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Images of natural scenes contain a rich variety of visual patterns. To learn and recognize these patterns
from natural images, it is necessary to construct statistical models for these patterns. In this review arti-
cle we describe three statistical principles for modeling image patterns: the sparse coding principle, the
minimax entropy principle, and the meaningful alignment principle. We explain these three principles
and their relationships in the context of modeling images as compositions of Gabor wavelets. These three
principles correspond to three regimes of composition patterns of Gabor wavelets, and these three regimes
are connected by changes in scale or resolution.
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1. INTRODUCTION

1.1 Three Regimes of Image Patterns and
Scaling Connection

Images of natural scenes are characterized by a bewildering
richness of visual patterns. The goal of computer vision is to
learn and recognize these patterns from natural images. To ac-
complish this goal, it is necessary to construct statistical mod-
els for these patterns. The parameters of these models can be
learned from training image data. The learned models then can
be used to interpret future image data to recognize the objects
and patterns. Thus vision is essentially a statistical modeling
and inference problem.

But vision also proves to be a highly specialized modeling
and inference problem. A special property of vision that distin-
guishes it from other recognition tasks, such as speech recog-
nition, is that visual objects in natural scenes can appear at a
wide range of distance from the camera. At different viewing
distances, the objects project different sizes (sometimes even
smaller than a single pixel) on the resulting image and thus cre-
ate different image patterns. To illustrate this concept, Figure 1
displays three images of maple leaves at three different view-
ing distances (with the scope of the camera remaining fixed).
Image (a) is observed at a far viewing distance. In this image
maple leaves are so small and densely packed that the individ-
ual leaf shapes cannot be recognized. The leaves collectively
produce a foliage texture pattern. Image (b) is observed at a
medium distance. The leaf sizes are larger than those in im-
age (a), and their shapes can be individually recognized. Im-
age (c) is observed at a very close distance. The overall shape
of a single maple leaf is larger than the scope of the camera,
so that only an edge pattern is recognized within this image.
These three images have different statistical properties. Image
(a) is very random, image (c) is very simple, and image (b) is
in between. The three images are instances of three regimes of
image patterns. Image (a) is from the texture regime, where no
clear shapes exist. Image (b) is from the object regime, where
the overall shapes of the objects can be recognized. Image (c) is
from the geometry regime, which comprises lines, regions, cor-
ners, junctions, and so on. From Figure 1, it is clear that these
three regimes of image patterns are connected by the variability
of viewing distance. This variability is a primary cause for the

richness of visual patterns. The effect of varying viewing dis-
tance can be equally achieved by varying the camera resolution
with zooming-in and zooming-out operations.

1.2 Multiscale Representations for Both Image Data
and Their Patterns

The variability of viewing distance requires that the visual
system be able to recognize patterns at different scales or res-
olutions. For a fixed image, it is natural to use this ability to
simultaneously analyze the image at multiple scales or resolu-
tions.

Figure 2(a) displays an image at multiple resolutions in a
pyramidal structure. The original image is at the bottom layer.
On top of that, the image at each layer is a zoomed-out version
of the image at the layer beneath. The zooming-out operation
can be accomplished by smoothing the current image by con-
volving it with a Gaussian kernel of a certain standard devia-
tion, and then subsampling the pixels by a certain factor to make
the image smaller. This pyramidal structure, called a Gaussian
pyramid (Burt and Adelson 1983), can have many layers. Each
layer of the Gaussian pyramid is said to be a low-pass version of
the original image, because only low-frequency content of the
image is preserved. A companion structure is called a Laplacian
pyramid. The image at each layer of the Laplacian pyramid is
the difference between the images at two adjacent layers of the
Gaussian pyramid or, more precisely, the difference between
the image at the corresponding layer of the Gaussian pyramid
and its smoothed version obtained by convolving it with the
Gaussian kernel. Each layer of the Laplacian pyramid is said
to be a bandpass version of the original image, because only
the content within a certain frequency band is preserved. The
Laplacian pyramid is a decomposition of the original image
into different frequency bands. (See Sec. 2.2 for explanations
of low-pass and bandpass images.)

If we move a window of a certain size (say, 40 × 40) over the
images at multiple layers in the Gaussian or Laplacian pyramid,
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(a) (b) (c)

Figure 1. Examples from three regimes of image patterns: (a) texture regime, (b) object regime, and (c) geometry regime. The three regimes
are connected by the change in viewing distance or, equivalently, the change in camera resolution.

then we can recognize different image patterns within the win-
dow, and these patterns belong to different regimes described
in the previous section. We recognize lines and regions at high
resolution or small scale, shapes and objects at medium reso-
lution or scale, and textures and clutters at low resolution or
large scale. In addition, these patterns are highly organized.
The large-scale texture patterns are composed of medium-scale
shape patterns, which in turn are composed of small-scale edge
and corner patterns. Figure 2(b) provides an illustration, where
the image patches at different resolutions are labeled as various
patterns such as foliage, leaves, and edges or corners. The ver-
tical and diagonal arrows indicate the compositional relation-
ships, and the horizontal arrows indicate the spatial arrange-
ments. Thus a complete interpretation of an image must con-
sist of the labels of image patches at all of these layers. It also
should include the compositional and spatial organizations of
the labels.

Figure 2 illustrates the multiscale structures of both the im-
age data and the recognized patterns. The multiscale structure
of the image data has been extensively studied in wavelet the-
ory (Mallat 1989; Simoncelli, Freeman, Adelson, and Heeger
1992) and scale-space theory (Witkin 1983; Lindberg 1994);

however, the multiscale structure of the recognized patterns has
not received as much treatment. Recent attempts to understand
this issue have been made by Wu, Zhu, and Guo (2007) and
Wang, Bahrami, and Zhu (2005). The compositional relation-
ships have been studied by Geman, Potter, and Chi (2002). The
AND–OR grammars for the multilayer organizations of the im-
age patterns have been studied by Zhu and Mumford (2007).

1.3 Bayesian Generative Modeling and
Posterior Inference

An elegant approach to recognizing the multiscale patterns
from the multiscale image data is to construct a Bayesian gen-
erative model and use the posterior distribution to guide the in-
ferential process (Grenander 1993; Grenander and Miller 1994;
Geman and Geman 1984; Mumford 1994). Given the multilayer
structures of both the image data and the labels of the recog-
nized patterns as shown in Figure 2(b), a natural form of this
model is a recursive coarse-to-fine generative process consist-
ing of the following two schemes:

(a) (b)

Figure 2. Multiscale representations of data and patterns. (a) A Gaussian pyramid. The image at each layer is a zoomed-out version of the
image at the layer beneath. The Laplacian pyramid can be obtained by computing the differences between consecutive layers of the Gaussian
pyramid. (b) For the same image, different patterns are recognized at different scales. These patterns are organized in terms of compositional
and spatial relationships. The vertical and diagonal arrows represent compositional relationships; the horizontal arrows, spatial relationships.
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(a) (b) (c)

Figure 3. Gabor wavelets. (a) A sample of Gabor wavelets at different locations, scales, and orientations. (b) An example of a Gabor sine
wavelet. (c) An example of a Gabor cosine wavelet.

Scheme 1: The labels generate their image data at the cor-
responding scale or frequency band; for example, a leaf
pattern generates a leaf image patch at the same layer.

