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Abstract

The simple gesture of pointing can greatly augment one’s abil-
ity to comprehend states of the world based on observations. It
triggers additional inferences relevant to one’s task at hand. We
model an agent’s update to its belief of the world based on in-
dividual observations using a partially observable Markov de-
cision process (POMDP), a mainstream artificial intelligence
(AI) model of how to act rationally according to beliefs formed
through observation. On top of that, we model pointing as
a communicative act between agents who have a mutual un-
derstanding that the pointed observation must be relevant and
interpretable. Our model measures “relevance” by defining a
Smithian Value of Information (SVI) as the utility improve-
ment of the POMDP agent before and after receiving the point-
ing. We model that agents calculate SVI by using the cognitive
theory of Smithian helping as a principle of coordinating sep-
arate beliefs for action prediction and action evaluation. We
then import SVI into rational speech act (RSA) as the utility
function of an utterance. These lead us to a pragmatic model
of pointing allowing for contextually flexible interpretations.
We demonstrate the power of our Smithian pointing model by
extending the Wumpus world, a classic AI task where a hunter
hunts a monster with only partial observability of the world.
We add another agent as a guide who can only help by marking
an observation already perceived by the hunter with a point-
ing or not, without providing new observations or offering any
instrumental help. Our results show that this severely limited
and overloaded communication nevertheless significantly im-
proves the hunters’ performance. The advantage of pointing is
indeed due to a computation of relevance based on Smithian
helping, as it disappears completely when the task is too diffi-
cult or too easy for the guide to help.

Keywords: pointing; pragmatics; joint attention; Smithian
helping; cooperation; rational speech act

Introduction
Like all animals, we understand the world by collecting ob-
servations through our individual perception, which we call
“individually perceived observations.” Being social creatures,
however, we also get observations that are pointed out to us
by others. When someone points, the addressee knows that
they and the person who initiated the pointing gesture both
get an observation, propagating a belief update based on the
observation. We call this a “jointly perceived” observation. In
this modeling paper, we use the term “observation” to refer
to the raw sensory input as in the field of artificial intelli-
gence (AI) (Kaelbling, Littman, & Cassandra, 1998). We use
the term “perception” to refer to the inference of the most
likely world state that generates the observation following the
Bayesian perspective of perception (Knill & Richards, 1996).

This paper aims to demonstrate from a computational per-
spective that the joint perception enabled by pointing is more
potent than the individual perception of the same observa-
tion. We aim to prove that insights of paternalistic helping
from developmental psychology can inspire the development
of socially capable AI systems. Also, our mathematical mod-
eling grounded in AI algorithms can scaffold future cognitive
science researches on Smithian (paternalistic) helping.

Pointing Gesture in Human Communication
“Point to a piece of paper. And now point to its shape—now to
its color—now to its number. . . . How did you do it?”

—Wittgenstein and Anscombe (1953/2001)

Until Wittgenstein called attention to its underlying com-
plexity, pointing had generally been perceived as an intu-
itive, unremarkable communicative gesture. It is among the
most conspicuous and common forms of human communica-
tion. Children point to help adults retrieve objects they were
looking for, foraging partners point out the potential loca-
tions of food to help each other, and customers point to their
empty glasses to request assistance from the server. Point-
ing is among the first communicative gestures human infants
learn to use (Butterworth, Simion, et al., 2013): at as young
as the age of one, infants use pointing to communicate infor-
mation (Liszkowski, Carpenter, Striano, & Tomasello, 2006).
Although pointing is pervasive in everyday human life, it is
rarely observed in wild animals. Human-raised great apes can
produce pointing-like gestures to invite humans to cooper-
ate with them in obtaining food (Leavens & Hopkins, 1998),
yet pointing in great apes lacks the cooperative properties of
human pointing: apes are not bothered when the partner is
distracted or non-responding (Van der Goot, Tomasello, &
Liszkowski, 2014). Chimpanzees’ failure to achieve a deep
understanding of pointing suggests that human pointing may
reveal surprising intricacy of human communication.

