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Abstract Visual scene understanding is a fundamen-

tal task in computer vision systems. Traditional appear-

ance-based classification paradigms struggle to cope with

the view and appearance variations of indoor scenes and

functional objects. In this paper, we present a Stochas-

tic Scene Grammar (SSG) model to parse indoor im-

ages. The grammar is defined on a Function-Geometry-

Appearance (FGA) hierarchy based on two observa-

tions: i) Functionality is the most essential property

to define an indoor object, e.g.“an object to sit on”

defines a chair, ii) The geometry (3D shape) of an ob-

ject is designed to serve its function. We formulate the

nature of the object functionality and contextual rela-

tions into the Stochastic Scene Grammar model, which

characterizes a joint distribution over the FGA hierar-

chy. This hierarchical structure includes both functional
concepts (the scene category, functional groups, func-

tional objects, functional parts) and geometric entities

(3D/2D/1D shape primitives). The decomposition of

the grammar is terminated on the bottom-up detection

of line and region likelihood. We use a simulated anneal-

ing MCMC algorithm to find the maximum a posteriori

(MAP) solution, i.e.a parse tree. We design four data-

driven steps to accelerate the search in the FGA space:

i) group the line segments into 3D primitive shapes, ii)

assign functional labels to these 3D primitive shapes,

iii) fill in missing objects/parts according to the func-

tional labels, and iv) synthesize 2D label maps and ver-
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ify the current parse tree by the Metropolis-Hastings

acceptance probability. Experimental results on several

challenging indoor datasets demonstrate the proposed

approach not only significantly widens the scope of in-

door scene parsing algorithms from the segmentation

and the 3D recovery to functional object recognition,

but also yields improved overall performance.

1 Introduction

A central goal of computer vision is creating computa-

tional systems whose visual recognition and scene un-

derstanding accuracy is comparable to, or better than,

that of biological vision. With the emergence of new

technologies, such as wearable cameras and autonomous

driving, computer vision is about to play a key role

in peoples daily lives. The proliferation of sensors in a

wide range of contexts demands an expansion in the

scope of scene understanding. A large portion of the

vision literature studied scenes as a classification prob-

lem or image labeling problem based on their appear-

ance. We argue that this is ill-posed for two reasons: i)

most scenes, especially indoor living spaces are defined

by their functions; and ii) a space may serve multi-

functions, and thus cannot be simply classified in one

category. We pose the problem as scene parsing, which

integrate three aspects: function, geometry and appear-

ance. The geometric sizes of furniture are fitted to the

3D functional relations learned from data. The actions,

such as sitting and sleeping, provide the top-down con-

straints about 3D contexts, and thus disambiguate the

appearance uncertainty. The inferred plausible actions

define the functions of the space.

http://www.stat.ucla.edu/~ybzhao
http://www.stat.ucla.edu/~sczhu
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Fig. 1 Given an input image (a), traditional approaches recognize objects by analyzing the local appearance inside sliding
windows (b). In this paper, we recognize the functional objects by inferring the affordance (c)– how likely a 3D shape is able
to afford a human action, and contextual relations (d) – how functional objects are organized in a specific scene.

1.1 Motivation and objectives

Although object detection and labeling have made re-

markable progresses in the field of computer vision, the

detection of indoor objects and segmentation of indoor

scenes are still challenging tasks. Over almost 50 years

the recognition of explicit visual patterns, like face and

handwritten digits, have matured and become ubiq-

uitous in modern industrial and consumer products.

Computers however still cannot perform many impor-

tant tasks that are trivial for human vision. As demon-

strated by the PASCAL VOC2012 Challenge (Evering-

ham et al (2010)), state-of-the-art algorithms can only

get 19.5% (22.6%) accuracy for the chair detection (seg-

mentation) task. Other indoor objects, like sofas and

dining tables, are also among the categories with lowest
accuracies out of the twenty object categories. Both the

geometric approaches in the 1980-1990s and the appear-

ance methods dominating the last 15-years have funda-

mental limits. This performance gap between people

and computers seemingly cannot be filled by designing

better features and collecting larger dataset as people

have been doing in recent years.

Image understanding is not only about the image

itself but also the knowledge of the world. Humans rec-

ognize images so well because we know how the world

works. Prior knowledge about the functional, physical

and social mechanics of objects in the 3D world is the

key for understanding. However, there is a very large

gap between the observed images and the knowledge we

have in our minds. In order to appropriately recognize

an image, computers must have an internal abstract

representation of what units of image are and how to

put them together.

In Fig.1(a, b), five objects were cropped out of the

image. Without the context given in image (a), even

a human has difficulty identifying these objects solely

based on the appearance of image patches. The classic

sliding-window type of object detectors, which only ob-

serve a small isolated patch, will have difficulty distin-

guishing objects from one another. On the other hand,

if we look at the Fig.1(c) despite the appearances of

image (a), we can immediately recognize objects to sit

on (chair), to sleep on (bed) and to store in (cabinet)

based on their 3D shapes. For example, a cuboid of 18

inch tall could be comfortable to sit on as a chair. More-

over, the contextual relations are helpful in identifying

objects with similar shapes, such as the chair on the left

and the nightstand on the right. Although they are in

similar shape, the nightstand is more likely to be placed

beside the bed. The bed and the nightstand offer a joint

functional group to serve the activity of sleeping. Some

typical functional groups are illustrated in Fig.1(d).

By analogy to natural language parsing, we pose

the scene understanding problem as parsing an image

into a hierarchical structure of functional concepts and

geometric entities using the Stochastic Scene Grammar

(SSG).

1.2 Related work

Scene representation. There are four major repre-

sentations: (i) Feature representation: The surge of scene

understanding studies start from a series of early work

on designing feature representation of spatial envelope,

the gist representation by Oliva and Torralba (2001),

spatial pyramid matching (SPM) by S. Lazebnik and

Ponce (2006) and recent reconfigurable models by S. N. Parizi

and Felzenszwalb (2012) and S. Wang and Zhu (2012).