Scheme 2: The labels generate those constituent labels at the
lower scale; for example, a leaf pattern is decomposed
into edge and corner patterns at the lower layer.

These two schemes are closely related and lead to a joint
distribution of the labels of the recognized patterns and the
bandpass image patches over all of the scales, Pr(labels, image
patches). In principle, this model can be learned from training
images that have already been labeled. A new image can be
interpreted by sampling from or maximizing the posterior dis-
tribution Pr(labels|image patches).

In the posterior distribution Pr(labels|image patches), the la-
bel of a particular image patch at a certain layer is determined
not only by this image patch itself, but also by the labels of
other image patches. For instance, the leaf pattern in the center
of Figure 2(b) can be recognized by combining the following
four sources of information:

Source 1. The image patch of this leaf at the current layer
Source 2. The bottom-up information from the edge and cor-

ner patterns of the image patches at the layers below
Source 3. The top-down information from the foliage pat-

terns of the image patches at the layers above
Source 4. The contextual information from the leaf patterns

of the adjacent image patches at the same layer.

Although source 1 is the most direct, the other sources also
can be important, especially when source 1 contains too much
ambiguity, which can often be the case in natural images. The
combination of information can be accomplished by Bayesian
posterior computation.

A realistic generative model, Pr(labels, image patches),
based on the two schemes mentioned earlier, remains beyond
our reach. The posterior computation for propagating and com-
bining information also is not well understood. In this article
we study statistical principles that may eventually lead to such
a generative model. The focus of this article is on Scheme 1—
that is, how the patterns generate their image data at the same
layer. A recent article by Zhu and Mumford (2007) on the sto-
chastic AND–OR grammars for Scheme 2 explores how the
patterns are decomposed into the constituent patterns at lower
layers in the compositional hierarchy.

1.4 Hint From Biological Vision

Given the fact that biological vision is far superior to com-
puter vision in terms of learning and recognizing natural image
patterns, it is useful to take some clues from biological vision
when constructing image models to be used for computer vi-
sion. In neuroscience, neuron recording data (Hubel and Wiesel
1962) indicate that visual cells in the primary visual cortex or
V1 area (the part of the brain responsible for the initial stage
of visual processing) respond to local image structures, such as
bars, edges, and gratings at different positions, scales, and ori-
entations.

Specifically, the V1 cells are classified into simple cells
and complex cells. The simple cells are modeled by Gabor
wavelets (Daugman 1985). Figure 3(a) displays a sample of
Gabor wavelets (Lee 1996), which are localized functions at
different locations with different orientations and scales. These
functions are in the form of sinusoidal waves multiplied by
Gaussian functions. Figures 3(b) and 3(c) display the perspec-
tive plots of two such functions. A more detailed explanation
is provided in Section 2. Responses of simple cells are mod-
eled as projection coefficients of the image onto these func-
tions. These projection coefficients capture image structures
at different locations, orientations, and scales. The complex
cells are also sensitive to similar local image structures; how-
ever, they are more tolerant or invariant of the shifting of loca-
tions and scales of the image structures (Lampl, Ferster, Pog-
gis, and Riesenhuber 2004). Such nonlinear behavior can be
modeled by combining or pooling the outputs from the sim-
ple cells (Adelson and Bergen 1985; Riesenhuber and Poggio
1999).

The set of Gabor wavelets is self-similar and has a multiscale
structure that is consistent with the multiscale structures of the
image data described in the previous section. Specifically, pro-
jecting an image onto a large-scale Gabor wavelet is equivalent
to projecting a zoomed-out version of this image onto a smaller-
scale Gabor wavelet at the same location and orientation. These
Gabor wavelets can be the link between the image data and the
corresponding patterns. Specifically, these Gabor wavelets may
serve as the building elements in the generative model Pr(image
patches|labels), as well as the intermediate step in computing
Pr(labels|image patches).
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1.5 Three Statistical Principles for Composing
Gabor Wavelets

In this article we examine three existing statistical principles
for image modeling. These principles shed light on the roles of
Gabor wavelets in pattern recognition and provide useful guid-
ance for constructing image models as compositions or pool-
ings of Gabor wavelets.

1.5.1 Sparse Coding Principle. Olshausen and Field
(1996) proposed that sparse coding is a strategy used by the
primary visual cortex to represent image data. This principle
seeks to find a dictionary of linear basis elements, so that any
typical natural image can be expressed as a linear combination
of a small number of basis elements chosen from the dictionary.
The basis elements learned by Olshausen and Field from natural
images exhibit close resemblance to the Gabor wavelets.

1.5.2 Minimax Entropy Principle. Zhu, Wu, and Mum-
ford (1997) proposed the minimax entropy principle for mod-
eling textures. This principle seeks to find statistical summaries
of the observed image so that the maximum entropy model con-
strained by these statistical summaries has the minimum en-
tropy. The particular statistical summaries adopted by Zhu et al.
are marginal histograms of Gabor wavelet coefficients. The re-
sulting models are in the form of Markov random fields (Besag
1974; Geman and Graffigne 1987). Realistic texture patterns
can be generated by sampling from such random fields.

1.5.3 Meaningful Alignment Principle. Moisan, Desol-
neux, and Morel (2000) proposed the meaningful alignment
principle for perceptual grouping. This principle seeks to iden-
tify coincidence patterns in the observed image data that other-
wise would be extremely rare in a completely random image.
Such coincidences are said to be meaningful. One particular
example of this is the detection of line segments in image data
based on the alignment of local orientations along the potential
line segments. The local orientations can be computed as the
orientations of the best-tuned Gabor wavelets.

These three principles correspond to the three regimes of im-
age patterns discussed in Section 1.1. The sparse coding prin-
ciple corresponds to the object regime, where the image can be
modeled based on the composition of a small number of wavelet
elements at different positions, scales, and orientations. The
minimax entropy principle corresponds to the texture regime,
where the image is modeled by pooling the wavelet coeffi-
cients into marginal histograms while discarding the position
information. The meaningful alignment principle corresponds
to the geometry regime, where the best-tuned Gabor wavelets
are highly aligned in both the spatial and frequency domains.

Although these three principles correspond to three differ-
ent regimes of patterns with different complexities and scales,
they all seek to identify a small number of constraints on the
Gabor wavelet coefficients to restrict the observed image to an
image ensemble of small volume. As a result, these constraints
constitute a simple and informative description of the observed
image. The uniform distribution on the constrained image en-
semble can be linked to an unconstrained statistical model. This
point of view suggests that it is possible to develop a unified
statistical model for all these three regimes of image patterns as
the composition or pooling of Gabor wavelet coefficients.

The rest of the article is organized as follows. Section 2 re-
views Gabor wavelets. Section 3 reviews the three statistical
principles, and Section 4 investigates the relationships between
these principles. Section 5 concludes with a discussion.

2. GABOR WAVELETS: EDGE AND SPECTRUM

Gabor wavelets are localized in both spatial and frequency
domains, and can detect edges and bars in the spatial domain
and extract spectra in the frequency domain. In this section we
review Gabor wavelets first in the spatial domain, and then in
the frequency domain. For simplicity, we assume that both the
image and the Gabor wavelets are functions defined on the two-
dimensional real domain R

2.

