Joint Inference of Groups, Events and Human Roles in Aerial Videos
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Abstract

With the advent of drones, aerial video analysis is be-
coming increasingly important; yet, it has received some
attention in the literature. This paper addresses a new prob-
lem of parsing low-resolution aerial videos of large spatial
areas, in terms of grouping and assigning roles to people
and objects engaged in events, and recognizing these events.
Due to low resolution and top-down views, person detection
and tracking — the standard input to recent approaches to
event recognition — are very unreliable. We address these
challenges with a novel framework aimed at conducting
Jjoint inference of the above tasks, as reasoning about each
in isolation typically fails in our setting. Given noisy track-
lets of people and detections of large objects and scene sur-
faces (e.g., building, grass), we use a spatiotemporal AND-
OR graph to drive our joint inference, using Markov Chain
Monte Carlo and dynamic programming. We introduce a
new formalism of deformable templates characterizing la-
tent sub-events. For evaluation, we have collected a new
set of aerial videos using a hex-rotor flying over picnic ar-
eas rich with group events. Our results demonstrate that we
successfully address above inference tasks under challeng-
ing conditions.

1. Introduction
1.1. Motivation and Objectives

Video surveillance of large spatial areas using unmanned
aerial vehicles (UAVs) is becoming increasingly important
in a wide range of civil, military and homeland security
applications, as a relatively inexpensive and nonintrusive
technology with potentially enormous economic and soci-
etal benefits. For example, identifying suspicious human

Figure 1: Our low-resolution aerial videos show top-down
views of people engaged in a number of concurrent events,
under camera motion. Different types of challenges are
color-coded. The red box marks a zoomed-in video part
with varying dynamics among people and their roles De-
liverer and Receiver in Exchange Box. The green marks
extremely low resolution and shadows. The blue indicates
only partially visible Car. The cyan marks noisy tracking
of person and the small object Frisbee.

activities in aerial videos has the potential of saving human
lives and preventing severe damage to the society (e.g., the
Boston Marathon bombing). Yet, there is some prior work
on aerial video analysis [13, 12, 27], which for the most
part is focused on tracking people and vehicles (with few
exceptions [22]) in relatively sanitized settings.

Towards advancing aerial video understanding, this pa-
per presents a new problem of parsing extremely low-
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Figure 2: The main steps of our approach: given an aerial video, we construct a panorama from all frames for scene labeling.
We then detect static objects (e.g., buildings, cars), and track moving foreground in the panorama’s reference system. Then,
we recognize event occurrences in space-time patterns of the foreground trajectories and their relations with large-object
detections. Our recognition accounts for the temporal layout of latent sub-events, people’s roles within events (e.g., Guide,
Visitor), and small objects that people interact with (e.g., Box, trash bin). We iteratively optimize groupings of the foreground
trajectories, infer their events and human roles (color-coded tracks) within events.

resolution aerial videos of large spatial areas, such as picnic
areas rich with co-occurring group events, viewed top-down
under camera motion, as illustrated in Fig. 1 and 2. Given
an aerial video, our objectives include:

1. Grouping people based on their events;
2. Recognizing events present in each group;
3. Recognizing roles of people involved in these events.

1.2. Scope and Challenges

As illustrated in Fig. 1, we focus on videos of relatively
wide spatial areas (e.g., parks with parking lots), taken on-
board of a UAV flying at a large altitude (25m) from the
ground. People in such videos are formed into groups en-
gaged in different events, involving complex n-ary interac-
tions among themselves (e.g., a Guide leading Tourists in
Group Tour), as well as interactions with objects (e.g., Play
Frisbee). Also, people play particular roles in each event
(e.g., Deliverer and Receiver roles in Exchange Box).

1. Low resolution. People and their portable objects are
viewed at an extremely low resolution. Typically, a person
occupies only 15 x 15 pixels in a frame, and small objects
critical for distinguishing one event from another may not
be even distinguishable by a human eye.

2. Camera motion makes important cues for event
recognition (e.g., object like Car) only partially visible or
even out of view , and thus may require seeing longer video
footage for their reliable detection.

3. Shadows in top view make background subtraction
very challenging.

Unfortunately, popular appearance-based approaches to
detecting people and objects used to produce input for rec-
ognizing group events and interactions [24, 7, 30, 16, 28, 9]
do not handle the above three challenges. Thus we have to

depart from the appearance-based event recognition.