The same pointing act can be interpreted differently in
various contexts, which reveals two properties of pointing.
First, pointing is overloaded. As Wittgenstein and Anscombe
(1953/2001) pointed out, the same pointing gesture has many
interpretations, making the referent of pointing ambiguous
when considered in isolation. Second, pointing is indirect; a
big gap can exist between the referent and the meaning of the
pointing. The receiver must infer what to do with the refer-
ent beyond looking at it. It has been shown that by following



an adult’s pointing to a toy, young children could adaptively
decide what to do with the toy, put it away or examine it,
based on the context of the pointing (Liebal, Carpenter, &
Tomasello, 2011).

The overloadedness and indirectness of pointing enable it
to express manifold meanings with the same observation, no
new observations provided. The meaning of the pointing can
be interpreted depending on the context. This makes pointing
a powerful communicative act that can significantly facilitate
human cooperation. For example, when two hunters walk in a
forest together, the young hunter perceives a broken stick on
the ground but does not think it is relevant to the hunt. Just
the moment he is about to move on, the experienced hunter
grabs his attention and points to the same broken stick he
has already perceived. The young hunter immediately real-
izes that the broken stick is a trace of their prey. This example
highlights that joint perception enabled by pointing can evoke
richer inferences than the individual perception of the same
observation (Sperber & Wilson, 1986).

As in the above example, a crucial function of pointing is
helping. Crucially, it is a particular type of helping with two
unique characteristics. First, the helper is in a position to help
because her belief is closer to reality, not because she has any
physical advantage. Therefore, pointing must involve diverg-
ing beliefs in which the helper knows better how to improve
the helpee’s well-being. This type of helping is called pater-
nalistic helping or Smithian helping in developmental psy-
chology (Martin, Lin, & Olson, 2016), which we will intro-
duce later. Second, unlike instrumental actions, pointing does
not change the physical states at all. Its only function is to
change the helpee’s mind. Therefore, models of instrumen-
tal helping would fail to apply (Ullman et al., 2009). Instead,
we argue that it should be understood as an “utterance” in
rational speech act (RSA), a pragmatic model of language
which also views language as cooperative (Frank & Good-
man, 2012; Goodman & Frank, 2016). RSA treats an utter-
ance as an action with a utility function. The generation and
interpretation of an utterance can be modeled with the princi-
ple of maximizing expected utility from decision theory.

Due to the above two unique characteristics, we propose
to model pointing as an utterance with a utility derived from
Smithian helping for coordinating diverging beliefs.

Smithian Empathy and Helping
The concept of Smithian helping is based on Adam Smith’s
discussion of empathy. During his discussion, he compared
two types of empathy. First, he addressed Hume’s defini-
tion, which proposes that empathy is a simple resonance of
other’s feelings. In contrast to this conventional definition,
Smith proposed that true empathy involves the coordination
of mindsets between the empathizer and the agent being em-
pathized with. To better understand the two competing views
addressed in Smith’s argument, one can imagine a theoretical
example involving you and your friend. Both of you are back-
stage preparing for your friend’s performance in the school
talent show. While your friend is excited to perform, you

dread the performance because you know that he is objec-
tively bad at singing.

Hume’s conventional definition of empathy proposes that
empathy is the direct mirroring of another’s mindset (Hume,
1751/2018). In other words, the agent and subject involved in
a particular act of empathy should share the same mindset.
In the talent show example, you and your friend each have
a different perspective in regards to the same action of your
friend performing. However, according to Hume’s definition,
to successfully empathize with them, you must abandon your
personal opinion and take on your friend’s perspective.

On the other hand, Smith’s own proposed definition of em-
pathy is the act of investigating how an agent would feel if
they, in their current state of consciousness, were placed into
the target individual’s situation (Smith, 1759/2010). In the tal-
ent show example, you and your friend each hold a distinct
perspective regarding the action of your friend performing in
the talent show. When executing the Smithian empathy, you
maintain your own mindset when evaluating the action of in-
terest. As a result, empathizing involves applying your own
mindset to evaluate the situation of your friend performing.
Because you know your friend is bad at singing, your eval-
uation of how you would feel in their situation leads you to
be worried that your friend may embarrass himself on stage.
As illustrated in the example, Smithian empathy involves co-
ordinating diverging mindsets of two agents. Your act of
worrying is an attempt to coordinate your friend’s belief of
excitement about the upcoming performance with your op-
posing belief that their performance will have a bad outcome.