(ii) Region-based representations: The method of condi-

tional random fields by Lafferty et al (2001) are widely
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used to represent semantic relations by maximizing the

affinity between region labels. These studies considered

some qualitative context descriptions such as {inside,

below, around, above}, which are proved to be helpful

to recognize outdoor objects. Choi et al (2010) stud-

ied 2D context models that guide detectors to produce

a semantically coherent interpretation of a scene. They

demonstrated that 2D horizontal contexts are very sen-

sitive to camera rotations. (iii) Non-parametric repre-

sentations: such as label transfer by C. Liu and Torralba

(2011), SuperParsing by Tighe and Lazebnik (2013a,b)

and scene collage by Isola and Liu (2013) interpret a

new scene by searching nearest neighbors from images

in the scene dataset, and then transfer the label maps

to the target through warping or contextual inference.

Interestingly, Satkin et al (2012), Satkin and Hebert

(2013) recently generalize the idea of nearest-neighbor

search to the 3D scenes, so that their approach can

recognize objects cross viewpoints. Lim et al (2013),

Del Pero et al (2013) detected indoor objects by match-

ing with fine-grained furniture model. (iv) Block world

representation: Representation of 3d blocks allows rea-

soning about the physical constraints within the 3D

scene. Gupta et al (2010) posed the 3D objects as blocks

and inferred its 3D properties such as occlusion, exclu-

sion and stability in addition to surface orientation la-

bels. They showed that a global 3D prior does improve

2D surface labeling. Hedau et al (2009, 2010, 2012),

Wang et al (2010), Lee et al (2009, 2010), Schwing

et al (2012, 2013) parameterized the geometric scene

layout of the background and/or foreground blocks and

trained their models by the Structured SVM (or Latent

SVM). Hu (2012), Xiao et al (2012), Hejrati and Ra-

manan (2012), Xiang and Savarese (2012), Pepik et al

(2012), Fidler et al (2012) designed several new vari-

ants of the deformable part-based models to detect 3D

entities under different view points.

Object function and affordance. The concept

of affordance was proposed by the perceptual psycholo-

gist Gibson (1977), which refers to the perceived funda-

mental properties of the thing that determine how the

thing could possibly be used. A pioneer work in com-

puter vision by Stark and Bowyer (1991) proposed the

use of a functional properties to recognize 3D objects.

They parse an objects into a 3D geometric description,

and recognize the object by searching potential func-

tional elements. More recently, approaches have been

proposed to detect objects based on human interaction.

The human activity is annotated by extracting human

motion from rgbd video data and used to indirectly

identify objects Wei et al (2013). In this works, it is

assumed that interactions are observed during training

and testing. Bar-aviv and Rivlin (2006), Grabner et al

(2011) detected chairs by the hallucination of embodied

agents in the 3D CAD data and depth data respectively.

Gupta et al (2011) proposed an algorithm to infer the

human workable space by adapting human poses to the

scene. Lin et al (2013), Choi et al (2013), Zhao and Zhu

(2013) recently proposed holistic approaches to exploits

2D segmentation, 3D geometry, as well as contextual re-

lations between scenes and objects for parsing rgbd and

2D images.

Single-view 3D reconstruction. Automatic 3D

reconstruction from a single image is an ill posed prob-

lem. In order to recover a meaningful 3D, one have to

make assumptions about the scene and use the prior

knowledge to regularize the solution. These assump-

tions include: (i) Sketch smoothness assumption: Han

and Zhu (2004) first tackled the problem by assuming

the local sketch smoothness and global scene alignment.

(ii) Piece-wise smoothness assumption: Saxena et al

(2009) presented a fully supervised method to learn a

mapping between informative features and depth values

under a conditional random field framework. Payet and

Todorovic (2011) proposed a joint model to recognize

objects and estimate scene shape simultaneously. (iii)

Surface assumption: Hoiem et al (2009) recognized the

geometric surface orientation and fit ground-line that

separate the floor and objects in order to pop-up the

vertical surface. Delage et al (2007) proposed a dynamic

Bayesian network model to infer the floor structure for

autonomous 3D reconstruction from a single indoor im-

age. Mobahi et al (2011) extracted low rank textures

of repeated patterns to construct surfaces like building

facades. (iv) Manhattan world representation: Recent

studies on indoor scene parsing, including Hedau et al

(2009, 2010, 2012), Wang et al (2010), Lee et al (2009,

2010), Schwing et al (2012, 2013), Zhao and Zhu (2011,

2013) and Del Pero et al (2011, 2012, 2013) adopted

the Manhattan world representation extensively. This

assumption stated that man-made scenes were built on

a cartesian grid which led to regularities in the image

edge gradient statistics. This enables us, from a single

image, to determine the orientation of the viewer rel-

ative to the scene and also to recover scene structures

which are aligned with the grid.

Stochastic image grammar. This stream of re-

search started from “syntactic pattern recognition” by

K. S. Fu and his school in the late 1970s to early 1980s.

Fu (1982) depicted an ambitious program of block world

scene understanding using grammars. This stream was

disrupted in the 1980s and suffered from the lack of

an image vocabulary that is realistic enough to ex-

press real-world objects and scenes, and reliably de-

tectable from images. Tu et al (2005) raised the no-

tion of image parsing to the decomposition of an image
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into a hierarchical “parse graph” by a data-driven data-

driven Monte Carlo sampling strategy. Zhu and Mum-

ford (2007) proposed an AND/OR graph model to rep-

resent the compositional structures in vision. Han and

Zhu (2009) applied grammar rules, in a greedy manner,

to detect rectangular structures in man-made scenes.

Porway and Zhu (2010) proposed an cluster sampling

algorithm to parse aerial images by allowing for Markov

chain jumping between competing solutions. An ear-

lier version of our work appeared at Zhao and Zhu

(2011, 2013). In this paper, we will explore the Stochas-

tic Scene Grammar model indepth with more insights

on the compositionality of functional concepts and ge-

ometric entities and computing strategy.

1.3 Overview of our approach

By analogy to natural language parsing, we pose the

scene understanding problem as parsing an image into

a hierarchical structure of functional concepts and ge-

ometric entities using the Stochastic Scene Grammar

(SSG).

In this paper, we parse an image into a hierarchi-

cal structure, namely a parse tree, using the Stochastic

Scene Grammar (SSG) defined on a Function-Geometry-

Appearance (FGA) hierarchy. Therefore, this paper has

two major contributions to the scene parsing problems:

(I) A Stochastic Scene Grammar (SSG) .

