(W;, Wiip) in two ways:

pPWi, Wip1) = p(WHK(Wi 1 | W)
= pWi DKWy, Wp),  (19)

where the second equality is obtained using the detailed
balance condition on /C,.

We calculate the Kullback-Leibler (K-L) diver-
gence between the joint probabilities P(W;, W,; ) and
w(W;, Wiip) in two ways using the first and second
equalities in Egs. (18) and (19). We obtain two expres-
sions (1 & 2) for the K-L divergence:

KL(p(W;, Wi DIl (W, Wii1))

(Wzy Wr-H)
- le Wf l
%;P( wlog W
= Z P(W) Y " Ka(Wigr | Wi)

Wr+l
p(W,) - ]Ca(WH—l | W)
W (WK e(Wig1 | W)
= KL(p(W)||u:(W)) (20)
=3 S KW, | Wes)p(Wig)
Wi W,
PWi DKW, | Wipy)
Wit (Wi D me (Wi | Wigr)
= KL(p(Wr DIl te+1(W))
+ Epw, [ KLICa(Wi | Wi DI paac(Wr | Wigr))]
21

x log

x log
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We equate the two alternatives expressions for the
KL divergence, using Egs. (20) and (21), and obtain

KL(p(W)|lus(W)) — KL(p(W) |l pt741(W))
= Epwn[KLay(Wi | WDl pamc(Ws | Wii1))]

This proves that the K-L divergence decreases
monotonically. The decrease is zero only when
Kooy Wil Wis1) = pme(Wi | Wiyr)  (because
KL(p|lp) = 0 with equality only when p = w).
This occurs if and only if u,(W) = p(W) (using the
definition of pc(W; | W;41), given in Eq. (18), and
the detailed balance conditions for /Cpr)(W; | Wi41)).
O

Appendix B: Classic Markov Chain
Convergence Result

Traditional Markov chain convergence analysis is con-
cerned with the total variance between the invariant
(target) probability p(W |I) and the Markov chain state
probability w, (W),

e = pllty =Y [p(W D) — (W[ (22)
w

In a finite state space €2, a classic result relates the
TV-measure to the second largest eigenvalue modulus
(Aslem € [0, 1)) of the kernel K. The following theorem
is adopted from Diaconis and Hanlon (1992).

Theorem 4 (Diaconis and Hanlon, 1992). For an
irreducible kernel IC on finite space with invariant
(target) probability p(W | 1) and initial state W, then
at step n

[1—p(W, T)
e = plltv = FTUALR AMieme (23)

Appendix C: First-Hitting-Time Analysis

We include a second result which bounds the expected
first hitting-time E[t(W)] for an arbitrary state W,
where (W) is the number of time steps for a Markov
Chain MC to first visit a state W € Q.

t(W)=min{t > 1: W, = W}.
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Figure 21. There may be multiple routes between the two states W and W' and this creates an additional computational burden for computing

the acceptance rates.

The expected first hitting time has higher resolution
than the TV-norm in Theorem 4 or the KL-divergence
in Theorem 2, as it is concerned with individual states
rather than the entire space 2. In particular, we are in-
terested in the expected first hitting time for those states
W with high probability P(W). The following theorem
(Maciuca and Zhu, 2003) shows how an informed pro-
posal ¢ can improve the expected first hitting time for
a special class of Markov Chains.

Theorem S5 (Maciuca and Zhu, 2003). Let
p(W), W € Q be the invariance (target) proba-
bility of a Markov chain MC, and Q(W, W') = q(W')
be the proposal probability in the Metropolis-Hasting
Eq. (8), then

1 1
E[t(W
min(pw), gy} ~ = ) o)
1
- 24
=1l —qliy (24)

where |p —qll = 5 Y eq 1P(*) —q(x) |< 1.