Smithian empathy has been explicitly extended to the well-
studied phenomenon of human behavior known as paternalis-
tic helping. Paternalistic helping involves a helper doing what
she thinks to be good to the helpee, even if that is not what
the helpee wants (Martin et al., 2016). This act involves the
coordination of two mindsets as the helper must balance the
helpee’s desire with what she personally judges to be the best
for the helpee. The helper acts to optimize the well-being of
the helpee. In the talent show example, you believe that your
friend will utterly embarrass himself if he performs. With this
belief in mind, you become anxious and feel a strong urge to
help your friend by convincing him not to perform. This ac-
tion of stopping your friend from performing is an example of
paternalistic helping as it opposes their desire to perform. You
stopping your friend is driven by a sense of worry that stems
from an opinion formed by applying your unique perspective
to your friend’s situation. On the surface, paternalistic seems
deeply related to the ability to reason about other’s beliefs,
but it is arguably more complicated. In the famous false belief
task (Wimmer & Perner, 1983), the child only needs to select
one belief to predict other’s actions. In paternalistic helping,
one not only needs to predict action with others’ beliefs but
also evaluate the actions with their own belief.

Paternalistic helping is a behavior prevalent in children that
has been well studied. It has been shown that children will
override a request if they recognize that following the request



Figure 1: Modeling pointing using Smithian coordination of beliefs: action prediction using receiver’s belief, action evalua-
tion using signaler’s belief. Numbered boxes represent key components of the model.

might harm the requester. When children interact with an-
other child who expressed a preference for chocolate over
fruit snacks but would be sick after eating chocolate, most
override the request for chocolate and offer the fruit snacks
(Martin et al., 2016). In addition, when the wrong tool is
requested, children offer the tool they believe the requester
needs, not the one they are asked for (Hepach, Benziad, &
Tomasello, 2020). These studies provide a solid theoretical
foundation on how to coordinate two beliefs in helping. We
build upon these insights and focus on cases in which helping
behavior is executed to provide information through commu-
nication, as in pointing.

Modeling Individual vs. Joint Perception
Our modeling study is directly inspired by the perception of
the broken stick in the hunting example. The ultimate goal
here is to demonstrate that an intelligent agent with joint per-
ception enabled by pointing can outperform an agent only
with individual perception in a hunting task.

We start by outlining the model of an intelligent agent that
acts based on individual perception. On top of that, we formu-
late a model of pointing for joint perception. The components
of the models are shown in Fig. 1.

Modeling Agent with Individual Perception Using
POMDP
For modeling an intelligent agent with individual percep-
tion, we use the partially observable Markov decision pro-
cess (POMDP) (Kaelbling et al., 1998). POMDP provides a
generic formulation of how an agent takes rational actions in
an uncertain environment with only limited observations. It
models two processes in the agent-environment interaction.

The first process is how an agent updates its belief of the
world state s with observations from the environment using
Bayesian inference (resulting in Box 1 in Fig. 1). A belief is
defined as a probabilistic distribution over the set of possible
states:

bpsq “ Pps|bq . (1)

This definition of belief is used in both AI (Kaelbling et al.,
1998) and cognitive modeling (Baker, Saxe, & Tenenbaum,

2011). The agent updates its belief when it gets an observa-
tion o after taking action a. Let b1 be the updated belief and s1

the next state after taking a, we have

b1
`

s1
˘

“ P
`

s1
ˇ

ˇb1
˘

“ P
`

s1|b, o
˘

9P
`

o|s1,a
˘

ÿ

sPS
P
`

s1|a,s
˘

Pps|bq. (2)

This belief update only involves individual perception be-
cause the agent treats the observation only as being generated
by its own interaction with the environment. It does not view
it as a referent of any communicative intention as in Grice
(1975), even with the presence of a second agent.

The second process is the decision model of how an agent
takes rational actions based on its belief. Planning over beliefs
involves the calculation of expected utility of each action. The
conventional expected utility of an action a can be defined
as the expectation of utility of the outcomes s1 of the action
(Russell, Norvig, & Davis, 2010):

EUpa|bq “
ż

s1PS
Ups1qPps1|a,bq, (3)

where the probability of the outcomes can be calculated with
a transition model:

P
`

s1|a,b
˘

“

ż

sPS
P
`

s1|s,a
˘

Pps|bq. (4)

The agent then selects an action expected to maximize its
utility:

a˚ “ argmaxaEU paq . (5)

In a POMDP, the actions of a rational agent is determined by
its belief. With knowledge of an agent’s belief, the agent’s ac-
tions (Box 3 in Fig. 1) can be predicted. This action prediction
process is represented in Fig. 1 as Box 2.

