Lecture 2 Classical algorithms in Search and Relaxation

Lecture 2 overviews topics on the typical problems, data structures, and algorithms for inference in flat and hierarchical representations.

Part 0: Recap

Part 1: Search on flat descriptive representations
 -- e.g. Relaxation algorithm on line drawing interpretations

Part 2: Search on hierarchical representations
 Heuristic search algorithms on And-Or graphs
 -- e.g. Best First Search, A*, Generalized Best First Search.
Part 0, Recap

1. An algorithm is a sequence of computational steps (well-defined) that transform the input to the output, where the input and output are determined by the representation.

2. Three regimes of representational models: $G = (V, E)$
 - Flat graph
 - Hierarchical graph
 - Integrated: hierarchy + Context

- (Constraint-satisfaction, Markov random fields, Gibbs, Julesz ensemble, Contextual)
- (Markov tree, stochastic context free grammar, sparse coding)
- (And-Or graphs, Stochastic Context Sensitive Grammar)
Part 0, Recap

Descriptive or declarative
(Constraint-satisfaction, Markov random fields, Gibbs, Julesz ensemble)

Variants of Descriptive
(Causal Markov Models, Markov chain, Markov tree, DAG etc)

Generative (+ Descriptive) (c)
(hidden Markov, hierarchic model decomposing whole to parts)

Discriminative (d)
(discriminating the whole using the parts)
Part 0, Recap

3. Objectives of an algorithm:
 • Seeking joint optimal solution of the whole graph
 such as image segmentation, scene labeling — on flat graphs;
 image parsing, event parsing — on hierarchical graphs
 • Seeking marginal optimal solution of certain node in the graph
 such as classification or detection of objects

4. Objective function

 Bayesian framework
 \[W^* = \arg \max_{w \in \Omega} p(W | I) = \arg \max_{w \in \Omega} p(I | W)p(W) \]

 Energy Minimization framework
 \[W^* = \arg \min_{w \in \Omega} E(W | I) \]
5. Criteria for algorithm design

Notations:
\(A \) denotes an algorithm
\(I \) denotes an input which follows the distribution \(f(I) \),
e.g., \(I \) can be an image, or a city map in the traveling salesman problem.
\(f(I) \) characterizes the ensemble of problems.

Def. I: \(A \) is \textbf{optimal} if it can \textbf{always} find an exact solution \(s \) for any input \(I \).
\[s \in \Omega^*(I), \quad \forall I \]

Def. II: \(A \) is \textbf{near optimal} if it can \textbf{always} find a solution \(s \) within \(\epsilon \)-distance to the exact solution for any input \(I \).
\[s \in \Omega^*_\epsilon(I), \quad \forall I \]

Def. III: \(A \) is \textbf{approximate optimal} if it can \textbf{probably} find a solution \(s \) within \(\epsilon \)-distance to the exact solution for any input \(I \).
\[\text{Prob}(s \in \Omega^*_\epsilon(I)) > 1 - \delta, \quad \forall I \]

Def. IV: \(A \) is \textbf{approximate optimal for ensemble} \(f(I) \) if it can \textbf{probably} find a solution \(s \) within \(\epsilon \)-distance to the exact solution for the ensemble.
\[\text{Prob}(s \in \Omega^*_\epsilon(I)) > 1 - \delta \]
Lecture 2 Classical algorithms in Search and Relaxation

Lecture 2 overviews topics on the typical problems, data structures, and algorithms for inference in flat and hierarchical representations.

Part 0: Recap

Part 1: Search on flat descriptive representations
 -- e.g. Relaxation algorithm on line drawing interpretations

Part 2: Search on hierarchical representations
 Heuristic search algorithms on And-Or graphs
 -- e.g. Best First Search, A*, Generalized Best First Search.
Part 1, Relaxation in a flat graph

Common properties:

1. A graph representation $G = (V, E)$

 G could be directed, undirected, such as chain, tree, DAG, lattice, etc.

Fig. 1. (a) The simplest example of a DAG is a chain, which underlies the familiar Markov chain. The canonical ordering $[1, 2, \ldots, N]$ is the only topological one. (b) A more complicated DAG. Here the canonical ordering $[1, 2, \ldots, 7]$ is again topological, but it is no longer unique, for instance, $[1, 4, 2, 3, 5, 7, 6]$ is also topological. (c) A directed graph with cycles (non-DAG). It contains (among others) a directed cycle on vertices $[1, 2, 5]$.