The grammar is introduced to represent a hierarchi-

cal structure of functional concepts and geometric enti-

ties. The grammar starts from a root node (the scene)

and ends in a set of terminal nodes (lines/regions) as

shown in Fig.2. In between, we model all intermedi-

ate functional concepts and geometric entities by three

types of production rules and two types of contextual

relations, as illustrated in Fig.3.

Production rules: AND, OR, and SET. (i) The

AND rule encodes how sub-parts are composed into a

larger structure. For example, three hinged faces form

a 3D box, four linked line segments form a rectangle, a

background and inside objects form a scene in Fig.3(i);

(ii) The SET rule represents an ensemble of entities, e.g.

a set of 3D boxes or a set of 2D regions as in Fig.3(ii);

(iii) The OR rule represents a switch between differ-

ent sub-types, e.g. a 3D foreground and 3D background

have several switchable types in Fig.3(iii).

Contextual relations: Cooperative “+” and Com-

petitive “-”. (i) If the visual entities satisfy a cooperative

“+” relation, they tend to bind together, e.g. hinged

faces of a foreground box showed in Fig.3(a). (ii) If en-

tities satisfy a competitive “-” relation, they compete

with each other for presence, e.g. two exclusive fore-

ground boxes competing for a same space in Fig.3(b).

(II) A Function-Geometry-Appearance (FGA) hi-

erarchy .

On top of the Grammatical representation, our model

is further developed based on observations of the FGA

hierarchy as shown in Fig.2.

Function: An indoor scene is designed to serve a

handful of human activities inside. The indoor objects

(furniture) in the scenes are designed to support human

actions, e.g.bed to sleep on, chair to sit on etc.

In the functional space, we model the probabilistic

derivation of functional concepts including scene cat-

egories (bedroom), functional groups (sleeping area),

functional objects (bed and nightstand), and functional

parts (the mattress and the headboard of a bed).

Geometry: The 3D size (dimension) can be suf-

ficient to evaluate how likely an object is able to af-

ford a human action, known as the affordance Gibson

(1977). Fortunately, most furniture has regular struc-

tures, i.e.rectangular shapes, therefore the detection of

these objects is tractable by inferring their geometric

affordance. For objects like sofas and beds, we use a

more fine-grained geometric model with compositional

parts, i.e.a group of cuboids. For example, the bed with

a headboard is a better explanation of the image in

terms of segmentation accuracy as shown at the bot-

tom of Fig.2.

In the geometric space, each 3D shape is directly

linked to a concept in the functional space. The con-

textual relations are utilized when multiple objects are

assigned to the same functional group, e.g.a bed and

a nightstand for sleeping. The distribution of the 3D

geometry is learned from a large set of 3D models as

shown in Fig.4.

Appearance: The appearance of the furniture has

large variations due to differing material properties,

lighting conditions, and viewpoints. In order to land

our model on the input image, we use a straight-line

detection, a surface orientation estimation and a coarse

foreground detection as the local evidence to support

the geometry model above as shown in Fig.2.

We design a four-step inference algorithm that en-

ables a MCMC chain to travel up and down through

the FGA hierarchy:

i). A bottom-up appearance-geometry (AG) step

groups noisy line segments in the A space into 3D primi-

tive shapes, i.e.cuboids and rectangles, into the G space;

ii). A bottom-up geometry-function (GF) step as-

signs functional labels in the F space to detected 3D

primitive shapes, e.g.to sleep on;

iii). A top-down function-geometry (FG) step fur-

ther fills in the missing objects and the missing parts

in the G space according to the assigned functional la-
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functional part

bottom-up proposal

top-down proposal

action as a hidden variable in the scene

(a) the Function-Geometry-Appearance hierarchy

(b) object affordance

(c) contextual relations on the overhead view

Fig. 2 Integrating function, geometry and appearance for scene parsing. The functional concepts impose the object affordance
and contextual relations to the geometric entities. The final parsing result is evaluated on top of the synthesis of appearance
likelihood maps.

bels, e.g.a missing nightstand of a sleeping group or a

missing headboard of a bed;

iv). A top-down geometry-appearance (GA) step

synthesizes 2D label maps in the A space, and makes

an accept/reject decision of a current proposal by the

Metropolis-Hastings acceptance probability.

2 Stochastic Scene Grammar

The Stochastic Scene Grammar (SSG) is defined as a

four-tuple G = (S, V,R, P ), where S is a start symbol

at the root (scene); V = V N ∪V T , V N is a finite set of

non-terminal nodes (structures or sub-structures), V T

is a finite set of terminal nodes (line segments); R =

{r : α → β} is a set of production rules, each of which

represents a generating process from a parent node α to

its child nodes β = Chα. P (r) = P (β|α) is an expansion

probability for each production rule (r : α→ β). A set

of all valid configurations C derived from production

rules is called a language:

L(G) = {C : S
{ri}→ C, {ri} ⊂ R,C ⊂ V T }. (1)

2.1 Production rules

We define three types of stochastic production rules

RAND,ROR,RSET to represent the structural regularity
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3D foreground types 3D background types

(i) AND rules

(ii) SET rules

(a) "+" relations (b) "-" relations

(iii) OR rules

hinged faceslinked lines

aligned faces aligned boxes
nested faces stacked boxes

exclusive faces

invalid scene layout

exclusive boxes

Fig. 3 Three types of production rules: AND (i), SET (ii) OR (iii), and two types of contextual relations: cooperative “+”
relations (a), competitive “-” relations (b).

and flexibility of visual entities. The regularity is en-

forced by the AND rule and the flexibility is expressed

by the OR rule. The SET rule is a mixture of OR and

AND rules.

(i) An AND rule (rAND : A→ a ·b ·c) represents the

decomposition of a parent nodeA into three sub-parts a,

b, and c. The probability P (a, b, c|A) measures the com-

patibility (contextual relations) among sub-structures

a, b, c. As seen Fig.3(i), the grammar outputs a high

probability if the three faces of a 3D box are well hinged,

and a low probability if the foreground box lays out of

the background.