Here we only outline the general principle of utility calcu-
lation in belief space. Planning rational actions in belief space
to optimize long-term accumulated rewards is a challenging
problem. In our study, we use the point-based value iteration
(PBVI) algorithm (Pineau, Gordon, & Thrun, 2003) as the
solver for POMDP.



Modeling Agent with Joint Perception: Smithian
Pointing
For an individual agent, the expected utility of action, belief,
and the value of information provided by an observation can
be calculated based on the agent’s individual belief. We refer
to them as the “conventional” utilities, which can be easily
derived based on the classic theories (Russell et al., 2010).
Our Smithian model of pointing augments these conventional
utilities to reflect the coordination of two beliefs in Smithian
helping: The signaler takes on the role of helper, while the
receiver is the helpee. Specifically, the signaler uses the re-
ceiver’s belief to predict the receiver’s actions, and then uses
her own belief to evaluate the receiver’s actions.

Smithian Utility of Action We define Smithian utility
of actions by augmenting the conventional utility of actions
defined in Eq. (3). There are no subscripts in Eq. (3), which
implies that the action and belief are from the same agent.
Eq. (3) can apply when one agent evaluates its own action
and belief, or when one agent (A) uses theory of mind to take
the perspective of another agent (B) to evaluate the agent B’s
action based on agent B’s belief.

With Smithian empathy, the signaler should use her own
utility function to evaluate the outcomes (Box 4 in Fig. 1). In
many scenarios, the utility functions of the signaler and the
receiver are consistent. In some cases, the utility functions
may be different; but constrained by Smithian helping, the
signaler’s utility should always be aligned with the receiver’s
physical well-being. Here we are using subscripts to represent
the source of belief or action, with Sig for signaler and Rec for
receiver. We write down the formulation of Smithian utility
of action by changing the belief used for action evaluation in
Eq. (3) to the belief of the signaler:

EUSmith paRec|bSigq “

ż

s1PS
USig

`

s1
˘

ż

sPS
P
`

s1|s,aRec
˘

Pps|bSigq. (6)

Smithian Utility of Belief The effect of pointing in our
study is to change the receiver’s belief. Therefore, to evaluate
the effect of pointing, we need to define the utility of a be-
lief, especially the receiver’s belief without the pointing (Box
1 in Fig. 1) and after the pointing (Box 5 in Fig. 1). It can
be derived from the expected utility of actions, as an agent’s
distribution (Boxes 3 and 7 in Fig. 1) of its action Ppa|bq can
be predicted from its belief.

Given Ppa|bq, we can derive the conventional utility of a
belief based on conventional expected utility of action. Let A
be the set of possible actions. The utility of a belief can be
defined as:

U pbq “
ż

aPA
Ppa|bqEU pa|bq. (7)

Eq. (7) can represent an agent’s evaluation of its own be-
liefs. It can also represent an agent A’s evaluation of another
agent B’s beliefs, when A takes B’s perspective using Hume’s
definition of empathy. Using theory of mind, A can predict
B’s action based on B’s belief (Wellman, 2014), hence evalu-
ate the belief by integrating out the evaluation of actions.

We can derive Smithian utility of belief by replacing the
expected utility of actions in Eq. (7) with the Smithian utility
of actions:

USmith pbRec|bSigq “

ż

aRecPARec

PpaRec|bRecqEUSmith paRec|bSigq. (8)

Smithian utility of belief represents the signaler’s evalua-
tion of the receiver’s well-being (Boxes 5 and 8 in Fig. 1),
which the signaler tries to improve.