Fig. 3. Illustration of undirected graphical models and factor graphs. (a) An undirected graph on $N = 7$ vertices, with maximal cliques $\{1, 2, 3, 4\}$, $\{4, 5, 6\}$ and $\{6, 7\}$. (b) Equivalent representation of the undirected graph in (a) as a factor graph, assuming that we define compatibility functions only on the maximal cliques in (a). The factor graph is a bipartite graph with vertex set $V = [1, \ldots, 7]$ and factor set $\mathcal{F} = \{a, b, c\}$, one for each of the compatibility functions of the original undirected graph.
Part 1, Relaxation in a flat graph

Common properties:

1. A graph representation $G = (V, E)$
 G could be directed, undirected, such as chain, tree, DAG, lattice, etc.

2. hard constraints or soft “energy” preference between adjacent vertices.

Examples: constraint-and-satisfaction, line drawings, graph partition/coloring, Turbo coding, image segmentation, scene labeling, …
Interpretation of line drawings
Ex 1: Symbolic interpretation of line drawings (Waltz, 1960s)
Labeling the lines with 4 symbols
Excluding accidental views

Accidental views cause alignments (lines or junctions) which are unstable.

Assumption I: general viewing position

Assumption II: Vertices are all three-faced ones and there are no shadow and cracks
Examples of impossible realizations of corner by three-faced object junctions
Seeking the most probable interpretation(s)
Finding all allowable junctions by considering all combinations of cubes in 8 quadrants in 3D
Finding all allowable junctions by considering all combinations of cubes in 8 quadrants in 3D

This is to exhaust all possible cases, all other non-accidental junctions will be equivalent to one of these junctions.
All allowable 2-way / 3-way junctions

18 valid junctions out of 208 possible combinations

\(208 = 16 + 64 + 64 + 64\)

Remarks: in general vision modeling, the space of parts/objects/scenes is combinatorial, but the true elements in real world is tiny. This leads to huge constraints as in line drawing interpretation.

For an alternative way, one may manually label a number of representative block objects and then find the valid junctions from the label. This may not be exhaustive but is quite effective. In vision, we find vocabulary/elements this way as we couldn't possibly enumerate all cases.
Finding a valid interpretation through relaxation:

constraints-and-satisfaction: no line may change interpretation/label between vertices
Finding a valid interpretation through relaxation: constraints-and-satisfaction

Note that what we compute here is still candidate labels at each vertex. When you have multiple ways to label an object, then we have to extract the solution.

Discussion:

marginal beliefs vs. joint solutions
More complex labeling scheme by Waltz
More recent work on space reasoning on real images

Results from Yibiao Zhao, UCLA 2011.
Probabilistic Constraint-and-Satisfaction
Issues in algorithm design

1. Visiting scheme design and message passing.
 which step is more informative, relax more constraints (like line-drawing). In general, the ordering of Gibbs kernels

2. Computing joint solution or marginal belief.
 the marginal believe may be conflicting to each other.

3. Clustering strongly-coupled sub-graphs for effective moves.
 the Swendson-Wang ideas.

Lecture 2 Classical algorithms in Search and Relaxation

Lecture 2 overviews topics on the typical problems, data structures, and algorithms for inference in flat and hierarchical representations.

Part 0: Recap

Part 1: Search on flat descriptive representations
 – e.g. Relaxation algorithm on line drawing interpretations

Part 2: Search on hierarchical representations
 Heuristic search algorithms on And-Or graphs
 – e.g. Best First Search, A*, Generalized Best First Search.
Part 2, Heuristic search in AI – a brief introduction

We introduce a few typical search algorithms in artificial intelligence. These search algorithms were studied in the 1960s-80s, and they search in hierarchic graph structures in a “top-down” manner with or without heuristic information. These techniques are very revealing. We should pay attention to their formulation, data structures, and ordering schemes which are very important ingredients in designing more advanced algorithms in visual inference. Unfortunately these issues have been largely ignored in the vision literature.

We will introduce four types of search algorithms:

- Uninformed search (blind search)
- Informed search (heuristic search, including A*)
- *Adversarial search / reasoning (game playing)
- Search in And-Or graphs
An Example

We start with a toy problem.