(ii) An OR rule (rOR : A → a | b) represents the

switching between two sub-types a and b of a parent

node A. The probability P (a|A) indicates the prefer-

ence for one subtype over others. For the 3D foreground

in Fig.3(iii), the three sub-types in the third row rep-

resent objects below the horizon. These objects ap-

pear with high probabilities. Similarly, for the 3D back-

ground in Fig.3(iii), the camera rarely faces the ceiling

or the ground, hence, the three sub-types in the mid-

dle row have higher probabilities (darker color means

higher probability). Moreover, OR rules also model the

discrete size of entities, which is useful to rule out the

extremely large or small entities.

(iii) An SET rule (rSET : A → {a}k, k ≥ 0) repre-

sents an ensemble of k visual entities. The SET rule is

equivalent to a mixture of OR and AND rules (rSET :

A → ∅ | a | a · a | a · a · a | · · · ). It first chooses a set

size k by ORing, and forms an ensemble of k entities

by ANDing. It is worth noting that the OR rule essen-

tially changes the graph topology of the output parse

tree by changing its node size k.

As a result, the AND, OR, SET rules generate var-

ious functional concepts and geometric entities which

satisfy contextual relations as seen in Fig.3

2.2 Contextual relations

There are two kinds of contextual relations, Cooperative

“+” relations and Competitive “-” relations, which are

involved in the AND and SET rules.

(i) The cooperative “+” relations specify the con-

current patterns in a scene, e.g. hinged faces, nested

rectangle, aligned windows in Fig.3(a). The visual enti-

ties satisfying a cooperative “+” relation tend to bind

together. The cooperative “+” relation is introduced

by either functional context in Sect.3.3 or geometric

decomposition in Sect.3.4.

(i) The competitive “-” relations specify the exclu-

sive patterns in a scene. If entities satisfy competitive

“-” relations, they compete with each other for pres-

ence. As shown in Fig.3(b), if a 3D box is not contained

by its background, or two 2D/3D objects are exclusive

with one another, these cases will rarely be in a solu-

tion simultaneously. The “-” relations is introduced by

physical constraints in Sect.3.3.

If several visual entities satisfy a cooperative “+” re-

lation, they tend to bind together as a tight structures.

We group visual entities into these tight structures as

much as possible in the early stage of inference accord-

ing to the geometric decomposition (Sect.4). If the en-

tities do not violate any competitive “-” relation, they

may be loosely combined as a loose structures, whose

combinations are sampled in a later stage of inference

(Sect.4). The high-level functional concept will also im-

pose “+” relations in the later stage of inference. If an

object is assigned with functional label, then the algo-

rithm will be able to sample its parts or nearby objects

according to the 3D contextual relations as explained

in Sect.3.3.

With the three production rules and two contextual

relations, SSG is able to handle an enormous number
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of scene configurations and large geometric variations,

which are the major difficulties in our task.

2.3 Bayesian formulation of the grammar

We define a posterior distribution for a solution (a parse

tree) pt conditioned on an input image I. This distri-

bution is specified in terms of the statistics defined over

the derivation of production rules.

P (pt|I) ∝ P (pt)P (I|pt)

= P (S)
∏
v∈V N

P (Chv|v)
∏
v∈V T

P (I|v) (2)

where I is the input image, pt is the parse tree. The

probability derivation represents a generating process

of the production rules {r : v → Chv} from the start

symbol S to the nonterminal nodes v ∈ V N , and to

the children of non-terminal nodes Chv. The generat-

ing process stops at the terminal nodes v ∈ V T and

generates the image I.

We use a probabilistic graphical model of an AND/OR

graph [12, 17] to formulate our grammar. The graph

structure G = (V,E) consists of a set of nodes V and a

set of edges E. The edges define a parent-child condi-

tional dependency for each production rule. The poste-

rior distribution of a parse graph pt is given by a family

of Gibbs distributions:

P (pt|I;λ) =
1

Z(I;λ)
exp{−E(pt|I)}, (3)

where Z(I;λ) =
∑
pt∈Ω exp{−E(pt|I)} is a partition

function summation over the solution space Ω.

The energy is decomposed into three potential terms:

E(pt|I) =
∑

v∈V OR

EOR(AT (Chv))

+
∑

v∈V AND

EAND(AG(Chv))

+
∑

Λv∈ΛI ,v∈V T

ET (I(Λv))

(4)

(i) The energy for OR nodes is defined over

”type” attributes AT (Chv) of ORing child nodes. The

potential captures the prior statistics on each switching

branch. (r : v → Chv).

EOR(AT (v)) = − logP (v → AT (v))

= − log{ #(v → AT (v))∑
u∈Ch(v) #(v → u)

}.
(5)

The switching probability of foreground objects and the

background layout is shown in Fig.3(iii).

(ii) The energy for AND nodes is defined over

“geometric” attribute AG(Chv) of ANDing child nodes.

They are Markov Random Fields (MRFs) inside a tree-

structure. We define both “+” relations and “-” rela-

tions as

EAND = λ+h+(AG(Chv)) + λ−h−(AG(Chv)), (6)

where h(∗) are sufficient statistics in the exponential

model, λ are their parameters. For 2D faces as an ex-

ample, the “+” relation specifies a quadratic distance

between their connected joints

h+(AG(Chv)) =
∑

a,b∈Chv

(X(a)−X(b))2, (7)

and the “-” relation specifies an overlap rate between

their occupied image area

h−(AG(Chv)) = (Λa ∩ Λb)/(Λa ∪ Λb), a, b ∈ Chv. (8)

(iii) The energy for Terminal nodes is defined

over bottom-up image features I(Λv) on the image area

Λv. The features used in this paper include: (a) a fore-

ground map, (b) a 3D orientation map, (c) a line seg-

ments map as shown in Fig.2. This term only captures

the features from their dominant image area Λv, and

avoids the double counting of the shared edges and the

occluded regions as discussed in Sect.3.5.

3 Integrating function, geometry and

appearance

We define our grammar model in the context of in-

door scenes over the functional space F , the geometric

space G and the appearance space A as shown in Fig.2.

The model involves the notion of the functional con-

cept, the object affordance, the contextual relation, the

decomposition of geometric entities, the quantization of

appearance space, and single view 3D reconstruction.

