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Background

I Residual connections common in modern NNs: but
theoretical justifications lacking.

I Fewer parameters, better generalization observed
empirically in many residual architectures.

Problem Description

I Input (x, y) ∈ Rd × {±1}, binary classification under
cross-entropy loss `(z) := log(1 + exp(−z)).

I fW (x) = output of L + 1 hidden layer residual network,

x1 = W>
1 x,

xl = xl−1 + θσ(W>
l xl−1),

l = 2, . . . , L,

xL+1 = W>
L+1xL,

fW (x) = v>xL+1,

σ = ReLU.

I Layer weights Wl ∈ Rml−1×ml trained by G.D.:

W
(t+1)
l = W

(t)
l − η∇Wl

LS(W1, . . . ,WL+1),

LS(W ) := LS(W1, . . . ,WL+1) =
1

n

n∑
i=1

`(yi · fW (xi)),

ES(W ) :=
1

n

n∑
i=1

−`′(yi · fW (xi)) = surrogate error.

Assumptions

I Gaussian initialization:
[
W

(0)
l

]
i,j

i.i.d.∼ N(0, 2/ml).

I Separability by random feature model: there exists

f (x) = Eu∼N(0,1)[c(u)σ(u>x)], ‖c(·)‖∞ ≤ 1,

such that y · f (x) ≥ γ > 0 for all (x, y) ∈ suppD.
I Normalized input data: ‖x‖2 = 1 ∀x.
I Widths of same order: mL+1 = Θ(mL); denote

smallest layer width as m = mL ∧mL+1.
I Residual scaling: θ = 1/Ω(L).

Main Theorems

I Weights stay close to init. and bound for
surrogate error: denote τ -neighborhood of init. by

W(τ ) :=
{

(W1, . . . ,WL+1) :
∥∥∥Wl −W (0)

l

∥∥∥
F
≤ τ ∀l

}
.

Let Õ hide logarithmic terms in L, n, δ−1.
If τ = Õ(γ12), η = Õ(τm−

1
2 ∧ γ4m−1), and

Kη = Õ(τ 2γ4), then provided m ≥ Õ(τ−
4
3dγ−2), w.h.p.

(i) W (k) ∈ W(τ ) for all k ∈ [K].

(ii) There exists k ∈ {0, . . . , K − 1} with

ES(W (k)) ≤ C ·m−1
2 · (Kη)−

1
2
(
log n

δ

)1
4 · γ−2.

I Bound for Rademacher complexity in W(τ ): for
m ≥ Õ(τ−

4
3d) and fW(τ ) := {fW : W ∈ W(τ )},

Rn

(
fW(τ )

)
≤ C2

(
τ

4
3

√
m logm +

τ
√
m√
n

)
.

I Bound for test error: for m ≥ m∗res,

m∗res = Õ(poly(γ−1)) ·max(d, ε−14),

nres = Õ(poly(γ−1)) · ε−4,

ηres = O(γ4 ·m−1), Kres = Õ(poly(γ−1)) · ε−2,

G.D. with step size ηres finds W (k∗), k∗ ≤ Kres, s.t.

E[1(y 6= sign (fW (k∗)(x)))] ≤ 2E[−`′(yfW (k∗)(x)] ≤ ε.

Comparison with Non-Residual Results

I Above results at most log dependence on L.
I Width and sample requirement is reduced:

m∗nonres > poly(L)m∗res, nnonres > poly(L)nres.

I Step size and iterations required are better:

ηnonres < poly(L−1))ηres, Knonres > poly(L)Kres.

I Distance from initialization is key to above bounds.

τnonres > poly(L)τres, τres = Õ(γ−4ε−1m−1/2).

Key Ingredients for Proof

I Backpropagation and forward propagations are
bounded independent of depth: if xl represents
layers from input x to l-th layer, and bl(x) represents
layers l to final layer, then

‖xl‖2 ≤ C, ‖bl(x)‖2 ≤ C.

I Network output is almost linear in W(τ ): for m

large and Ŵ , W̃ ∈ W(τ ),

f
Ŵ

(x) ≈ f
W̃

(x) +
〈
Ŵ − W̃ ,∇WfW̃ (x)

〉
.

I Loss is Lipschitz and almost convex in W(τ ): for

m large and Ŵ , W̃ ∈ W(τ ),∥∥∥∇Wl
LS(Ŵ )

∥∥∥
F
≤ Cθ1(2≤l≤L)

√
m,

LS(Ŵ )− LS(W̃ ) &
〈
Ŵ − W̃ ,∇WLS(W̃ )

〉
.

I Width at most logarithmic in L is required for
above approximations, rather than usual
poly/exponential.

How Does Residual Architecture Help?

I Skip connections and scaling factor θ prevents
blowup by forcing Lipschitz constant of network output
to be bounded independent of depth:

‖xl‖2 =
∥∥(I + θΣlW

>
l xl−1)

∥∥
2
≤ (1 + Cθ) ‖xl−1‖2

≤ · · · ≤ (1 + Cθ)L ‖x‖2 .

I Representations from earlier layers are not lost
in forward propagation, allowing separability of R.F.
model in first layer to persist through all layers. If α can
separate at margin γ in first layer, then

y · 〈α, xl〉 = 〈α, x1〉 + θ
l∑

l′=2

〈
α, σ(W>

l′ xl′−1)
〉
& γ.
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