A *farmer* wants to move himself, a silver *fox*, a fat *goose*, and some Tasty *grain* across a river. Unfortunately, his *boat* is so tiny he can take only one of his possessions across on any trip. Worse yet, an unattended fox will eat a goose, and an unattended goose will eat grain.

How can he cross the river without losing his possessions?

To solve such a problem in a computer, we must formulate it properly.
The State Graph in State Space

The “boat” is a metaphor. It has limited capacity and thus the states are connected locally.
Key elements in problem formulation

1. States (configurations, objects)
2. State space (there are constraints in the state space, e.g. fox eats goose)
3. Operators (available actions are often limited, e.g. the boat has limited capacity)
4. Initial state
5. Goal state(s) (Goal test)
6. Metrics (for multiple solutions, metrics measure their performance)

To design more effective algorithms, we need to design “big boats”, which corresponds to large moves in the state space.
Example of state space and its transition graph

In later formulation, the constraints on the state space will not be valid-vs-invalid, but probabilistic. Some states receive higher probabilities and some receive low probabilities.
Criteria for Designing Search Algorithms

There are four criteria in designing a search algorithm

1. **Completeness:** is the algorithm guaranteed to find a solution if a solution exists?

2. **Time complexity:** this is often measured by the number of nodes visited by the algorithm before it reaches a goal node.

3. **Space complexity:** this is often measured by the maximum size of memory that the algorithm once used during the search.

4. **Optimality:** is the algorithm guaranteed to find an optimal solution if there are many solutions? A solution is *optimal* in the sense of minimum cost.

We say an algorithm is **asymptotically optimal** in space (or time) if the amount of space (time) required by the algorithm is within some additive or multiplicative factor of the minimum amount of space (time) required for the task in a computer.
Search in a tree (Or-tree)

Although the search is often performed in a graph in the state space, our study will focus on tree structured graph for two reasons:

1. It is convenient and revealing to analyze algorithm performance on trees. We can do the analysis on trees, and then generalize it to graphs.
2. If a search algorithm does not visit nodes that were visited in previous steps, then its paths form a tree.

Properties of a tree:

1. A tree is a connected graph with no loop: for a tree of \(n \) nodes, it always has \(n-1 \) edges.
2. Root, parent, children, terminal node/leaf, non-terminal/internal node.
3. Out number, branching factor \(b \)
4. Depth \(d \)
5. For a complete tree with depth \(d \) and branching factor \(b \), there are \(b^d \) leaves and
\[
1 + b^2 + \ldots + b^{d-1} = \frac{(b^d - 1)}{(b-1)}
\]
non-terminal nodes. Thus for \(b>1 \), the leaves outnumber all the other nodes in the tree.
Category 1. Uninformed Search

The minimum information for searching a graph is the \textit{goal test} — a function that returns \textit{true} when a node is a goal. If there is no other information available, the search algorithm is called uninformed search. This includes mainly

1. Depth first search (DFS)
2. Breadth first search (BFS)
3. Iterative deepening search

There are other variants, such as, limited depth search, bi-directional search, which are not required in this course.
Data Structure

In general, the algorithms operate on two lists:

1. An **open list** — it stores all the leaf nodes of the current search tree. These nodes are to be visited (or expanded) in a certain order.
2. A **closed list** — it stores all the internal nodes that have been visited (expanded).

In the closed list, each node has a pointer to its parent, thus the algorithm can trace the visiting path from a node to the root, at the final stage of extracting the solution.
Pseudo Code

General search algorithm:

1. Initialize the open list by the initial node \(s_o \), and set the closed list to empty.
2. Repeat
3. If the open list is empty, exit with failure.
4. Take the first node \(s \) from the open list.
5. If \(\text{goal-test}(s) = \text{true} \), exit with success. Extract the path from \(s \) to \(s_o \)
6. Insert \(s \) in the closed list, \(s \) is said to be visited / expanded
7. Insert the children of \(s \) in the open list in a certain order.

Remark I: To avoid repeated visit, if a child of \(s \) appears in the closed/open lists, it will not be added.
Remark II: A node is said to be visited after it enters the closed list, not the open list.
Remarks III: In uninformed search, the space complexity is the maximum length that the open list once reached. The time complexity is measured by the length of the closed list.
DFS and BFS

DFS and BFS differ only in the way they order nodes in the open list:

DFS uses a stack: it always puts the latest node on the top of the stack (Last In, First Out).