In addition, in the face of these challenges, the state of
the art in people and vehicle tracking is very unreliable.
They frequently miss to track moving foreground, and typ-
ically produce short, broken tracklets with a high rate of
switched track IDs.

4. Space-time dynamics. Our events are character-
ized by both very large and very small space-time dynamics
within a group of people. For example, in the event of a
line forming in front of a vending machine, called Queue
for Vending machine, the participants may be initially scat-
tered across a large spatial area, and may form the line very
slowly, while partially occluding one another when closely
standing in the line.

1.3. Overview of Our Approach

The main steps of our approach are illustrated in Fig. 2.
We ground our approach onto noisy detections and track-
ing. Foreground tracking under camera motion is made fea-
sible by registering video frames onto reference plane. By
frame registration, we generate a panorama for scene label-
ing. Due to the challenges mentioned in Sec. 1.2, tracking
of small portable objects and people produces highly unre-
liable frequently broken tracklets, with a high missing rate.
We improve the initial tracking results by agglomeratively
clustering tracklets into longer trajectories based on their
spatial layout and velocity. We detect objects using the ap-
proach of [29], and classify superpixels [ 1] of panorama for
scene labeling.

Then, we seek event occurrences in the space-time pat-
terns of the foreground trajectories and their relations with
the detections of objects in the scene. To constrain our
recognition hypotheses under uncertainty, we resort to do-
main knowledge represented by a probabilistic grammar —



. AND node N "
arse grapl
node Group events
(") ORtnod E1 Event '\
N-
A= ST-reTgion SE1 Sub event
Rl Leaf node B o E1: Exchange Box E2 E
. Object - . n
° relations ] . . .
Temporal o= - Template
-0 relations ) T .f“\. ______________ J\_\
SE1 SE2p SE;\ > »~SE4 SE5 \ »~SE6
g FJ ﬂ ‘v\ K] b / o\
v v v
R1 R1 01 R2 R2 Rl R1 01 R2 R2 Rl R1 01 R2 R2 R1 Rl 01 R2 R2 R1 R1 O1 R2 R2 Rl R1 01 R2 R2
| | || ] | |
o= - o= 0-. (] 0-. 0= - i -» - i

Deliverers are carrying box Deliverers and receivers are
and receivers are waiting  walking towards each other

Deliverers are waiting
receivers to get the box

Deliverers are leaving and
receivers stay in the scene

Deliverers and receivers
are leaving the scene

Deliverers and receivers
are standing together

Figure 3: A part of ST-AOG for Exchange Box. The nodes are hierarchically connected (solid blue) into three levels, where
the root level corresponds to events, middle level encodes sub-events, and leaf level is grounded onto foreground tracklets
and small static objects in the video. The lateral connections (dashed blue) indicate temporal relations of sub-events. The
colored pie-chart nodes represent templates of n-ary spatiotemporal relations among human roles and objects (see Fig. 4).
The magenta edges indicate an inferred parse graph which recognizes and localizes temporal extents of events, sub-events,

human roles and objects in the video.

namely, a spatiotemporal AND-OR graph (ST-AOG). ST-
AOG encodes decompositions of events into temporal se-
quences of sub-events. Sub-events are defined by our new
formalism called latent deformable templates of n-ary rela-
tions among people and objects. The templates jointly en-
code varying spatiotemporal relations of characteristic roles
of all people, as well as their interactions with objects, while
engaged in the event.

We specify a iterative algorithm based on Markov Chain
Monte Carlo (MCMC [15]) along with dynamic program-
ming (DP) to jointly infer groups, events and human roles.

1.4. Our Contributions and Prior Work

Our work is related to three research streams.

Event Recognition in Aerial Videos. Prior work on
aerial image and video understanding typically puts restric-
tions on their settings for limited tasks. For example, [26]
requires robust motion segmentation and learning of object
shapes for tracking objects; [12] recognizes people based
on background subtraction and motion; and [27] depends
on appearance-based regressor and background subtraction
for tracking vehicles. Regarding the objectives, these ap-
proaches mainly focus on detecting and tracking people or
vehicles [36, 22, 13]. We advance prior work by relaxing
their assumptions about the setting, and by extending their
objectives to jointly infer groups, events, human roles.