2.1 Edge-Bar Detector

A Gabor wavelet (Daugman 1985) is a sinusoidal wave mul-
tiplied by a Gaussian density function. The following function
is an example:

G(x) = 1

2πσ1σ2
exp

{
−1

2

(
x2

1

σ 2
1

+ x2
2

σ 2
2

)}
eix1, (1)

where x = (x1, x2) ∈ R
2 and i = √−1. This complex-valued

function G(x) consists of two parts. The first part is an elongate
Gaussian function with σ1 < σ2, so the shorter axis is along
the x1 direction and the Gaussian function is oriented along the
x2 direction. The second part is a pair of sine and cosine plane
waves propagating along the x1 axis—that is, the shorter axis of
the Gaussian function. Because of the Gaussian function, G(x)
is localized in the spatial domain. The Gabor cosine component
or the real part of G(x) is an even-symmetric function, and the
Gabor sine component or the imaginary part of G(x) is an odd-
symmetric function (see Figs. 3(b) and 3(c) for illustrations).

We can translate, rotate, and dilate the function G(x) of (1)
to obtain a general form of Gabor wavelets such as those plot-
ted in Figure 3(a): Gy,s,θ (x) = G(x̃/s)/s2, where x̃ = (x̃1, x̃2),
x̃1 = (x1 − y1) cos θ − (x2 − y2) sin θ , and x̃2 = (x1 − y1) sin θ +
(x2 − y2) cos θ . The function Gy,s,θ is centered at y, with ori-
entation θ . The standard deviations of the two-dimensional
Gaussian function in Gy,s,θ (x) along its shorter and longer axes
are sσ1 and sσ2. The sine and cosine waves propagate at the
frequency 1/s along the shorter axis of the Gaussian function.

For an image I(x), the projection coefficient of I onto Gy,s,θ

is

ry,s,θ = 〈I,Gy,s,θ 〉 =
∫

I(x)Gy,s,θ (x)dx, (2)

where the integral is over R
2. In engineering literature, the Ga-

bor wavelets are also called Gabor filters, ry,s,θ obtained by (2)
is called the filter response, and the image J(y) = ry,s,θ is called
the filtered image. The Gabor sine component or the imagi-
nary part of Gy,s,θ is odd-symmetric and sensitive to step-edge
structures. If the image I has a step-edge structure at location
y with orientation θ , then the imaginary part of ry,s,θ will be
of large magnitude. The Gabor cosine component of Gy,s,θ is
even-symmetric and sensitive to bar structures. If the image I
has a bar structure at location y with orientation θ , then the real
part of ry,s,θ will be of large magnitude.

The Gabor wavelets can be used as edge-bar detectors (Wang
and Jenkin 1992; Perona and Malik 1990; Mallat and Zhong
1992; Canny 1986). Let rx,s,θ = ax,s,θ + ibx,s,θ . Here |rx,s,θ |2 =
a2

x,s,θ + b2
x,s,θ is the energy extracted by the Gabor wavelet

Gx,s,θ (Adelson and Bergen 1985). For fixed x and s, let θ∗ =
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(a) (b) (c)

Figure 4. The observed image (a) and edge maps at two different scales [(b) and (c)]. The scale of (b) is finer than that of (c).

arg maxθ |rx,s,θ |2. We call Gx,s,θ∗ the best-tuned Gabor wavelet
at (x, s). The local orientation is defined as θ(x, s) = θ∗. The
local phase is defined as φ(x, s) = arctan(bx,s,θ∗/ax,s,θ∗). For
edge structure, the local phase is π/2 or −π/2; for bar struc-
ture, the local phase is 0 or π . The local energy is defined as
A(x, s) = |rx,s,θ∗ |2. Here x is an edge-bar point at scale s if
A(x, s) ≥ A(y, s) for all y such that the direction of y − x is per-
pendicular to θ(x, s) and |y − x| < d for predefined range d;
that is, A(x, s) is a local maximum along the normal direction
of x, and we call Gx,s,θ(x,s) a locally best-tuned Gabor wavelet at
scale s. Figures 4(b) and 4(c) display the edge-bar points of the
observed image in Figure 4(a) at two different scales, where the
intensity of an edge-bar point (x, s) is proportional to A(x, s)1/2.
The scale s for computing the edge map is smaller in Figure 4(b)
than in Figure 4(c).

2.2 Spectral Analyzer

The Gabor wavelets also extract power spectra. For an image
I(x), which is a function in L2, this can be represented as the
superposition of sinusoidal waves

I(x) = 1

4π2

∫
Î(ω)eiωx dω, (3)

where x = (x1, x2) ∈ R
2, ω = (ω1,ω2) ∈ R

2, ωx = x1ω1 +
x2ω2, and the integral is over the two-dimensional frequency
domain R

2. For fixed ω, the plane wave eiωx in (3) propa-
gates in the spatial domain R

2 along the orientation of the vec-
tor ω = (ω1,ω2) at frequency |ω| = (ω2

1 + ω2
2)

1/2. The coef-

ficient Î(ω) in (3) can be obtained by the Fourier transform
Î(ω) = ∫

I(x)e−iωx dx.
Ideally, we can extract certain frequency content of I by cal-

culating 4π2J = ∫
F Î(ω)eiωx dω for a certain set F ⊂ R

2 of fre-
quencies. If F contains only those frequencies ω such that |ω|
are below a threshold, then J is called a low-pass image. If F
contains only those frequencies ω such that |ω| are within a cer-
tain finite interval, then J is called a bandpass image. In prac-
tice, such images can be approximately extracted by convolv-
ing I with a kernel function g. The convoluted image is J(x) =∫

I(y)g(y − x)dy. In the frequency domain, Ĵ(ω) = Î(ω)ĝ(ω);
thus 4π2J(x) = ∫

Î(ω)ĝ(ω)eiωx dω. One may consider ĝ(ω) a
generalized version of the indicator function for F and design
ĝ(ω) to be a function localized in the frequency domain to ex-
tract the corresponding frequency content of I.

The Gabor wavelets can serve this purpose. Let Gs,θ (x) =
G0,s,θ (x). [See the previous section for the definition of Gy,s,θ ;
here y = (0,0).] The Fourier transform of Gs,θ is

Ĝs,θ (ω) = exp

{
−1

2

[(
sσ1

(
ω̃1 − 1

s

))2

+ (sσ2ω̃2)
2
]}

, (4)

where ω̃ = (ω̃1, ω̃2), with ω̃1 = ω1 cos θ + ω2 sin θ and ω̃2 =
−ω1 sin θ + ω2 cos θ . Ĝs,0 is a Gaussian function centered at
(1/s,0) with standard deviations 1/(sσ1) and 1/(sσ2) along ω1
and ω2, and Ĝs,θ is a Gaussian function obtained by rotating
Ĝs,0 by an angle −θ , and Ĝs,θ is localized in the frequency do-
main. Figure 5 shows an example of Ĝs,θ in the frequency do-
main for a sample of (s, θ) corresponding to the sample of Ga-
bor wavelets displayed in Figure 3(a). Each Ĝs,θ is illustrated
by an ellipsoid whose two axes are proportional to 1/(sσ1) and
1/(sσ2). One may intuitively imagine each ellipsoid as the fre-
quency band covered by Ĝs,θ , and together these Ĝs,θ can pave
or tile the entire frequency domain.