![DFS stack diagram]

BFS uses a queue: it always puts the latest node at the end of the queue (First In, First out).

![BFS queue diagram]
Complexities of DFS and BFS

For ease of analysis, we assume the graph is a complete tree with finite depth d and branching factor b. Suppose the goal node is at depth d.

For DFS,
- The best case time complexity is $O(d)$: the goal is at the leftmost branch.
- The worst case time complexity is $O(b^d)$: the goal is at the rightmost branch.
- The space complexity is $O(db)$.

For BFS
- The best/worst cases time complexity is $O(b^d)$.
- The space complexity is $O(b^d)$.

But the DFS has a problem if the tree has depth $D \gg d$. Even worse, if D can be infinite, then it may never find the goal even if d is small — not complete.
Iterative Deepening Search (IDS)

The DFS has advantage of less space/time complexity, but has a problem when $D \gg d$. As d is often unknown to us, we can adaptively search the tree with incremental depth. This leads to IDS that combines the advantage of DFS and BFS.

1. Initialize $D_{\text{max}} = 1$. The goal node depth d is unknown.
2. Repeat
3. Do a DFS starting from the root for a fixed depth D_{max}.
4. Find a goal node, i.e. $d \leq D_{\text{max}}$ then exit.
5. $D_{\text{max}} = D_{\text{max}} + \Delta$.

![Diagram of iterative deepening search](image)
Iterative Deepening Search (IDS)

Time complexity: \(O(b^d) \)

\[
\frac{b^2 - 1}{b - 1} + \frac{b^3 - 1}{b - 1} + \cdots + \frac{b^{d+1} - 1}{b - 1} = \frac{b^{d+2} - 2b - bd + d + 1}{(b - 1)^2}
\]

Space complexity: \(O(db) \)

So IDS is asymptotically optimal in both space and time.

Think why this makes sense. Apparently it wastes a lot of time to repeatedly visit nodes at the shallow levels of the tree. But this does not matter because the property 5 of tree.
In some applications, an agent may have information about its goals or tasks. By using such information, we expect it can improve performance in space and time complexity.

Example:

Suppose at node A (see right figure), you are checking out in a supermarket. It has four lines B, C, D, E. You can decide which line to stand based on heuristic information of how long each line is.

Similar, when you are driving in a high way which has 4 lanes, which lane do you choose to drive at a given time period?
Heuristics

A poem quoted in Pearl 84.

“Heuristics, Patient rules of thumb,
So often scorned: Sloppy! Dumb!
Yet, Slowly, common sense come” (ODE to AI)

In the 1980s, the probabilistic models are not well known to the CS search literature, Pearl viewed heuristics as ways to

“inform the search algorithm with simplified models”

In our understanding today, the heuristics are discriminative methods which inform or drive the Markov chain search in DDMC.

The Heuristics are “computational knowledge” in addition to the representational knowledge (models and dictionaries)
Informed Search

There are two new functions that an agent can explore:

\(g(s) \): this is a function that measures the “cost-to-arrive” it incurred from the initial node \(s_0 \) to the current node \(s \).

\(h(s) \): this is a function (or “budget”) that estimates the forth-coming cost-to-go from \(s \) to a goal node \(s_g \).

\(h(s) \) is called a **heuristic function**.
Pseudo Code for an Informed Search

“Best”-first-search (BFS) algorithm:

1. Initialize the open list by the initial node s_o, and set the closed list to empty.
2. Repeat
3. If the open list is empty, exit with failure.
4. Take the first node s from the open list.
5. Insert s in the closed list, s is said to be visited / expanded
6. If goal-test(s) = true, exit with success.
 Extract the path from s to s_o in the closed list.
7. Insert the children of s in the open list in an increasing order of a function $x(s)$.
Choice of $x(s)$

The pseudo-code is called “best”-first search, because the algorithm always expands a node which it “think” is the “best” or most promising.

There are different choice for the function $x(s)$:

1. $X(s)$ can be $g(s)$. In case, each edge has equal cost, then $g(s)=d(s)$ is the depth. Then it reduces to a breadth-first search.