Smithian Value of Information (SVI) Pointing carries
information. In the field of AI, the value of information is “the
difference in expected value between the best actions before
and after the information is obtained” (Russell et al., 2010),
with which an agent can decide how much the information is
worth. Here we leverage the insight that the value of informa-
tion should be calculated as the change in expected utility be-
fore and after the information is obtained. Smithian Value of
Information (SVI) adopts this formalization with two signifi-
cant differences. First, we calculate the value of information
from the perspective of the signaler, not the receiver of the
information. Second, the utility we use is the Smithian util-
ity of belief, which is the signaler’s estimate of the receiver’s
well-being. Therefore, SVI measures the improvement of the
signaler’s estimate of the receiver’s well-being before and af-
ter pointing, which is the difference between Box 5 and Box
8 in Fig. 1. In other words, SVI is the utility of pointing.

To later incorporate our formulation of pointing into RSA
as the utterance, here we use notation u for pointing. Let bRec
be the receiver’s belief before receiving the pointing signal,
b1Rec be receiver’s belief after receiving the pointing signal:

b1Rec “ PRecps|uq “ Pps|bRec,uq . (9)

We can write SVI as:

SVIpu|bSigq “USmith
`

b1Rec|bSig
˘

´USmith pbRec|bSigq . (10)

Pointing as a Rational Speech Act With the utility of
pointing clearly defined as SVI, we can treat pointing as a
special type of utterance and model its use and interpretation
using RSA (Box 9 in Fig. 1). We can write down how a sig-
naler generates pointing u:

PSig pu|bSigq9exptα rSVIpu|bSigq´ cpuqsu. (11)

For simplicity of the model, we can set cpuq “ 0 as the cost
of pointing in real world is small.

We still need to adapt RSA to consider the entire POMDP
challenge as the “context” of communication. We first outline
the RSA in language games where the environment is fully
observable to both the signaler and receiver. A pragmatic re-
ceiver updates its belief upon receiving an utterance u with
Bayesian inference (Goodman & Frank, 2016)

b1Rec psq “ PRec ps|bRec,uq 9 PSigpu|sqPRecps|bRecq. (12)

Then we adapt RSA to the case in which neither the sig-
naler nor the receiver can fully observe the environment. In



this case, both signaler and receiver maintain a belief based
on their observations. Based on existing common ground
knowledge, the receiver knows the probability that the sig-
naler has a belief given the physical state PpbSig|sq (Goodman
& Stuhlmüller, 2013). The receiver can infer the state of the
world with the utterance from the signaler:

PRecps|uq9
ż

bSig

PSigpu|bSigqPpbSig|sqPps|bRecq. (13)

Eq. (13) can be simplified when the signaler has full knowl-
edge of the world. In this case, the signaler knows a state s for
sure without uncertainty. Of course it can still be represented
as a belief, a probability distribution with probability 1 on the
true state s˚, denoted as bs˚

Sig. The receiver only needs to con-
sider all possible s and their corresponding belief bs

Sig. Since
the signaler knows the true state, Ppbsi

Sig|s jq “ 1 if si “ s j,
Ppbsi

Sig|s jq “ 0 if si ‰ s j. The integration in Eq. (13) has only
one nonzero entry for each state. Eq. (13) reduces to:

PRecps|uq9PSigpu|bs
SigqPps|bRecq. (14)

Assuming bs
Sig is true is equivalent to assuming the signaler

knows the true state is s. Therefore, using s to denote the true
state is s, Eq. (14) further reduces to:

b1Rec psq9 PSigpu|sqPRecps|bRecq. (15)

In our experiment, we only consider the case that the signaler
is certain about the state, so Eq. (15) is used in the experiment.

Signal generation and interpretation are modeled through
recursive reasoning: For each signal, the signaler estimates
the change of receiver’s belief after receiving the signal us-
ing Eq. (15) and selects the signal that maximizes Smithian
value of information in Eq. (11). This model of signal gen-
eration can then be passed to the next level of receiver for
computing the probability of a signal given a world state.
This allows the receiver to update its belief as the posterior
of the world state given a signal using Bayes’ rule. Note that
this recursive social reasoning is based on RSA. However, in
RSA, the recursion begins with a literal receiver who infers
the reference given an utterance. In our model, the literal re-
ceiver is the POMDP agent who takes rational actions based
on observations. In Eq. (8), to compute USmithpbRec|bSigq, one
needs to compute PpaRec|bRecq and then integrate out a. Here
PpaRec|bRecq is the policy solved by POMDP.