Let J = I ∗ Gs,θ . J(x) = 〈I(y),Gx,s,θ (−y)〉 can be ex-
pressed as the projection of I onto the Gabor wavelet cen-
tered at x. We have that 4π2J(x) = ∫

Ĵ(ω)eiωx dω, where
Ĵ(ω) = Î(ω)Ĝs,θ (ω). Thus J extracts the frequency content
of I within the frequency band covered by Ĝs,θ . According
to the Parseval identity, 4π2‖J‖2 = 4π2

∫ |J(x)|2 dx = ‖Ĵ‖2 =∫ |Î(ω)|2|Ĝs,θ (ω)|2 dω. Thus ‖J‖2 extracts the local average of
the power spectrum of I within the frequency band covered by
Ĝs,θ . Section 3.2 provides more discussion on this issue.

Figure 5. A sample of Ĝs,θ in the frequency domain. Each Ĝs,θ
is illustrated by an ellipsoid whose two axes are proportional to the
corresponding standard deviations of Ĝs,θ .
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In this section we explain that Gabor wavelets can be used
to extract edge-bar points as well as spectra. However, how to
use Gabor wavelets to represent and recognize image patterns
remains unclear. In the next section we review three statistical
principles that shed light on this issue.

3. THREE STATISTICAL PRINCIPLES

3.1 Sparse Coding Principle: Beyond Edge Detection

The sparse coding principle can be used to justify the Ga-
bor wavelets as linear basis elements for coding natural images.
Specifically, let {Bn(x),n = 1, . . . ,N} be a set of linear basis
functions. Then we can code I by

I(x) =
N∑

n=1

cnBn(x) + ε(x), (5)

where cn are the coefficients and ε is the residual image. The
dictionary of the basis functions {Bn} in the representation (5)
should be designed or learned so that for any typical natural im-
age I, only a small number of coefficients cn need to be nonzero
to code I with small residual error. The dictionary of the basis
elements {Bn} can be overcomplete; that is, the number of basis
elements N can be greater than the number of pixels in I.

Using this principle, Olshausen and Field (1996) learned a
dictionary of basis elements from a random sample of natural
image patches. Specifically, they collected a large number of
12 × 12 image patches {Im,m = 1, . . . ,M} from pictures of
natural scenes, and learned {Bn,n = 1, . . . ,N} (with N > 144)
by minimizing the objective function

M∑
m=1

[∥∥∥∥∥Im −
N∑

n=1

cm,nBn

∥∥∥∥∥
2

+ λ

N∑
n=1

S(cm,n)

]
(6)

over both {Bn} and {cm,n}. Here λ is a tuning parameter, and∑
n S(cm,n) measures the sparsity of the coefficients {cm,n,n =

1, . . . ,N}. The most natural sparsity measure is the number
of nonzero elements in {cm,n}, that is, S(c) = 0 if c = 0 and
S(c) = 1 if c 	= 0. This is the l0-norm of the sequence {cm,n,n =
1, . . . ,N}. For computational convenience, one may choose l1-
norm (Chen, Donoho, and Saunders 1999) or other functions
to approximate the l0-norm, so that gradient-based algorithms
can be used for minimization. The basis elements learned by
Olshausen and Field (1996) resemble the Gabor wavelets; that
is, for each learned Bn, we can approximate it by the sine or
cosine component of a Gabor wavelet Gx,s,θ for some (x, s, θ)

with small approximation error.
Suppose that the dictionary of basis functions is already

given [e.g., a dictionary of Gabor wavelets {Gx,s,θ }]; then com-
puting the sparse coding of an image I amounts to selecting a
small number of basis functions from the dictionary so that the
least squares regression of I on these selected basis functions
has a very small residual error. This is the variable selection
problem in linear regression.

A statistical formulation is the generative model (Lewicki
and Olshausen 1999)

I =
N∑

n=1

cnBn + ε, C = (cn,n = 1, . . . ,N) ∼ p(C), (7)

where p(C) is often assumed to have independent components
and each cn is assumed to follow a mixture of a normal distrib-
ution and a point mass at 0 (Pece 2002; Olshausen and Millman
2000). This is the Bayesian variable selection model in linear
regression (George and McCulloch 1997).

An efficient algorithm for selecting the basis elements to
code a given image is the matching-pursuit algorithm (Mal-
lat and Zhang 1993), which is a stepwise forward-regression
algorithm. Assume that all of the basis elements are normal-
ized to have unit L2 norm. The algorithm starts from the empty
set of basis elements. At the kth step, let {B1, . . . ,Bk} be
the set of elements selected, with coefficients {c1, . . . , ck}. Let
ε = I − (c1B1 + · · · + ckBk). Then we choose an element Bk+1

from the dictionary so that the inner product 〈ε,Bk+1〉 is maxi-
mum among all of the elements in the dictionary. Then we add
Bk+1 to the current set of elements and record its coefficient,
ck+1 = 〈ε,Bk+1〉. We repeat this process until ‖ε‖2 is less than
a prefixed threshold. Chen et al. (1999) have provided a more
sophisticated computational method.

Figure 6 illustrates the sparse coding representation using
the matching-pursuit algorithm. Figure 6(a) is an observed
185 × 250 image. Figure 6(b) is the image reconstructed by
c1B1 + · · · + cKBK using the matching-pursuit algorithm. Here
K = 343, and the 343 elements are selected from a dictio-
nary similar to those Gabor wavelets illustrated in Figure 3
(Young 1987; Wu, Zhu, and Guo 2002). Thus there are 185 ×
250/343 ≈ 135 folds of dimension reduction in this sparse cod-
ing. Part (c) displays a symbolic representation of the selected
343 basis elements, with each element represented by a bar of
the same location, orientation, and length. The intensity of the
bar is proportional to the magnitude of the corresponding coef-
ficient.

From Figure 6(c), it is evident that the selected basis ele-
ments target the edge-bar structures in the image. Recall that in

(a) (b)

(c) (d)

Figure 6. The sparse coding representation using the match-
ing-pursuit algorithm. (a) An observed 185 × 250 image. (b) The im-
age reconstructed by 343 linear basis elements selected by the match-
ing-pursuit algorithm. (c) A symbolic sketch in which each selected
basis element is represented by a bar of the same location, orienta-
tion, and length. (d) An edge-bar map created by the edge-bar detector
described in Section 2.1. There are 4,099 edge-bar points.

TECHNOMETRICS, AUGUST 2007, VOL. 49, NO. 3



STATISTICAL PRINCIPLES IN IMAGE MODELING 255

Section 2.1, the edge-bar points are detected by the locally best-
tuned Gabor wavelets. One may ask whether the sparse coding
principle offers anything more than edge detection. The answer
lies in sparsity. Figure 6(d) displays the map of edge-bar points
detected at a small scale. This edge map may be more visually
pleasing than Figure 6(c); however, there are 4,099 edge points,
far more than the number of elements in sparse coding (343).
To represent a local shape in Figure 6(a), a few basis elements
are sufficient, but a large number of edge points is required
for this task. From a modeling perspective, it is much easier
to model a low-dimensional structure than a high-dimensional
structure. Such models have been studied by Wu et al. (2002),
Guo, Zhu, and Wu (2003a,b), Wang and Zhu (2004), and Zhu,
Guo, Wang, and Xu (2005). We discuss object modeling in Sec-
tion 4.1. (See also Candes and Donoho 1999 and Huo and Chen
2005 for curvelet and beamlet systems for sparse coding.)