3.1 The functional concepts

The functional space F contains the categorical vari-

ables of functional concepts, including the scene cat-

egories Fs, the functional groups Fg, the functional

objects Fo, and the functional parts Fp. Starting from

a start symbol S, we define following production rules:

S → Fs: S → [bedroom] | [living room]

Fs→Fg: [bedroom] → [sleeping][background] | · · ·
Fg→Fo: [sleeping]→ [bed] | [bed][night stand] | · · ·
Fo→Fp: [bed] → [headboard][mattress] | [mat-

tress]

The OR symbol “|” separates alternative explana-

tions of the grammar derivation. Each alternative ex-

planation has a branching probability q(α→ β), which

is learned by simply counting the frequency of each pro-

duction rules on the labels of thousands of images in
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Fig. 4 A collection of indoor functional objects from the Google 3D Warehouse

Fig. 5 The distribution of the 3D sizes of the functional objects (in unit of inch).

(b)

(a)

Fig. 6 Samples drawn from the distributions of 3D geometric models (a) the functional object “sofa” and (b) the functional
group “sleeping”.

the SUN dataset by Xiao et al (2010) under the “bed-

room” category and the “living room” category. We can

see that all the production rules are SET rules, each of

which is a combination of an OR rule and and AND

rule together.

The functional concepts impose the object affor-

dance by modeling the distribution of 3D size (dimen-

sion) for each geometric primitive Gp as shown in Fig.5.

Meanwhile, they also introduce the contextual relations

among these geometric primitives by modeling the dis-

tance distribution between them.
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3.2 The object affordance

Object affordance models the distribution of 3D size

(dimension) for each functional part, for example, how

large the bed mattress is. If we consider human actions

as hidden variables in the space, then the affordance

probability measures how likely the geometric shape of

an object is able to afford an action. As shown in Fig.2,

a cube around 1.5ft tall is comfortable to sit on despite

its appearance, and a ”table” of 6ft tall loses its origi-

nal function – to place objects on while sitting in front

of. We model the 3D sizes of the functional parts by

a mixture of Gaussians. The model characterizes the

Gaussian nature of the object sizes and allows for si-

multaneous alternatives of canonical sizes, such as king

size bed, full size bed etc. It is also a kind of SET rule,

where OR represents the mixture, and AND represents

the joint distribution among several dimensions of each

Gaussian. We estimated the model by EM clustering,

and we manually picked a few typical primitives as the

initial mean for the Gaussian, e.g.a coffee table, a side

table and a desk from the table category.

In order to learn a better affordance model, we col-

lected a dataset of functional indoor furniture, as shown

in Fig.4. The functional objects in the dataset are mod-

eled with real-world measurements, and therefore we

can generalize our model to real images by learning

from this dataset. We found that the real-world 3D

sizes of the objects has less variance than the projected

2D sizes. As we can see, these functional categories

are quite distinguishable solely based on their sizes as

shown in Fig.5. For example, the coffee tables and side

tables are very short and usually lower than the sofas,

and the beds generally wider than others. The object

poses are aligned in the dataset. We keep four copies

of the Gaussian model for four alternative orientations

along x, −x, y and −y axes to make the model rotation

invariant in the testing stage.

3.3 The contextual relations

We define two types of relations: functional relations

which are the Cooperative “+” relations and physical

constraints which are the Competitive “-” relations.

Functional relations are defined by the distribu-

tions of the 3D relative relations among the parts of an

objects Fo or the objects of an functional group Fg.

The relative relations is modeled by the distribution of

distances between correspondent dimensions of two en-

tities. Fig.6 shows some typical samples drawn from our

learned distribution. This term enables top-down pre-

diction of the missing parts objects as we will discuss

in Sect.4.

Physical constraints avoid invalid geometric con-

figurations that violate physical laws: Two objects can

not penetrate each other and the objects must be con-

tained in the room. The model penalizes the penetrat-

ing area between foreground objects Λf and the ex-

ceeding area beyond the background room borders Λb
as 1/z exp{−λ(Λf + Λb)}, where we take λ as a large

number, and Λf = Λ(vi)
⋂
Λ(vj), Λb = Λ(vi)

⋂
Λ(bg).

3.4 The decomposition of geometric entities

As shown in Fig.8, the geometric space G contains the

geometric primitives of 3D cuboids, 2D rectangles and

1D line segments. Each primitives can be decomposed

into several lower dimensional shapes. Parsing starts

from detection of line segments in the 2D image space

as shown in Fig.7(a). The composition of the geomet-

ric entities is coded by a series of AND rules where the

relations between children nodes are set to a constraint

within a threshold. The threshold is set to 5 pixels in the

image, which means we tolerate 5 pixels offset between

those rigidly combined components. The OR rule also

plays a role by representing alternative ways of compo-

sition under different the view points. The production

rules of geometric decomposition is illustrated in Fig.3

and the result of geometric decomposition is shown in

Fig.8.

3.5 The appearance space

We define the appearance model by applying the idea

of analysis-by-synthesis. In the functional space and the
geometric space, we specify how the underlying causes

generate a scene image. There is still a gap between the

synthesized scene and the observed image, because we

can not render a real image without knowing the ac-

curate lighting condition and material parameters. In

order to fill this gap, we make use of discriminative

approaches: a line segment detector by Von Gioi et al

(2010), a foreground detector by Hedau et al (2009)

and a surface orientation detector by Lee et al (2009)

to produce a line map Al(I), a foreground map Af(I)

and a surface orientation map Ao(I) respectively. We

evaluate our model by calculating the pixel-wise differ-

ence between the maps generated by our model and the

maps from bottom-up detection as shown at the bottom

of Fig.2 (a).

P (I|G) ∝ exp(λ[d(Al(G),Al(I))

+ d(Af(G),Af(I)) + d(Ao(G),Ao(I))])
(9)

As shown in the Fig.2, we decompose the scene struc-

ture according to the grammar rules, and project all the
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(b) geometric parsing result (c) image reconstructed via sturectures in (b)(a) input image with line segments

Fig. 7 Input image and output result of the geometric parsing.

(b) geometric parse tree

3D entities

1D entities

(c) geometric parsing result

(d) reconstructed image

2D entities

(e) the decompostion of geometric parse tree is grounded on the oriented line/region likelihood

(a) input image, line segments

Fig. 8 The decomposition of geometric entities and the quantization of image likelihood.