2. $X(s)$ can be $h(s)$. This is called the greedy search. It is similar to the depth first search and may not be complete.

3. $X(s)$ can be $f(s)=g(s) + h(s)$. This is called a heuristic search.
Heuristic Search

By using the function $f(s)$, a heuristic search algorithm can back-trace the most promising path

\[f(s) = g(s) + h(s). \]

How do we design $h(s)$ so that the search can be effective

— in terms of a small search tree?
— in terms of an optimal solution?
The 8-Puzzle Example

S_0

$0 + 4 = 4$

$1 + 5 = 6$

Open list

B A C

4 6 6

1 2 3

8 4

7 6 5
The 8-Puzzle Example

\[S_0 = \begin{bmatrix} 2 & 8 & 3 \\ 1 & 6 & 4 \\ 7 & 5 \end{bmatrix} \]

\[0 + 4 = 4 \]

\[1 + 5 = 6 \]

\[2 + 4 = 6 \]

\[1 + 3 = 4 \]

\[2 + 3 = 5 \]

\[2 + 3 = 5 \]

Open list:

\[
\begin{array}{cccc}
D & E & A & C \\
5 & 5 & 6 & 6 \\
F & 6 & 6 \\
\end{array}
\]
The 8-Puzzle Example

\[S_0 \]

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 6 & 4 \\
7 & 5 & \end{array} \]

0 + 4 = 4

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 6 & 4 \\
7 & 5 & \end{array} \]

1 + 5 = 6

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 6 & 4 \\
7 & 5 & \end{array} \]

1 + 3 = 4

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 4 \\
7 & 6 & 5 & \end{array} \]

B

A

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 6 & 4 \\
7 & 5 & \end{array} \]

1 + 5 = 6

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 4 \\
7 & 6 & 5 & \end{array} \]

C

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 4 \\
7 & 6 & 5 & \end{array} \]

B

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 4 \\
7 & 6 & 5 & \end{array} \]

D

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 4 \\
7 & 6 & 5 & \end{array} \]

E

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 4 \\
7 & 6 & 5 & \end{array} \]

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 4 \\
7 & 6 & 5 & \end{array} \]

F

\[\begin{array}{ccc}
2 & 8 & 3 \\
1 & 4 \\
7 & 6 & 5 & \end{array} \]

Open list

\[\begin{array}{cccccc}
E & A & C & F & G & H \\
5 & 6 & 6 & 6 & 6 & 7 & \end{array} \]
The 8-Puzzle Example

S_0

- A
 - 2 8 3
 - 1 6 4
 - 7 5
 - 1+3=4
 - 1+5=6

- B
 - 2 8 3
 - 1 4
 - 7 6 5

- C
 - 2 8 3
 - 1 6 4
 - 7 5
 - 0+4=4
 - 1+5=6

- D
 - 2 8 3
 - 1 4
 - 7 6 5
 - 2+3=5

- E
 - 2 3
 - 1 8 4
 - 7 6 5
 - 2+4=6

- F
 - 2 8 3
 - 1 4
 - 7 6 5
 - 2+4=6

- G
 - 8 3
 - 2 1 4
 - 7 6 5
 - 2+3=5
 - 3+3=6

- H
 - 2 8 3
 - 7 1 4
 - 6 5
 - 2+3=5
 - 3+4=7

- I
 - 2 3
 - 1 8 4
 - 7 6 5
 - 3+2=5

- J
 - 2 3
 - 1 8 4
 - 7 6 5
 - 3+4=7

Open list

<table>
<thead>
<tr>
<th>I</th>
<th>A</th>
<th>C</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
The 8-Puzzle Example

S_0

Open list

K A C F G H J
5 6 6 6 6 7 7

$0 + 4 = 4$

$1 + 5 = 6$

$2 + 4 = 6$

$3 + 4 = 7$

$4 + 1 = 5$
The 8-Puzzle Example

S_o

Open list

<table>
<thead>
<tr>
<th>L</th>
<th>A</th>
<th>C</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