3.2 Minimax Entropy Principle: Beyond
Spectral Analysis

The minimax entropy principle was adopted by Zhu et al.
(1997) for modeling textures. For convenience, we assume in
this section that I is a stationary texture image defined on a fi-
nite lattice D with |D| pixels; for instance, D = {1, . . . ,M} ×
{1, . . . ,N}, so |D| = M × N. A popular choice of texture statis-
tics is the marginal histograms of wavelet coefficients (Heeger
and Bergen 1995). Let {Gk, k = 1, . . . ,K} be a set of kernel
functions—for example, the Gabor sine and cosine functions
Gs,θ defined in Section 2.2. Let Hk be the marginal histogram
of the convoluted image I∗Gk. Specifically, we divide the range
of [I ∗ Gk](x) into T bins �1, . . . ,�T , so that

Hk,t(I) =
∑

x

δ
([I ∗ Gk](x) ∈ �t

)
, t = 1, . . . ,T, (8)

where δ(·) is the indicator function. Let hk,t(I) = Hk,t(I)/|D| be
the normalized marginal histogram of I ∗Gk. For simplicity, we
write Hk = (Hk,t, t = 1, . . . ,T) and hk = (hk,t, t = 1, . . . ,T).

Wu, Zhu, and Liu (2000) defined the following image ensem-
ble: 
 = {I : hk(I) = hk(Iobs), k = 1, . . . ,K}. If the set of mar-
ginal histograms {hk} captures the texture information in Iobs,
then all the images in the ensemble 
 should share the same
texture pattern. Thus we can model the image Iobs as a random
sample from the uniform distribution over 
. Figure 7 shows an
example of this. Figure 7(a) is the observed image Iobs, whereas
Figure 7(b) is an image randomly sampled from 
, where {Gk}

(a) (b)

Figure 7. Observed image Iobs (a) and a random image sampled
from the image ensemble 
 = {I : hk(I) = hk(Iobs), k = 1, . . . ,K} (b).

is a set of Gabor kernel functions {Gs,θ }. Although the sampled
image in Figure 7(b) is a different image than the observed one
in Figure 7(a), the two images share identical texture patterns
judged by human visual perception (see Zhu, Liu, and Wu 2000
for details).

In terms of the image ensemble 
, the meaning of the mini-
max entropy principle can be stated as follows:

1. For a fixed set of kernel functions {Gk}, the maximum
entropy model is the uniform distribution over 
.

2. To select the set of kernel functions {Gk, k = 1, . . . ,K}
(with prespecified K) from a dictionary (e.g., a dictionary
of Gabor functions), we want to select the set {Gk, k =
1, . . . ,K} to minimize the volume of 
, (i.e., |
|).

For the uniform distribution over 
, its entropy is log |
|,
which is also the negative log-likelihood. By minimizing the
volume of 
, we are minimizing the entropy of the correspond-
ing uniform distribution or maximizing its log-likelihood.

Although intuitively simple, the constrained image ensemble

 or its entropy log |
| is computationally difficult to handle.
As pointed out by Wu et al. (2000), if the image size |D| is large,
then the uniform distribution over the constrained ensemble 


can be approximated by an unconstrained statistical model,

p(I;�) = 1

Z(�)
exp

{
K∑

k=1

〈λk,Hk(I)〉
}

, (9)

where � = (λk, k = 1, . . . ,K), λk = (λk,t, t = 1, . . . ,T), and
Z(�) is the normalizing constant to make p(I;�) integrate to
1. Here � can be estimated by maximizing the log-likelihood
log p(Iobs;�), which amounts to solving the estimating equa-
tion E�[Hk(I)] = Hk(Iobs) for k = 1, . . . ,K. The entropy
log |
| can be approximated by the negative log-likelihood of
the fitted model log p(Iobs;�). Thus the minimax entropy prob-
lem is equivalent to selecting K kernel functions {Gk} and com-
puting the corresponding {λk} to maximize the log-likelihood
log p(Iobs;�).

An intuitive explanation for the approximation to the uni-
form distribution over 
 by a statistical model (9) is that un-
der p(I), hk,t(I) = Hk,t(I)/|D| = ∑

x δ([I∗Gk](x) ∈ �t)/|D| →
Pr([I ∗ Gk](x) ∈ �t) as |D| → ∞, if ergodicity holds. Here er-
godicity means that the spatial averages go to the corresponding
fixed expectations; that is, the random fluctuations in the spa-
tial averages diminish in the limit. Because p(I) assigns equal
probabilities to images with fixed values of {hk(I)}, p(I) goes to
a uniform distribution over an ensemble of images I with fixed
{hk(I)}.

The model (9) generalizes early versions of Markov random-
field models (Besag 1974; Geman and Graffigne 1987). An-
other way to express (9) is p(I) ∝ ∏

k,x fk([I ∗ Gk](x)), where
fk is a step function over the bins of the histogram Hk such that
fk(r) ∝ exp{λk,t} if r ∈ �t. This is similar to the form of projec-
tion pursuit density estimation (Friedman 1987) except that for
each fk, there is the product over all pixels x.

Zhu et al. (1997) proposed a filter pursuit procedure to add
one filter or kernel function Gk at a time to approximately max-
imize the log-likelihood log p(Iobs;�) or minimize the entropy
log |
|. Figure 8 displays an example of filter pursuit proce-
dure; (a) is the observed image, and (b)–(e) are images sampled
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(a) observed (b) k = 0 (c) k = 2 (d) k = 3 (e) k = 7

Figure 8. Filter pursuit: Adding one filter at a time to reduce the entropy. (a) The observed image. (b)–(e) Images sampled from the fitted
models.

from the fitted models p(I;�) corresponding to an increasing
sequence of the filter set {G1, . . . ,Gk} for k = 0, . . . ,7. Specifi-
cally, for each k, after fitting the model p(I;�) to the observed
image for filters {G1, . . . ,Gk}, we sample an image from the fit-
ted model p(I;�). With k = 0 filter, the sampled image is white
noise. With k = 7 filters, the sampled image in (e) is perceptu-
ally equivalent to the input image. Della Pietra, Della Pietra,
and Lafferty (1997) described earlier work on introducing fea-
tures into the exponential models.

One may ask what is in the marginal histograms defined in
(8) that is beyond the spectrum information extracted by the
Gabor kernel functions. Without loss of generality, let J = I∗G,
where G is the Gabor function defined in Section 2.1. Suppose
that we normalize the sine and cosine parts of G so that both
have mean 0 and unit L2 norm. Let us consider the marginal
distribution of |J(x)|2 under the following three hypotheses:

Hypothesis 0: I(x) is a white noise process, that is, I(x) ∼
N(0, σ 2) independently.

Hypothesis 1: I(x) is a plane wave I(x) = cos(x1 + φ) prop-
agating along the x1 direction at the unit frequency, which
is the frequency of the wave component of G.

Hypothesis 2: I(x) is a step-edge function I(x) = δ(x1 > 0),
where δ is the indicator function.

Under hypothesis 0, the real and imaginary parts of J(x) fol-
low independent normal distribution N(0, σ 2), so |J(x)|2 fol-
lows σ 2χ2

2 , or the exponential distribution with E[|J(x)|2] = σ 2

and var[|J(x)|2] = σ 4. This conclusion still holds as long as I(x)
is a “locally white” stationary Gaussian process, in the sense
that the spectrum of the process is a constant within the fre-
quency band covered by G. This is because J does not con-
tain frequency content of I outside this frequency band. There-
fore, for the marginal distribution of |J(x)|2, E[|J(x)|2] cap-
tures the average spectrum over the frequency band of G, and
var[|J(x)|2] = E2[|J(x)|2] if the process is locally white.