Fig. 9 3D synthesis of novel views based on the parse result.
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terminal primitives to 2D surface with respect to five

normal directions: facing down, facing left, facing front,

facing right and facing up. The surface facing back is

not visible from the camera position.

In order to properly quantize the geometric space

and speed up the computation, we first group detected

line segment into three main groups with respect to

three vanishing points. And we further group the line

segments into a series of rays pointing from the van-

ishing points to each line segments. We enforce the an-

gle between two nearby rays larger than 2◦, therefore

line segments along same orientation will be grouped

together. We will also interpolate rays between two

nearby rays if the angle between them are larger than

5◦. Any two groups of rays will form a oriented mesh as

shown in Fig.2.(e) (Please zoom 800% in to see the de-

tail of rays). This quantization process guarantee that

each detected line will be represented by several pieces

of edges on the mesh, and each pixel will fall into a

cell as well. In this way, the line/region likelihood of

bottom detection is stored in the quantized meshes for

each surface orientation. The brighter the intensity the

higher the likelihood for each cell.

In Fig.2.(e), the yellow lines on the upper penal rep-

resent the activated line segments. The line segment is

activated when the geometric parsing result (c) match

with the bottom-up detection result (a). The edge prob-

ability measures how many line segments are activated,

which implicit encourages more line segment to be ex-

plained by final parsing result. the region with yellow

boundary on the lower penal represent the activated

surface region. A surface region is activated only the

surface orientation is matched with geometric parsing

results on (c) with a consideration of depth ordering.

The depth ordering guarantee the occluded region will

not affect the likelihood of parsing result. Therefore,

the quantization of image likelihood not only acceler-

ates the inference process by a lookup table of pre-

computation, but also avoids the double counting of

the shared edges and the occluded regions.

3.6 Single View 3D Scene Reconstruction

Another important component of our model is the re-

covery of 3D geometric measure in the real world scale

from the parsing result. It enables us to utilize the gen-

eral knowledge about object affordance and contextual

relations to identify functional objects and groups as

discussed before.

Camera calibration: We cluster line segments to

find three vanishing points whose corresponding dimen-

sions are orthogonal to each other Hedau et al (2009).

The vanishing points are then used to determine the

intrinsic and extrinsic calibration parameters Criminisi

et al (2000); Hartley and Zisserman (2004). We assume

that the aspect ratio is 1 and there is no skew. Any pair

of finite vanishing points can be used to estimate the

focal length. If all three vanishing points are visible and

finite in the same image, then the optical center can be

estimated as the orthocenter of the triangle formed by

the three vanishing points. Otherwise, we set the optical

center to the center of an image. Once the focal length

and optical center has been determined, the camera ro-

tational matrix can be estimated accordingly Hartley

and Zisserman (2004).

3D reconstruction. We now present how to back-

project a 2D structure to the 3D space and how to de-

rive the corresponding coordinates. Considering a 2D

point p in an image, there is a collection of 3D points

that can be projected to the same 2D point p. This col-

lection of 3D points lays on a ray from the camera cen-

ter C = (Cx,Cy,Cz)T to the pixel p = (x, y, 1)T . The

ray P (λ) is defined by (X,Y, Z)T = C + λR−1K−1p,

where λ is the positive scaling factor that indicates the

position of the 3D point on the ray. Therefore, the 3D

position of the pixel lies at the intersection of the ray

and a plane (the object surface). We assume a camera is

4.5ft high. By knowing the distance and the normal of

the floor plane, we can recover the 3D position for each

pixel with the math discussed above. Any other plane

contacting the floor can be inferred by its contact point

with the floor. Then we can gradually recover the whole

scene by repeating the process from the bottom up. If

there is any object too close to the camera to see the

bottom, we will put it 3 feet away from the camera.

4 Problem inference

We design a top-down/bottom-up algorithm to infer an

optimal parse tree pt. The compositional structure of

the continuous geometric parameters and discrete func-

tional labels introduces a large solution space, which

is infeasible to enumerate all the possible explanations.

Neither the sliding windows (top-down) nor the binding

(bottom-up) approaches can handle such an enormous

number of configurations independently.

In this paper, we design a reversible jump MCMC

algorithms to construct the parsing tree and re-configures

it dynamically using a set of moves. Formally, our scene

parsing algorithm simulates a Markov chain MC =<

Ω, v,K > with kernel K in space Ω and with probability

v for the starting state. We specify stochastic dynam-

ics by defining the transition kernels of revisable jumps.

For each Markov chain move is defined by a kernel with

a transition matrix K(pt∗|pt : I), which represents the
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probability that the Markov chain make a transition

from state pt to pt∗ when a move is applied.

The kernels are constructed to obey the detailed

balance condition:

p(pt|I)K(pt∗|pt : I) = p(pt∗|I)K(pt|pt∗ : I). (10)

Kernels which change the graph structure are grouped

into reversible pairs. For example, the kernel for node

creation K+ is paired with the kernel for node dele-

tion K− to form a combined move of node switch. To

implement the kernel, at each time step the algorithm

randomly selects the choice of move and then uses ker-

nel K(pt∗|pt : I) to select the transition from state pt to

state pt∗. Note that the probabilityK(pt∗|pt : I) depend

on the input image I. This distinguishes our algorithms

as a Data-Driven MCMC from conventional MCMC

computing (Tu and Zhu (2002); Tu et al (2005)).

The Kernel is designed using proposal probabilities

and correspondent acceptance probability.

K(pt∗|pt : I) = Q(pt∗|pt : I)α(pt∗|pt : I) (11)

The acceptance probability follows:

α(pt→ pt∗) = min{1, Q(pt|pt∗, I)

Q(pt∗|pt, I)
· P (pt∗|I)

P (pt|I)
} (12)

The Metropolis-Hasting form ensures that the Markov

chain search satisfies the detailed balance principle. A

simulated annealing technology is also used to find the

maximum of complex posteriori distribution with mul-

tiple peaks while other approaches may trap the algo-

rithm at local optimal peaks.