Modeling Experiment
Task: Guided Wumpus Hunting
To highlight the strengths of the Smithian pointing model, we
need a single-agent partially observable task as a baseline.
We pick a simplified version of the classic AI problem: the
Wumpus world (Russell et al., 2010). We augment the task
for Smithian pointing by adding an additional helper agent.
We call this task the guided Wumpus hunting game, directly
inspired by the hunting example described in the introduction.

WumpusWumpus

�����

� � �

�

�

�

Figure 2: The environment of the guided Wumpus hunt-
ing game. Wumpus can only show up in one of three shaded
tiles. Starting from (0, 0), the hunter tries to infer Wumpus’s
location from the stench and shoot it.

In the guided Wumpus hunting game, a hunter navigates
through a set of tiles to shoot a stationary monster, the Wum-
pus, without knowing its exact location. The Wumpus emits
a “stench” when it is nearby, which the hunter can smell. The
hunter navigates to collect observations, which help him in-
fer the Wumpus’s location; however, he cannot go near the
Wumpus’s location. He has one arrow that he can shoot to kill
the Wumpus from a distance, based on where he believes the
Wumpus to be. In addition, for a second agent—the guide—
the environment is fully observable. However, her communi-
cation to the hunter is minimal: she can only decide whether
to point to a stench after the hunter observes it, without spec-
ifying what she hopes the hunter to do with that stench. This
setting is directly inspired by the “broken stick” example,
to capture the overloadedness and indirectedness of point-
ing. Here, although the state space is smaller than the classic
Wumpus world, the inference is in fact computationally more
expensive as the POMDP solver is recursively called by RSA.

Game
The guided Wumpus hunting game has an environment
shown in Fig. 2. An agent plays this game with a POMDP
solver. Components of the POMDP formulation are intro-
duced below.

State Space The Wumpus can show up in one of the
three possible locations: (0, 2), (1, 1), and (2, 0). Hunters will
always start from (0, 0) and explore 3 possible locations for
collecting observations: (0, 0), (0, 1), and (1, 0).

Action Space The hunter can choose from 4 possible ac-
tions: move vertically, move horizontally, shoot to the upper
tile, or shoot to the right tile, which are the only possible di-
rections given the map.

Transition Function The outcomes of the hunter’s ac-
tions are deterministic. At each step, he can decide to move
or shoot. With moving, he will always move one tile in the di-
rection of the action. If the hunter moves outside of the map,
he will return to (0, 0). For shooting, the arrow will hit or
miss the Wumpus depending on whether the Wumpus is in



the shoot direction. The game ends after shooting.
Reward Function For moving one step, there is an ac-

tion cost, which is manipulated in our experiment. When
shooting, the reward is set to 100 for hitting the Wumpus,
-100 for missing.

Observation Space and Observation Function There
are only two possible observations: a stench or nothing. The
observation function is stochastic. If a tile is near the Wum-
pus, the hunter’s probability of observing a stench in that tile
is 0.85. If a tile is not nearby the Wumpus, the probability
of observing a stench is 0.15. In the classic Wumpus world,
the observation is deterministic; however, we add stochastic-
ity to make the belief inference more interesting, as in other
POMDP tasks. We do not place pointing in the observation
space as it is modeled as an communicative act, instead of an
observation of the physical world (Kaelbling et al., 1998).

Experiment

We designed an experiment with the guided Wumpus hunting
game to compare the models of individually perceived obser-
vations and jointly perceived observations. We manipulate the
hunter’s model of interpreting the observation and the moving
cost in the game.

We use the POMDP as the baseline model of a hunter who
individually perceives the observation. In this condition, the
hunter, as a receiver, will completely ignore the pointing sig-
nal sent by the guide.

We use Smithian pointing as the model of a hunter who
pragmatically perceives the observation pointed to by the
guide. The guide will use the Smithian pointing model to gen-
erate signals. Since the purpose of pointing is to help the re-
ceiver, we predict that hunters who use the Smithian pointing
model will outperform those who use POMDPs.

It is possible that this predicted improvement in perfor-
mance is simply caused by the amount of information pro-
vided by pointing but not the pragmatic inference process. To
test this possibility, we add a third condition. In this condi-
tion, the hunter uses POMDPs to individually perceive obser-
vations, but when receiving a pointing signal, he receives an
additional observation to which the pointing is directed. We
call this condition POMDPs with“double observations”.