Under hypothesis 1, I(x) = [eiφeix1 + e−iφe−ix1]/2; that is, it
has two frequency components at (1,0) and (−1,0). Ĝ(ω) is
centered at (1,0) with standard deviations 1/σ1 and 1/σ2. As-
sume that 1/σ1 is sufficiently small so that Ĝ does not cover
(−1,0). Then J(x) = Ĝ(1,0)eiφeix1 . Thus |J(x)|2 = Ĝ(1,0)2,
which is a constant, and var[|J(x)|2] = 0 < E2[|J(x)|2]. There-
fore, a small marginal variance of J(x) indicates the possible
presence of a periodic component within the frequency band
covered by Ĝ.

Under hypothesis 2, it is clear that |J(x)|2 > 0 only if |x1|
is small compared with σ1, and |J(x)|2 achieves its maximum

at the edge point x1 = 0. If |x1/σ1| is large, so that the corre-
sponding Gabor wavelet is away from the edge, then J(x) = 0.
The marginal histogram of |J(x)|2 has a high probability to be 0
and a low probability to be significantly greater than 0. For such
a distribution, var[|J(x)|2] > E2[|J(x)|2] for a random point x.

We may consider hypothesis 0 a null hypothesis of locally
white Gaussian process. Hypothesis 1 is an alternative periodic
hypothesis, and hypothesis 2 is an alternative edge hypothe-
sis. The two alternative hypotheses are extremes of two direc-
tions of departure from the null hypothesis. Dunn and Higgins
(1995) derived a class of marginal distributions for image pat-
terns along the direction toward hypothesis 1, and Srivastava,
Grenander, and Liu (2002) derived a class of marginal distrib-
utions for image patterns along the direction toward hypothesis
2. Biological vision recognizes patterns along both directions.
There are V1 cells that are sensitive to edge and bar patterns
(Hubel and Wiesel 1962). There is also a small portion of V1
cells that respond to periodic grating patterns but not to edge
patterns (Petkov and Kruizinga 1997). Both types of cells can
be modeled by combining Gabor wavelets.

For a set of {Gs,θ } that paves the frequency domain (as illus-
trated in Fig. 5), let Js,θ = I ∗ Gs,θ . Then the set of marginal
averages {E[|Js,θ (x)|2]} captures the spectrum of I over the fre-
quency bands covered by these {Gs,θ }. If we constrain the set
of {E[|Js,θ (x)|2]}, then the corresponding image ensemble is ap-
proximately a Gaussian process with a smooth spectrum. If we
further constrain {var[|Js,θ (x)|2]}, then we add new informa-
tion about the two directions of departures from the smooth-
spectrum Gaussian process. Spectrum and non-Gaussian statis-
tics of natural images also have been studied by Ruderman and
Bialek (1994), Simoncelli and Olshausen (2001), and Srivas-
tava, Lee, Simoncelli, and Zhu (2003). Portilla and Simoncelli
(2002) described the use of joint statistics for texture modeling.

For an image patch, the issue of whether to summarize it by
marginal histograms or to represent it by sparse coding arises.
Figure 9 displays an example of this situation. Here Figure 9(a)
is the observed 256 × 256 image, Figure 9(b) is a random im-
age from the ensemble constrained by the marginal histograms
of Gabor wavelets, and Figure 9(c) is the image reconstructed
by the sparse coding model using 1,265 wavelet elements. Al-
though Figure 9(b) captures some edge information, the mar-
ginal histograms are implicit in the sense that by pooling the
marginal histograms, we discard all of the position information.
The sparse coding model captures the local edges at different
positions explicitly and preserves the local shapes. It would be
interesting to study the transition between the implicit marginal
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(a) (b) (c)

Figure 9. (a) The observed 256 × 256 image. (b) A random sample from the image ensemble constrained by the marginal histograms of
Gabor wavelets. (c) Reconstructed image by the sparse coding model using 1,265 wavelet elements.

histograms and the explicit sparse coding. Guo et al. (2003a,b,
2007) have attempted to explain this issue.

3.3 Meaningful Alignment Principle: Beyond
Marginal Properties

The sparsity and marginal histograms studied in the previous
two sections are marginal properties of the wavelet coefficients.
They do not capture the joint properties of wavelet coefficients.
The meaningful alignment principle studied by Moisan et al.
(2000) is intended to capture these joint properties.

One particular type of joint property studied by Moisan et
al. (2000) is the alignment of local orientations on line seg-
ments in natural images. For a pixel x, its orientation θ(x, s)
at scale s is defined in Section 2.1. The alignment event is de-
fined in terms of the coincidence of the orientations of a set
of pixels. Specifically, consider any two pixels a and b, and
let θ(a,b) be the orientation of the line segment that connects
a and b. We can sample a number of equally spaced pixels
a = x1, x2, . . . , xl = b on this line segment (a,b) and compute
their orientations θ1, θ2, . . . , θl. Here θi is said to be aligned
with θ(a,b) if |θi − θ(a,b)| ≤ α, where α is a prespecified
threshold. We then compute S = ∑l

i=1 δ(|θi − θ | ≤ α), that is,
the number of sampled pixels whose orientations are aligned
with θ(a,b).

Then we want to determine whether S is sufficiently large
for (a,b) to be a meaningful line segment. For this purpose,
we may choose a threshold k(l) = min{k : Pr(S ≥ k) ≤ ε/|D|2},
where Pr(A) is the probability of an event A under the hypoth-
esis that the image is white noise and |D| is the total num-
ber of pixels, so that |D|2 bounds the total number of poten-
tial line segments (a,b). If S ≥ k(l), then (a,b) is said to be
an ε-meaningful line segment. In a completely random image,
the expected number of falsely declared ε-meaningful line seg-
ments is less that ε. For computational convenience, we can
sample the equally spaced pixels a = x1, x2, . . . , xl = b so that
in the random image, θ1, θ2, . . . , θl are independent. Then S fol-
lows a binomial distribution, and relevant probabilities can be
calculated or approximated in closed form.

Generally speaking, an ε-meaningful event A is such that in
a white noise image, the expected number of such events is
less than ε. This means that Pr(A) is small under the complete-
randomness hypothesis. The meaningful alignment principle is
closely related to the hypothesis testing (or, more precisely,
multiple hypothesis testing) problem in statistics.

4. CONNECTIONS AMONG THREE
STATISTICAL PRINCIPLES

The three statistical principles reviewed in the previous sec-
tion can be connected by a common perspective, where the goal
is to identify a small number of most powerful constraints to re-
strict the observed image into an image ensemble of a minimum
volume. Also see the recent article by Wu et al. (2007), which
unifies the three statistical principles in a theoretical framework
combining hypothesis testing and statistical modeling.

4.1 Pooling Projections

First, we consider the sparse coding principle. Given the dic-
tionary of basis elements, this principle seeks to identify a small
number of basis elements {B1, . . . ,BK} from the dictionary to
code the observed image I with small error. Geometrically,
this means that I projects most of its squared norm onto the
subspace spanned by {B1, . . . ,BK}. Thus we can view sparse
coding as constraining the projection of I onto the subspace
spanned by {B1, . . . ,BK}.