Group Activity Recognition. Simultaneous tracking of
multiple people, discovering groups of people, and recog-
nizing their collective activities have been addressed only
in every-day videos, rather than aerial videos [8, 30, 17, 10,

,7,6,5,32,34]. Also, work on recognizing group activ-
ities in large spatial scenes requires high-resolution videos

for a “digital zoom-in” [4]. As input, these approaches use
person detections along with cues about human appearance,
pose, and orientation — i.e., information that cannot be re-
liably extracted from our aerial videos. There are also some
trajectory-based methods for event recognition [20, 33, 19],
but they focus on simpler events compared to what we dis-
cuss in this paper. Regarding the representation of collective
activities, prior work has used a descriptor of human loca-
tions and orientations, similar to shape-context [7, 5]. We
advance prior work with our new formalism of deformable
latent template of human roles and their interactions with
other actors and objects.

Recognition of Human Roles. Existing work on rec-
ognizing social roles and social interactions of people typi-
cally requires perfect tracking results [28], reliable estima-
tion of face direction and attention in 3D space [9], de-
tection of agent’s feet location in the scene [38], and thus
are not applicable to our domain. Our approach is related
to recent approaches aimed at jointly recognizing events
and social roles by identifying interactions of sub-groups
[10, 18, 16, 14].

Contributions:
1. Addressing a more challenging setting of aerial videos;

2. New formalism of latent deformable templates of n-
ary relations among human roles and objects;

3. Efficient inference using dynamic programming aimed
at grouping, recognition and localizing temporal ex-
tents of events and human roles

4. New dataset of aerial videos with per-frame anno-
tations of people’s trajectories, object labels, roles,
events and groups.



2. Representation
2.1. Structure Representation of Group Events

Similar with hierarchical representation in [11, 23, 25],
domain knowledge is formalized as ST-AOG, depicted in
Fig. 3. Its nodes represent the following four sets of con-
cepts: events A = {F;}; sub-events A, = {L,}; hu-
man roles Ag = {R;}; small objects that people interact
with Ap = {O,}; and large objects and scene surfaces
Ags = {S;}. A particular pattern of foreground trajectories
observed in a given time interval gives rise to a sub-event,
and a particular sequence of sub-events defines an event.

Edges of ST-AOG represent decomposition and tempo-
ral relations in the domain. In particular, the nodes are hi-
erarchically connected by decomposition edges into three
levels, where the root level corresponds to events, middle
level encodes sub-events, and leaf level is grounded onto
foreground tracklets and object detections in the video. The
nodes of sub-events are also laterally connected for captur-
ing “followed-by” temporal relations of sub-events within
the corresponding events.

ST-AOG has special types of nodes. An AND node, A,
encodes a temporal sequence of latent sub-events required
to occur in the video so as to enable the event occurrence
(e.g., in order to Exchange Box, the Deliverers first need
to approach the Receivers, give the Box to the receivers,
and then leave). For a given event, an OR node, V, serves
to encode alternative space-time configurations of people’s
roles and objects corresponding to distinct sub-events.

2.2. Sub-events as Latent Deformable Templates

A temporal segment of foreground trajectories corre-
sponds to a sub-event. ST-AOG represents a sub-event as
the latent deformable template of n-ary spatiotemporal re-
lations among foreground trajectories within a time interval,
as illustrated in Fig. 4. In particular, as an event is unfold-
ing in the video, foreground trajectories form characteristic
space-time patterns, which may not be semantically mean-
ingful. As they frequently occur in the data, they can be ro-
bustly extracted from training videos through unsupervised
clustering. Our deformable templates formalize these pat-
terns within the Bayesian framework using unary, pairwise,
and n-ary relations (also called attributes) among the fore-
ground trajectories. In addition, our unsupervised learning
of deformable templates address unstructured events in a
unified manner. Namely, more structured events need more
templates and an unstructured one is represented by a single
template.