A: 2 8 3
 1 6 4
 7 5

B: 2 8 3
 1 4
 7 6 5

C: 2 8 3
 1 6 4
 7 5

D: 2 8 3
 1 4
 7 6 5

E: 2 3
 1 8 4
 7 6 5

F: 2 8 3
 1 4
 7 6 5

G: 8 3
 2 1 4
 7 6 5

H: 2 8 3
 7 1 4
 6 5

I: 2 3
 1 8 4
 7 6 5

J: 2 3
 1 8 4
 7 6 5

K: 1 2 3
 8 4
 7 6 5

L: 1 2 3
 8 4
 7 6 5

M: 1 2 3
 8 4
 6 5

N: 1 2 3
 8 4
 7 6 5

O: 1 2 3
 8 4
 7 6 5

P: 1 2 3
 8 4
 7 6 5

Q: 1 2 3
 8 4
 7 6 5

R: 1 2 3
 8 4
 7 6 5

S: 1 2 3
 8 4
 7 6 5

T: 1 2 3
 8 4
 7 6 5

U: 1 2 3
 8 4
 7 6 5

V: 1 2 3
 8 4
 7 6 5

W: 1 2 3
 8 4
 7 6 5

X: 1 2 3
 8 4
 7 6 5

Y: 1 2 3
 8 4
 7 6 5

Z: 1 2 3
 8 4
 7 6 5
The 8-Puzzle Example

Started

\[S_0 = \]

\[
\begin{array}{ccc}
2 & 8 & 3 \\
1 & 6 & 4 \\
7 & 5 & \\
\end{array}
\]

Closed

\[0 + 4 = 4 \]

\[1 + 3 = 4 \]

\[1 + 5 = 6 \]

\[1 + 5 = 6 \]

\[2 + 4 = 6 \]

\[2 + 3 = 5 \]

\[2 + 3 = 5 \]

\[3 + 2 = 5 \]

\[3 + 4 = 7 \]

\[4 + 1 = 5 \]

\[5 + 0 = 5 \]

\[5 + 2 = 7 \]

\[6 + 6 + 6 + 6 + 7 + 7 + 7 \]

\[A \ C \ F \ G \ H \ J \ M \]

Open list

\[2 + 3 \]

\[1 + 5 = 6 \]

\[1 + 3 = 4 \]

\[2 + 4 = 6 \]

\[3 + 2 = 5 \]

\[3 + 4 = 7 \]

\[4 + 1 = 5 \]

\[5 + 0 = 5 \]

\[5 + 2 = 7 \]

\[6 + 6 + 6 + 6 + 7 + 7 + 7 \]

\[A \ C \ F \ G \ H \ J \ M \]

\[2 + 3 \]

\[1 + 5 = 6 \]

\[1 + 3 = 4 \]

\[2 + 4 = 6 \]

\[3 + 2 = 5 \]

\[3 + 4 = 7 \]

\[4 + 1 = 5 \]

\[5 + 0 = 5 \]

\[5 + 2 = 7 \]

\[6 + 6 + 6 + 6 + 7 + 7 + 7 \]

\[A \ C \ F \ G \ H \ J \ M \]

\[2 + 3 \]

\[1 + 5 = 6 \]

\[1 + 3 = 4 \]

\[2 + 4 = 6 \]

\[3 + 2 = 5 \]

\[3 + 4 = 7 \]

\[4 + 1 = 5 \]

\[5 + 0 = 5 \]

\[5 + 2 = 7 \]

\[6 + 6 + 6 + 6 + 7 + 7 + 7 \]

\[A \ C \ F \ G \ H \ J \ M \]
Admissible Heuristics

Can we design a heuristic function $h(s)$ so that the first found path is always the optimal (shortest or minimum cost) path?

Definition I: a heuristic function $h(s)$ is said to be admissible if it never over-estimates the true cost from s to a goal s_g — $C(s, s_g)$, i.e.

$$h(s) \leq C(s, s_g).$$

Definition II: a heuristic search algorithm is called an A^*-algorithm if it uses an admissible heuristic function.

Definition III: we say $h_2(s)$ is more informed than $h_1(s)$ if

$$h_1(s) < h_2(s) \leq C(s, s_g).$$
Some Good News

Proposition I:
An A* algorithm is always complete and optimal.