Specifically, for any image I defined on a finite grid D of
|D| pixels, we may vectorize I to make it a |D|-dimensional
vector. Similarly, we also can vectorize B1, . . . ,BK into |D|-
dimensional vectors. Let rk = 〈I,Bk〉, and let R = (r1, . . . , rK)′
be the K-dimensional vector of projection coefficients. Let
B = (B1, . . . ,BK) be the (|D| × K)-dimensional matrix whose
kth column is Bk. Then R = B′I. Let H = B(B′B)−1B′ be the
projection matrix. Then HI = B(B′B)−1R is the projection of
I onto the subspace spanned by {B1, . . . ,BK}, and ‖HI‖2 =
R′(B′B)−1R.

Let B̄ be an (|D| × (|D| − K))-dimensional matrix whose
columns are orthonormal vectors that are also orthogonal to
all of the Bk’s. Let R̄ = B̄′I. Then ‖R̄‖2 = ‖I‖2 − ‖HI‖2 =
‖I‖2 − R′(B′B)−1R.

Consider the image ensemble


 = {
I :‖I‖2 = |D|σ 2 = ‖Iobs‖2,B′I = R = B′Iobs

}
. (10)

This ensemble is a sphere viewed in the (|D| − K)-dimensional
space spanned by B̄,


 = {R̄ :‖R̄‖2 = |D|σ 2 − R′(B′B)−1R}. (11)

Let

γ 2 = |D|σ 2 − R′(B′B)−1R

|D| − K
. (12)
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Then, using the formula for computing the volume of high-
dimensional sphere and Stirling’s formula, as |D| → ∞,

1

|D| − K
log |
| → log(

√
2πeγ ), (13)

where |
| is the volume of 
.
Thus, to find the K basis functions B to constrain Iobs within

a minimum-volume 
, we should minimize the radius of the
sphere 
 or, equivalently, the least squares error ‖Iobs‖2 −
‖HIobs‖2. This is clearly the goal of the sparse coding model
presented in Section 3.1.

Now we can connect the sparse coding model and the texture
model. In the sparse coding model, we restrict a small number
of projection coefficients, as well as the marginal variance. In
the texture model, we restrict the marginal histograms of the
projection coefficients pooled over positions. Both models seek
to restrict the observed image into an image ensemble of small
volume. The two models differ in their respective constraints. In
the sparse coding model, the constraints are on individual pro-
jection coefficients of Gabor wavelets of particular positions,
scales, and orientations. In the texture models, the constraints
are on the marginal histograms of projection coefficients of par-
ticular scales and orientations but pooled over positions; that is,
the position information is discarded.

Just as the constrained texture ensemble can be approxi-
mated by an unconstrained Markov random field, the con-
strained sphere also can be approximated by an unconstrained
statistical model, which is nothing but a white noise model
R̄ ∼ N(0, γ 2I|D|−K), where I|D|−K is the (|D|− K)-dimensional
identity matrix. This is because under the white noise model,
‖R̄‖2/(|D| − K) → γ 2 as |D| → ∞ according to the law of
large numbers, and the white noise model assigns equal proba-
bilities to all of the R̄’s with fixed ‖R̄‖2. The log-volume of the
sphere 
 in (13) is the same as the negative log-likelihood of
the white noise model.

This leads to a statistical model for image patterns in
the object regime, where we can select the basis elements
{B1, . . . ,BK} and estimate the joint distribution f (r1, . . . , rK) of
the projection coefficients, by learning from a sample of train-
ing image patches of the same class of objects, for example, a
sample of 40 × 40 image patches of cars, where the scales and
locations of the objects in these image patches are roughly fixed
and the objects are roughly aligned.

Specifically, consider the change of variable(
R
R̄

)
= (B, B̄)′I. (14)

We can model (R, R̄) by f (R, R̄) = f (R)f (R̄|R), where f (R̄|R) ∼
N(0, γ 2I|D|−K), with γ 2 computed according to (12). Then
the probability distribution of I is p(I) = f (R, R̄)det(B′B)1/2,
where det(B′B)1/2 is the Jocobian of the change of variable
(14). The log-likelihood for an image patch I is

log p(I) = log
[
f (R, R̄)det(B′B)1/2]

= log f (R) − 1

2
(|D| − K) log(2πeγ 2)

+ 1

2
log det(B′B). (15)

Figure 10. Difference between the object model and the texture
model. In the object model, projection coefficients of certain basis el-
ements (subject to local shifting) are pooled over multiple training im-
ages. In the texture model, projection coefficients of basis elements are
pooled over positions in a single image.

The goal is to select B = (B1, . . . ,BK) from the dictionary
and estimate f (R) from the training images by maximizing the
log-likelihood (15) over independent training images. In other
words, for each class of objects, we want to model it as a com-
position of a small number of basis elements. We may allow
these basis elements to change their positions, scales, and ori-
entations slightly to account for local deformations. Tolerance
of such deformations has been observed in the complex cells in
V1 (Lampl et al. 2004; Riesenhuber and Poggio 1999).

The foregoing model is different from the more commonly
assumed form in sparse coding, I = BC + ε, C ∼ p(C), ε ∼
N(0, I|D|) (Lewicki and Olshausen 1999; Pece 2002; Olshausen
and Millman 2000; Zhu et al. 2005), which models the recon-
struction coefficients, C, instead of the projection coefficients,
R. Modeling C is technically difficult, because C is a latent
variable that needs to be inferred, and p(I) must be obtained
by integrating out C. In contrast, R can be obtained deter-
ministically through R = B′I, and the distribution of p(I) can
be obtained explicitly by the change of variable. The model
bears some similarity to independent component analysis (Bell
and Sejnowski 1997) and projection pursuit density estimation
(Friedman 1987), but has a different mathematical form and has
the capability of modeling the composition and deformation of
the basis elements.

We conclude this section by comparing the foregoing object
model with the texture model. In the object model, we pool the
distribution of projections coefficients f (R) for a number of ba-
sis elements at certain positions (subject to local shifting) over
multiple training image patches. In the texture model, we pool
the marginal distributions of projection coefficients over the po-
sitions of a single texture image. The difference is illustrated in
Figure 10.

4.2 Identifying Alignments

In this section we consider the meaningful alignment princi-
ple, which also can be understood as searching for constraints
that restrict the observed image into an image ensemble of small
volume.

Let 
0 be the set of images defined on a grid D with fixed
marginal variance 
0 = {I :‖I‖2 = |D|σ 2}. Let A1, . . . ,AK be
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Figure 11. In the object regime, the basis elements (illustrated as
small bars) around the vertical arrow are aligned (subject to local shift-
ing) across multiple images. In the geometry regime, those basis ele-
ments that are away from the vertical arrow are aligned within a single
image.

K statements about the alignment events in the observed image
Iobs ∈ 
0. Mathematically, each Ak is a subset of 
0 that con-
tains all of the images satisfying the statement Ak. To find infor-
mative A1, . . . ,AK , we want the volume of 
 = A1 ∩ · · · ∩ AK

to be as small as possible. Under the uniform distribution over

0, the probability is p(
) = |
|/|
0|. For a large image lat-
tice, the uniform distribution over 
 is equivalent to a Gaussian
white noise model; thus p(
) is also the probability of 
 under
the white noise hypothesis. Because |
| = p(
)|
0|, searching
for alignment events that are very rare under the white noise
hypothesis is equivalent to searching for alignment events to
constrain the observed image into an image ensemble of small
volume.