Data: an input 2D image
Result: an output parse tree
Initialization;
while the rejection time larger than K do

Choose one of the following moves randomly;
– adding a geometric entities
– switching the functional label of a geometric entities
– removing a geometric entities

if adding/removing a non-terminal node then
Recursively adding/removing its children;

end
Calculate the posterior probability and validate
the solution by projecting the 3D parse tree
structure on the 2D image plane;
Accept/reject the new parse tree with the
acceptance probability;

end
Return the parse tree with the highest posterior;

Algorithm 1: Inference algorithm

In this paper, we handle three types of moves: adding,

removing, switching. The adding move attaches a sub-

tree to the current parse tree; the removing move deletes

a sub-tree from the current parse tree; the switching

move changes the the attribute of a tree node. If the

switching move involve an adding move and an remov-

ing move of a sub-tree, then it is a combined move as

we discussed above. These three types of moves are al-

ternated throughout inference.

To simplify the problem, we detect all the possible

geometric entities in a bottom-up initialization step.

Therefore, all the moves are revisable jumps within the

discrete state-space. The diffuse move of fine tuning the

continuous geometric parameters will dramatically slow

down the Markov chain search. We summarize the en-

tire process here, and describe the details in the rest of

this section.

4.1 Initialization

The algorithm starts from detecting straight line seg-

ments by Von Gioi et al (2010). Based on the Man-

hattan assumption, we group the line segments into N

groups, each of which is correspondent to a vanishing

point. We then select three dominate orthogonal van-

ishing point to build our coordinate system. We assume

the camera parameters are reliably calibrated in this

step, the calibration algorithm is discussed in Sect.3.6.

As illustrated in Fig.8, we incrementally group noisy

line segment into geometric structures i.e.2D rectangles

and 3D cuboids by filtering the entities based on geo-

metric AND rules layer by layer. The rectangles are

formed by filtering over the combinations of two pairs

of parallel lines or T junctions. Similarly, the cuboids

are formed by filtering over the combinations of two

hinged rectangles.

We design a four-step MCMC algorithm that en-

ables a Markov chain travel up and down through the

FGA hierarchy: A → G → F → G → A. In each it-

eration, the algorithm proposes a new parse tree pt∗

based on the current one pt according to the proposal

probability.

4.2 Bottom-up appearance-geometry (AG) step

With all the geometric entities detected and saved in

a pool and all the likelihood stored in a lookup ta-

ble as mentioned before, the proposed probability for

a new geometric entity g∗ is defined as the probability

to choose an entity from the pool:

Q1(g∗|IΛ) =
PA(IΛ|g∗)P (g∗)∫
g∈Gp PA(IΛ|g)P (g)

(13)
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where the PA(IΛ|g) is defined in a similar form of like-

lihood in Eq.9 except that we only calculate the im-

age likelihood within a local patch IΛ. The likelihood

within a local patch can be calculated very fast with

the lookup table.

The P (g) characterizes the prior distribution of the

geometric size, i.e.how likely a geometric entity g can

be generated from the functional space.

P (g) =

∫
F
P (F , g) =

∫
F
P (F)P (g|F) (14)

Given a functional label, the distribution of geometric

size P (g|F) is defined by a Gaussian model. Thus the

prior distribution of geometric size
∫
F P (F)P (g|F) is a

mixture of a large number of Gaussians. And P (F) is

a hyperprior of mixture coefficients. It is worth noting

that this proposal probability Q1 is independent of the

current parse tree pt. Therefore we can precompute the

proposal probability for each possible geometric pro-

posal, which dramatically reduces the computational

cost of the chain search.

4.3 Bottom-up geometry-function (GF) step

This step assigns functional labels to the 3D geomet-

ric entity detected in the G space. The switching of

functional labels can be happened in any layers of the

functional parse tree as shown in Fig.2, which include

switching of scene category, switching functional group,

switching of functional object and switching of func-

tional part label. The proposal probability of switching

an functional label f∗ on the functional parse tree is

defined as

Q2(f∗|pa, cl) =
P (cl|f∗)P (f∗|pa)∫
f
P (cl|f)P (f |pa)

(15)

where the cl are the children of f∗, and pa is the par-

ent of f∗ on the current parse tree pt. In this way, the

probability describes the compatibility of the functional

label f∗ with its parent pa and its children cl on the

tree. With the geometry primitives fixed on the bot-

tom, this proposal makes the chain jumping in the func-

tional space to find a better functional explanation for

these primitives. The search on the functional space is

fast since the functional label space is small. With the

Markov property on the tree, Q2(f∗|pa, cl) is equivalent

to the marginal probability P (f∗|pt).

4.4 Top-down function-geometry (FG) step

This step fills in the missing object in a functional group

or the missing part in a functional object. For example,

once a bed is detected, the algorithm will try to pro-

pose nightstands beside it by drawing samples from the

geometric prior and the contextual relations. The prob-

lem of sampling with complex constraints was carefully

studied by Yeh et al.Yeh et al (2012). Fig.6 shows some

typical samples. The proposal probability Q3(g∗|F) of

a new geometric primitive g∗ is just a Gaussian distri-

bution for geometric size described in Sect.3.2 and a

Gaussian distribution of contextual relation described

in Sect.3.3. The contextual relation handles relative po-

sition of the new primitive given its existing neighbor.

Here, we can see that Q1(I → G) proposes g∗ by

the bottom-up image detection, and Q3(F → G) pro-

poses g∗ by the top-down functional prediction. They

are two kinds of approximation of the marginal distri-

bution P (g∗|pt).
On the other hand, removing an existing tree node

is relatively a simple problem. We proposes to delete

a geometric primitive with uniform probability. Both

the add and delete operation will trigger GF step of

re-assigning a functional label.

4.5 Top-down geometry-appearance (GA) step

This step projects the 3D geometric model to the 2D

image plane with respect to the relative depth order

and camera parameters. The projection is a determin-

istic step as described in Sect.3.5. It generates the image

feature maps used to calculate the overall likelihood in

Eq.9. The image features are shown at the bottom of

Fig.2 (a) . The algorithm will calculate the acceptance

probability according to the proposal probability of pre-

vious three steps and posterior probability according to

the Eq.12.