We also manipulate the cost of each step in the environ-
ment. The purpose of the guide pointing is to help the hunter
achieve higher performance, but when the cost of moving is
too high or low, help becomes unnecessary. If the moving cost
is too high, for example -9, the hunter will shoot in a rush
without considering the effect of observations. If the moving
cost is too low, for example -1, the hunter will move around
the environment more actively to collect observations no mat-
ter whether the guide points or not. The effect of communica-
tion as a function of moving cost may not be linear; therefore,
in our experiment, we test 100 trials under each model using
a moving cost of -9, -7, -5, -3, and -1. We expect to see the
effect of pointing when the moving cost is moderate, but not
when it is too high (-9) or too low (-1).
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Figure 3: Experimental results. Black line denotes the ideal
performance upper bound if the game was fully observable.
Shaded areas represent 95% bootstrap confidence interval.

Result
The average reward across trials for each model under vari-
ous moving cost is depicted in Fig. 3. Overall, the proposed
Smithian pointing model achieves better performance com-
pared to the classic POMDP model or the POMDP with dou-
ble observations. The main effect of model type is significant
(Fp2,1485q “ 9.602, pă 0.001), and the main effect of mov-
ing cost is also significant (Fp4,1485q “ 19.535, pă 0.001).
However, the interaction between models and moving costs
is not significant (Fp8,1485q “ 1.035, p “ 0.407). A post-
hoc test with bonferroni correction shows that the Smithian
pointing model achieves higher performance than “Double
observation” condition (Fp1,998q “ 8.875, p “ 0.009). As
hypothesized, our experiment also shows that the advantage
stemmed from the pragmatic inference of pointing disap-
pears when the task is too hard/easy for the guide to help.
Specifically, when the moving cost is -1 or -9, the effect of
model type is not significant (Fp2,297q “ 0.163, p “ 0.850;
Fp2,297q “ 0.228, p “ 0.796). Taken together, these results
demonstrate that pointing is relevant only when the signaler
could offer help. Our computational model captures this rel-
evance (Sperber & Wilson, 1986) and highlights how joint
perception can be more powerful than individual perception
of the same observation, demonstrated by the improved hunt-
ing performance.

Discussion
In this paper, we devise a computational model for point-
ing by defining the Smithian Value of Information (SVI), ap-
plying it to RSA to define the utility of pointing. In an ex-
ample task, our pointing model shows a significant perfor-
mance improvement compared to a single-agent POMDP or
a single-agent POMDP with “double observation”. This im-
provement indicates that the advantage of pointing does not
come from providing a new observation for individual per-
ception. Instead, it comes from the pragmatic inference of
how the jointly perceived observation is relevant to the task.
Supporting the argument, our experiment also shows that the
advantage of the Smithian pointing model works the best only
when the receiver is in a position to be helped.

Our results suggest that Smithian coordination of beliefs is



necessary for modeling pointing. Seemingly simple, pointing
requires the intelligent social capacity of mind coordination
and altruistic motivation of helping. As a type of sophisticated
social cognition, pointing involves identifying receiver’s be-
lief to predict action, evaluating actions with signaler’s own
belief, generating pointing to help change receiver’s mind,
and interpreting pointing with the assumption that the sig-
naler is trying to help. The possible lack of some of these
components, especially the cooperative motivation in point-
ing generation and interpretation, may explain the rarity of
pointing in wild non-human primates. Indeed, the ability of
generating and interpreting pointing is a milestone in human
unique communication (Tomasello, 2010).

Due to the complexity of recursive reasoning of RSA,
POMDP is solved multiple times in the recursion, which
is computationally expensive and limits the current experi-
ment setting to have a small state space. In follow up stud-
ies, we can use a faster POMDP solver or approximate the
social recursion using computationally cheaper approaches
(Kaelbling & Lozano-Pérez, 2013). In this way, we can ex-
pand our model to more complex tasks with larger state space
and more observations. As many insights of this paper di-
rectly come from studies of child development, we hope this
work will foster further interdisciplinary studies between de-
velopmental psychology and AI.
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