The alignment patterns can be found in the geometry regime,
where the orientations of locally best-tuned Gabor wavelets are
highly aligned. The probability for such alignment is small un-
der the white noise hypothesis.

The alignments also can be found in the object regime, except
that alignments of the locally best-tuned Gabor wavelets are ob-
served across multiple training image patches of the same class
of objects instead of in alignment within a single image. Fig-
ure 11 illustrates the difference. The basis elements (shown as
small bars) around the vertical arrow can be aligned across mul-
tiple images, but within a single image, such as the one at the
bottom, those basis elements near the vertical arrow do not have
significant alignment, and thus the pattern cannot be detected
by meaningful alignment without the knowledge learned from
multiple training images. But the alignment pattern of the basis
elements that are away from the vertical arrow can be detected
from this image without any specifically learned knowledge.

Both the geometry and object regimes can be modeled as
compositions of Gabor wavelets. Patterns in the geometry
regime are compositions of highly aligned Gabor wavelets,
and patterns in the object regime are compositions of Gabor
wavelets that are not highly aligned within a single image. In
this sense, edge and region patterns are just simple generic ob-
ject patterns. In comparison, images in the texture regime ex-
hibit no meaningful alignments or a priori known compositions
and are summarized by pooling the marginal statistics that dis-
card the position information.

(a)

(b)

(c)

(d)

Figure 12. Alignment over scale. (a) A horizontal slice of an image
of a vertical bar, I(x) versus x1. (b) Energy A(x, s) versus x1. (c) Phase
φ(x, s) versus x1. Each curve corresponds to a scale s. (d) Positions of
edge-bar points over the scale. The two edge points merge into a bar
point at a certain scale.

Another type of alignment in the geometry regime also can
be very important: the alignment over scales (Witkin 1983;
Lindberg 1993) or frequencies (Morrone, Ross, Burr, and
Owens 1986). Such an alignment was used by Kovesi (1999)
to detect edges and corners. Figure 12 illustrates the basic idea.
Figure 12(a) shows a horizontal slice of an image I(x) of a ver-
tical bar. The horizontal axis is x1, and the vertical axis is I(x).
Figures 12(b) and 12(c) display the energy A(x, s) and phase
φ(x, s) on this slice. The definitions of A(x, s) and φ(x, s) were
provided in Section 2.1. In Figures 12(b) and 12(c), each curve
corresponds to A(x, s) or φ(x, s) for a fixed s. It is evident that
an edge-bar point x̃ [i.e., a local maximum in energy A(x, s)]
can exist over a range of scales. Within this range, the phase
φ(x̃, s) and orientation θ(x̃, s) remain constant over different
scales s. For an edge point, the energy A(x̃, s) also remains
constant (subject to discretization error) if the Gabor sine and
cosine wavelets are normalized to have unit L1 norm. If the Ga-
bor wavelets are normalized to have unit L2 norm, then A(x̃, s)
increases over s within the range of alignment. Figure 12(d)
traces the positions of the two edge points over scale s. In this
plot, the horizontal axis is x1 and the vertical axis is s. We can
see that at a certain scale, the two edge points merge into a bar
point. Beyond this scale, the orientation and the phase continue
to be aligned at this bar point.

The alignment over scale can be important for modeling the
coarse-to-fine generative model shown in Figure 2. For exam-
ple, an edge pattern at a certain scale can be expanded into
larger edge patterns at a finer scale. A bar pattern can be ex-
panded into two edge patterns at a finer scale. More generally,
an object pattern may be composed of several Gabor wavelets,
each of which may be expanded into an edge or bar pattern.
This point of view can be useful for modeling the relationship
between schemes 1 and 2 discussed in Section 1.3.
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Multiscale hierarchical models of wavelet coefficients have
been developed by De Bonet and Viola (1997) for texture syn-
thesis and recognition and by Buccigrossi and Simocelli (1999)
for image compression and denoising. What we are propos-
ing here is to add the labels of the recognized patterns in the
coarse-to-fine generative model. Needless to say, we remain far
away from such a model, and much theoretical and experimen-
tal work needs to be done. A preliminary attempt toward such a
model has been made by Wang et al. (2005).

5. DISCUSSION

5.1 Classification Rule or Generative Model?

There are two major schools of thoughts on statistical learn-
ing in computer vision. One school emphasizes learning gen-
erative models (Cootes, Edwards, and Taylor 2001; Doretto,
Chiuso, Wu, and Soatto 2003; Isard and Blake 1998; Wang and
Zhu 2004) and deriving the likelihood or the posterior distri-
bution Pr(labels|image patches) from the learned models. The
other school emphasizes learning Pr(labels|image patches) or,
more simply, the classification rules: Label = f (image patch)
directly (Amit and Geman 1997; Viola and Jones 2004), with-
out learning the generative models. Attempts have been made
to combine these two schools of methods (Tu and Zhu 2002;
Tu, Chen, Yuille, and Zhu 2005).

Comparing these two schools shows that the second school is
more direct than the first and is very powerful for classification
tasks in which the variable “label” is a category that takes values
in a finite or binary set. But for general vision tasks, the variable
“labels” has a much more complex structure than a category; for
example, it can have a hierarchical structure with compositional
and spatial organizations, as illustrated in Figure 2(b). For such
a complex structure, learning Pr(labels|image patches) may not
be practical; learning the coarse-to-fine generative model may
be simpler and more natural.

5.2 Low-Level and Midlevel Vision?

Vision tasks are roughly classified into low-level, mid-level,
and high-level tasks. Low-level tasks involve detecting local
image structures (e.g., edges, corners, junctions) or detecting
what Julesz called “textons” (Julesz 1981), or what Marr called
“symbols” or “tokens” (Marr 1982). Midlevel tasks involve ex-
tracting curves and contours from the image or segmenting the
image into regions of coherent intensity patterns. High-level
tasks involve recognizing objects and their shapes and poses.

Detecting local image structures in low-level tasks can be dif-
ficult, because natural images are full of ambiguities if we look
only at a local image patch at a fixed resolution. Extracting con-
tours or regions from images also can be difficult, even with
the help of regularity terms or generic prior distributions (Kass,
Witkin, and Terzopoulos 1987; Mumford and Shah 1989) to en-
force smoothness and continuity. The low-level and midlevel
tasks are often considered the foundation for the high-level
tasks of object recognition, but at the same time, the ambigu-
ities in low-level and midlevel tasks can be resolved only after
the specific objects are recognized.

The Bayesian framework discussed in Section 1.3 can be an
elegant framework for resolving the mutual dependencies be-
tween the tasks at different levels. In this framework, object pat-
terns and edge patterns are labeled simultaneously at different
layers. The edge patterns are not treated as being more funda-
mental than the object patterns. Although an object pattern can
be composed of edge patterns at a fine resolution, at a coarse
resolution an object pattern occupies an image patch that is no
larger than the image patch of an edge pattern at a fine resolu-
tion. Prior knowledge of how the object patterns are composed
of the edge patterns aids the labeling of both types of patterns.
Intuitively, this prior knowledge serves as a constraint to help
eliminate the ambiguities in the local image patches at different
layers.
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