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» Residual connections common in modern NNs: but » \Weights stay close to init. and bound for Backpropagation and forward propagations are
theoretical justifications lacking. surrogate error: denote 7-neighborhood of init. by bounded independent of depth: if z; represents
izati | from input x to [-th layer, and b t
> Few.e.r par.ameters, I?etter ge.nerallzatlon observed W(r) = {(Wb W) | W, — ‘/Vl(o) | < W}. ayers from input ' to ayer, and b;(x) represents
empirically in many residual architectures. 5 F layers [ to final layer, then
Let O hide logarithmic terms in L, n, 5! |z, < C, b)), <C
. . ~ ~ ) [l|]o = 9 [ 9 .
Problem Description If 7 = O(,le), N = O(Tm_§ A 74m_1), and

» Network output is almost linear in W(7): for m

Kn = O(2~%) th ided m > O(773d~~2). w.h.p. gl s
77 (7). then provided m = O(r3dy ), w-h.p large and W W € W(T1),

» Input (z,y) € R? x {£1}, binary classification under

- k
cross-entropy loss £(z) := log(1 + exp(—2)). (') Wb e W(T) for all k € [K]. | -
» fuw(x) = output of L + 1 hidden layer residual network, (i) There exists k € {O>1° EERS B Ly W'thl fiv(z) = fip(x) + <W - W, VWfﬁ/“(f)> -
. EsWH) < C-m™2- (Kn) 2 (log2)"-y72
r, =Wy, X - > Loss is Lipschitz and almost convex in W(7): for
x) = 211 + (W, z1_1), . » Bound fonr4 Rademacher complexity in W(7): for m large and /V[Z W e W(r),
=2 ... L Fx) . m > O(773d) and fyy) = {fw: W € W(T)},
v i/ 1(2<I<L
rr = Wp2r, - e identity ) /) HVWZLS(W)HF < CfrEEEEYm,
_ T < ; : . —~ — /= = —
fw(z) =v xpy, F(x) + x R (fin) < O (T V/mlogm N ) Ls(W)—Lg(W) 2 <W — W, VWLS(W)> .
o = ReLU.
» Layer weights W, € R™—*" trained by G.D.: > Bound for test error: for m > my » Width at most logarithmic in L is required for
(411 0 ) ~ 1 above approximations, rather than usual
Wy =W =V, Lg(Wh, ..., W), Mes = N(po..y(v )) - max(d, "), poly /exponential.
| 1 - Nyes = O(pO:-Y(fY_l ' 5_47
Ls(W) = Ls(Wh,...,Wr1) = 528(% - Jw (i), Mes = O - m™), Ky = N(poly(ny—l)) g2 How Does Residual Architecture Help?
Eg(W) = lz —{0'(y; - fv(x;)) = surrogate error. G.D. with step size 1 finds W) k* < K., s.t. > Skip connectif)ns a_md §ca|ing factor ¢ prevents
n ] | I blowup by forcing Lipschitz constant of network output
— Ly # sign (fyrw(@)))] < 2B[=(y fyon(z)] < € to be bounded independent of depth:
Assumptions Comparison with Non-Residual Results ||y = H(] ™ HZZWZTCEZ—M , < (14 CO) [[a-1]],
e e e 0 ii.d. <. . <(1+COH"x,.
> Gaussian initialization: [M/l< >Lj ~ N0, 2/m). » Above results at most log dependence on L. ( el
» Separability by random feaTture model: there exists » Width and sample requirement is reduced: » Representations from earlier layers are not lost
f(z) =Eunople(wo(u z)], [le()]lo <1, Mionres > POLY(L) My, Nnonres > POLY (L) s in forward propagation, allowing separability of R.F.
such that y - f(x) > v > 0 for all (x,y) € suppD. » Step size and iterations required are better: model in first layer to persist through all layers. If a can
» Normalized input data: ||z|, =1 Vx. Noones < POWV(L ™ Ny Kromes > POIV(L) K e separate at margin -y in first layer, then

» Widths of same order: m;,; = O(my); denote
smallest layer width as m = mp A m;.

» Residual scaling: 6 =1/Q(L).

z
» Distance from initialization is key to above bounds. y - (o, 1) = (o, 11) + QZ (o, a(Wy zp_1)) 2 7.

—4_—1 —1/2).

Thonres — pOlY(L)Tresa Tres — 5(’7 c m ['=2
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