5 Experiments

Our algorithm has been evaluated on the UIUC indoor

dataset Hedau et al (2009), the UCB dataset Del Pero

et al (2011), and the SUN dataset Xiao et al (2010). The

UCB dataset contains 340 images and covers four cubic

objects (bed, cabinet, table and sofa) and three planar

objects (picture, window and door). The ground-truths

are provided with hand labeled segments for geomet-

ric primitives. The UIUC indoor dataset contains 314

cluttered indoor images and the ground-truth is two la-

bel maps of the background layout with/without fore-

ground objects. We picked two categories in the SUN

dataset: the bedroom with 2119 images and the living

room with 2385 images. This dataset contains thou-

sands of object labels and was used to train our func-

tional model as discussed in Sect.3.2
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(b) our approach(a) Pero et al. 2012 [27]
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Fig. 10 The confusion matrix of functional object classification on the UCB dataset.

Quantitative evaluation:

We first compared the confusion matrix of func-

tional object classification rates among the successfully

detected objects on the UCB dataset as shown in Fig.10.

The state-of-the-art work by Del Pero et al (2012) per-

formed slightly better on the cabinet category, but our

method get better performance on the table and sofa

categories. This is mainly attributed to our fine-grained

part model and functional groups model. It is worth

noting that our method reduced the confusion between

the bed and the sofa. Because we also introduced the

hidden variables of scene categories, which help to dis-

tinguish between the bedroom and living room accord-

ing to the objects inside.

In Table.1, we compared the precision and recall of

functional object detection with Del Pero et al (2012).

The result shows our top-down process did not help the

detection of planner objects. But it largely improves the

accuracy of cubic object detection from 30.8% to 34.8%

with the recall from 24.3% to 29.7%.

In Table.2, we also test our algorithm on the UCB

dataset and the UIUC dataset together with five state-

of-the-art algorithms: Hedau et al (2009), Wang et al

(2010), Lee et al (2010), Del Pero et al (2011) and

Del Pero et al (2012). The results show the pixel-level

segmentation accuracy of proposed algorithms not only

significantly widens the scope of indoor scene parsing

algorithm from the segmentation and 3D recovery to

the functional object recognition, but also yields im-

proved overall performance.

Qualitative evaluation:

Some experimental results on the UIUC and the

SUN datasets are illustrated in Fig.11. The green cuboids

are cubic objects proposed by the bottom-up AG step,

and the cyan cuboids are the cubic objects proposed

by the top-down FG step. The blue rectangles are the

detected planar objects, and the red boxes are the back-

Table 1 The precision (and recall) of functional object de-
tection on the UCB dataset.

UCB dataset planar objects cubic objects
Del Pero et al (2012) 27.7% (19.7%) 31.0% (20.1%)
Ours w/o top-down 28.1%(18.5%) 30.8% (24.3%)
Ours w/ top-down 28.1%(18.7%) 34.8% (29.7%)

Table 2 The pixel classification accuracy of background lay-
out segmentation on the UCB dataset and the UIUC dataset.

UCB dataset UIUC dataset
Hedau et al (2009) - 78.8%
Wang et al (2010) - 79.9%
Lee et al (2010) - 83.8%

Del Pero et al (2011) 76.0% 73.2%
Del Pero et al (2012) 81.6% 83.7%

Our approach 82.8% 85.5%

ground layouts. The functional labels are given to the

right of each image. Our method has detected most of

the indoor objects, and recovered their functional la-

bels very well. The top-down predictions are very use-

ful to detect highly occluded nightstands as well as the

headboards of the beds. As shown in the last row, our

method sometimes failed to detect certain objects. The

bottom left image fails to identify the drawer in the left

but a door. In the middle bottom image, the algorithm

failed to accurately locate the mattress for this bed with

a curtain. The last image is a kind of typical failure ex-

ample due to the unusual camera position. We assumed

the camera position is 4.5 feet high, while this camera

position in this image is higher than our assumptions.

As a result, the algorithm detected a much larger bed

instead.
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living room

    - sitting

        - sofa

            - seat

            - back

    - background

bedroom

    - sleeping

        - bed

            - matress

            - headboard

        - left side table  

        - right side table

    - background

        - picture

living room

    - sitting

        - sofa

            - seat

            - back

            - left arm

            - right arm

        - cofffee table

    - storage

        -cabinet

    - background

        - window

bedroom

    - sleeping

        - bed

            - mattress

            - headboard

        - left side table 

        - right side table

    - background

bedroom

    - sleeping

        - bed

            - mattress

            - headboard

        - left side table  

        - right side table

    - background

        - window

        - door

bedroom

    - sleeping

        - bed

            - mattress

            - headboard

        - left side table

    - storage

        cabinet

    - background

        - picture 1

        - picture 2

        - door

living room

    - sitting

        - sofa

            - seat

            - back

            - left arm

            - right arm

    - background

        - window

        - door

bedroom

    - sleeping

        - bed

            - mattress

            - headboard

        - left side table  

        - right side table

    - background

        - door

bedroom

    - sleeping

        - bed

            - mattress

            - headboard

        - left side table

    - background

        - window 1

        - window 2

        - window 3

Fig. 11 Parsing results include cubic objects (green cuboids are detected by bottom-up step, and cyan cuboids are detected
by top-down prediction), planar objects (blue rectangles), background layout (red box). The parse tree is shown to the right
of each image.

6 Conclusion

This paper presents a stochastic grammar built on a

function-geometry-appearance (FGA) hierarchy. Our ap-

proach parses an indoor image by inferring the object

function and the 3D geometry. The functionality de-

fines an indoor object by evaluating its “affordance”.

The affordance measures how much an object can sup-

port the corresponding human action, e.g. a bed is able

to support the action of sleep. We found it is effective to

recognize certain object functions according to its 3D

geometry regardless of observing the actions.

The function helps to build an intrinsic bridge be-

tween the man-made object and the human action, which

can motivate other interesting studies in the future:

functional objects/areas in a scene attract human’s needs

and/or intentions; other risky areas (like sharp corners)

apply repulsive force to human actions. As a result, a

parsed scene with functional labels defines a human ac-

tion space, and it also helps to predict people’s behavior

by making use of the function cues. On the other hand,

given an observed action sequence, it is possible to accu-

rately recognize the functional objects associated with

the rational actions.
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