Proposition II:
Let A_1^* and A_2^* be two algorithms using heuristic functions $h_1(s)$ and $h_2(s)$ respectively, then the nodes searched by A_2^* is always a subset of those searched by A_1^*, if $h_2(s)$ is more informed than $h_1(s)$, i.e. $h_1(s) < h_2(s) \leq C(s, s_g)$
More Informed Searches Less Nodes

$A_1^* \quad A_2^*$

$h_1(s) < h_2(s)$
Proof of A* Optimality

Proof by refutation:

Let s_g be an optimal goal state with minimum cost $f^*(s_g)$. By refutation, suppose A* algorithm find a path from an initial state to a goal s_{g2} with cost $f(s_{g2}) > f^*(s_g)$. It could be that $s_{g2} = s_g$ and just the pathes found by A* has larger cost.

Then there must be a node s on the optimal path which is not chosen by A*. Since A* has expanded before s is expended. Thus it must be that $f(s) > f(s_{g2}) > f^*(s_g)$. Thus implies $h(s) > h^*(s)$. It is contradictory to the assumption of A* algorithm.
Proof of A* Optimality
Iterative Deepening A*

Obviously, the heuristic function reduces computational complexity. The extent to which the complexity decreases depends on how informed $h(s)$ is. For example, if $h(s)=0$, the algorithm is clearly uninformed, and the A* algorithm degenerates to BFS.

We learn that BFS is actually an A* special case, and thus it is complete and optimal. But we know that BFS is notorious for space complexity, thus we doubt that A* may suffer from the same problem. Our worry is often true in real situation. To reduce the space complexity, we again introduce an iterative deepening algorithm called Iterative Deepening A* (IDA*) this time. It employs a DFS algorithm with a bound for $f(s)$, and increases this bound incrementally.
Branch-and-Bound

Discussion the algorithm here and connection to Iterative deepening A*

It relies on two subroutines that (efficiently) compute a lower and an upper bound on the optimal value over a given region.
Category 3. Search in And-Or graphs

The 12 Counterfeit coin problem
Given 12 coins, one is known to be heavier or lighter than the others. Find that coin with no more than 3 tests using a two-pan scale.

This generates the And-Or graph representation.
And-Or Graph is also called “hyper-graph”

The and-Or graph represents the decomposition of task into sub-tasks recursively.

Figure 1.9
An AND/OR graph (a) and two of its solution graphs (b) and (c). Terminal nodes are marked as black dots.
Search in an And-Or Graph

Important concepts:

1. **And-Or graph**: includes all the possible solutions. In an AoG, each Or-node represents alternative ways for solving a subtask, and each and-node represents a decomposition of a task into a number of sub-tasks. An Or-node is solvable if at least one of its children node is solvable, and an And-node is solvable only when all of its children nodes are solvable. An AoG may not be fully explicated at the beginning and is often expanded along the search process.

2. **Solution graph**: is a sub-graph of the AoG. It starts from the root node and makes choice at or-nodes and all of its leave nodes are solvable.

3. **Solution base graph**: a partial solution graph containing all the open nodes to be explored.
During the search, we need to maintain the open lists at two levels:

1, a list of the solution bases,

2, lists of open nodes for each solution bases.

The score $f(s) = g(s) + h(s)$ for each node s is updated. A node s may be reachable from the root from multiple paths. Therefore, its score will have to be updated, and *rollback the updates* to its ancestor nodes.
Back-tracking in an And-Or tree

S: solvable
U: unsolvable

Figure 2.7
Typical steps in the execution of backtracking search of an AND/OR tree. The heavy line represents the traversal path, whereas the broken lines represent portions of the tree that can be pruned from memory.
General Best-First Search in an And-Or Graph

Figure 2.9
Successive steps in the execution of general-best-first (GBF) search on the implicit AND/OR graph of part (a). Solid circles represent solved nodes, heavy hollow circles nodes in CLOSED, and thin circles nodes in OPEN. The heavy lines stand, at each stage, for the current most promising solution base.
Characterization of these problems

The And-Or graph search problem has the following components

1. An initial state

2. A number of “operators” to generate a set of new states (children/off-springs),

3. The Or-nodes for alternative ways

4. The And-nodes for sub-tasks that must be solved in combination

5. Metrics for each operator

6. Leaf nodes are solvable or unsolvable. In practice, each leaf node has a score for the likelihood.

7. The final solution is called a “solution graph”.

Read more in the Pearl Chapter.
And-Or Graphs for Representing Visual Knowledge