In this Markov Chain design, the proposal proba-
bility depends only on W’ not W, and is called the
Metropolized independence sampler (MIS). A simi-
lar result can also be obtained for the Metropolized
Gibbs sampler (MGS). This result shows that we should
choose the proposal probability g so that it overlaps
with p and so that g(W) is large for those states W with
high probability P(W). By contrast, choosing g to be
the uniform probability, g(W) = 1/|QIYW € Q, will
result in expected first hitting times of length greater
than |2|) for any state with P(W) > 1/|<2|.

Appendix D: Multiple Routes in the Sub-Kernels

This section addresses a practical issue about detailed
balance which leads to a trade-off between computation

and efficiency in the algorithm design. For notational
simplicity, we write terms like Q(W' | W : D& K(W' |
W :ID)as Q(W, W) & K(W, W) in this section.

In some situations, the sub-kernels can give multi-
ple routes between states W and W'. For example, one
region can be split into the same two sub-regions fol-
lowing different bottom-up proposals. In this section,
we show that detailed balance can be maintained either
by using extra computation to integrate out the multiple
routes, or by treating the alternative routes separately
using different sub-kernels but at the price of reduced
efficiency.

Suppose  there are n pairs of routes
{(g@)Q:i(W, W), q(i))Q;(W', W),i=1...n}between
two states W and W', such as the two pairs of moves
in Fig. 21(a). We represent the transition kernel by

KW, W) = QW, W)a(W, W,

where
oW, W) = i}q(i)Qi(W, W, (25)

and
(W, W) = min (1

ow’, W)p(W’)>
QW, W)p(W)

Every time a move from W to W’ is considered we
have to consider all possible routes, which can result
in heavy computation.

Instead, we can treat each route as a sub-kernel as
described in Section 2.3. Then the Markov chain sat-
isfies detailed balance because each pair (W, W)
and /C;(W’, W) are specified by Metropolis-Hastings
8 and hence obey the detailed balance equation
pWMIK;(W, W) = p(WHK;(W',W),i = 1...n.



This reduces the computational cost. But, as the follow-
ing theorem shows, this reduction comes at the price
of efficiency.

Theorem 6. The kernels K(W, W') and IC(W’, W)
as computed in Eq. (25) satisfy

KW, W' =Y " qKi(W, W), and

i=1

KW, W) > Zq(i)lCi(W’, W)Y W #£W.

i=1

This theorem says that the Markov chain which
obeys detailed balance for each pair of moves is less
effective than the one which combines all the routes.
Markov chain design must balance the computation
cost of computing all the proposals against the effec-
tiveness of the Markov kernel. The situation shown in
Fig. 21(b) can be treated as a special case of Fig. 21(a).
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Notes

1. Unlike most graphical inference algorithms in the literature which
assume fixed graphs, such as belief propagation (Yedidia, 2001).

2. For many natural images the posterior probabilities P(W |I) are
strongly peaked and so fair samples are close to the posterior
maximum argmax P(W | I). So in this paper we do not distinguish
between sampling and inference (optimization).

3. Recently the term “discriminative model” has been extended
to cover almost any approximation to the posterior distribution
P(W 1), e.g. Kumar and Hebert (2003). We will use “discrimi-
native model” in its traditional sense of categorization.

4. The optimal approximation occurs when g(w, | Tst(I)) equals the
probability p(w, | Tst(I)) induced by P(I| W)P(W).

5. We choose stochastic dynamics because the Markov chain prob-
ability is guaranteed to converge to the posterior P(W |I). The
complexity of the problem means that deterministic algorithms
for implementing these moves risk getting stuck in local minima.

6. Algorithms like belief propagation (Yedidia et al., 2001) can be
derived as approximations to this update equation by using a Gibbs
sampler and making independence assumptions (Yuille, 2004).
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7. Except for one that evolves region boundaries.

8. The boundary can include an “internal boundary” if there is a hole
inside the image region explained by a different visual pattern.

9. Except for the boundary evolution sub-kernel which will be de-
scribed separately, see Section 5.1.
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