Unary attributes. A foreground trajectory, I' =
.., Ik, ...], can be viewed as spanning a number of time
intervals, 7, = [tx_1,tx], where I* = T'(74). Each tra-
jectory segment, T'®, is associated with unary attributes,
¢ = [r¥ s* c¥]. Elements of the role indicator vector

Figure 4: Three example deformable templates of n-ary
spatiotemporal relations among foreground trajectories ex-
tracted from the video (XYT-space) for the event Exchange
Box. The recognized roles Deliverers, Receivers and the ob-
ject Box in each template are marked cyan, blue and purple,
respectively. Deformable templates are depicted as colored
pie-chart nodes in Fig. 3.

rk(1) = 1if T'* belongs to a person with role I € Ag or
object class I € Ao; otherwise 7*(1) = 0. The speed in-
dicator s* = 1 when the normalized speed of I'* is greater
than a threshold (we use 2 pixels/sec); otherwise, sF = 0.
Elements of the closeness indicator vector ¢¥(I) = 1 when
I'* is close to any of the large objects or types of surfaces
detected in the scene indexed by [ € Ag, such as Building,
Car, for a threshold (70 pixels); o.w., ¢*(I) = 0.

Pairwise attributes of a pair of trajectory segments,
I'* and T'%, are aimed at capturing spatiotemporal rela-
tions of human roles or objects represented by the two tra-
jectories, as illustrated in Fig. 4. The pairwise attributes
are specified as: ¢;; = [dfj,,ﬁfj,,rfj,,sfj,,cé?j,], where

dfj, is the mean distance between 1“;? and 1";?,; Hfj, is the

angle subtended between I‘? and F?,; and the remaining
three pairwise attributes check for compatibility between
the aforementioned binary attributes as: rfj, = r;’? e r;?,,
sé?j, = s? &) sf,, cfj, = c;? & cf,, where @ denotes the
Kronecker product.

n-ary attribute. Toward encoding unique spatiotempo-
ral patterns of a set of trajectories, we specify the follow-
ing n-ary attribute. A set of trajectory segments, G;(7x) =
GF = {I‘?}, can be described by a 18-bin histogram h* of
their velocity vectors. h* counts orientations of velocities
at every point along the trajectories in a polar coordinate
system: 6 bins span the orientations in [0, 27], and 3 bins
encode the locations of trajectory points relative to a given
center. As the polar-coordinate origin, we use the center
location of a given event in the scene.

Unsupervised Extraction of Templates. Given training
videos with ground-truth partition of all their ground-truth
foreground trajectories G into disjoint subsets G = {G;}.
Every G; can be further partitioned into equal-length time



intervals G; = {GF} (|7%| = 2sec). We use K-means clus-
tering to group all {FiC ;1> and then estimate deformable
templates {L,} as representatives of the resulting clusters
a. For K-means clustering, we use ground-truth values of
the aforementioned unary and pairwise attributes of {I‘iC it
In our setting of 11 categories of events occurring in aerial
videos, we estimate |A | = 27 templates.

3. Formulation and Learning of Templates

Given the deformable templates, A;, = {L,}, extracted
by K-means clustering from training videos (see Sec. 2.2),
we will conduct inference by seeking these latent templates
in foreground trajectories of the new video. To this end, we
define the log-likelihood of a set of foreground trajectories
G={T;}given L, € A as

Z'w ¢]+Zw ~ ¢y +wg - h,
—La'[Z%vZ(ﬁjj'vh]:La'W
i g

6]
where the bottom equation of (1) formalizes every template
as a set of parameters L, = [wl 'w2 w ] appropriately
weighting the unary, pairwise and n-ary attributes of G,
1). Recall that our deformable templates are extracted from
unit-time segments of foreground trajectories in training.
Thus, the log-likelihood in (1) is defined only for sets G
consisting of unit-time trajectory segments.

From (1), the templates L, can be learned by maximiz-
ing the log-likelihood of training attributes ), extracted
from the corresponding clusters a of training trajectories.
Thus, we specify template learning as the following con-
strained optimization:

log p(G|Lg)

maximize L, - ,, subjectto ||L||3=1, (2)

resulting in a closed-form solution L,= = % ":fk R
k 2
The log-posterior of assigning template L, to longer
temporal segments of trajectories, falling in 7 = (¢/,¢),

t' < t, is specified as

t

Joc Y~ logp(G¥|Lq) + log p(La(7))

k=t
3)
where p(L, (7)) is a log-normal prior that L, can be as-
signed to a time interval of length |7|. The hyper-parameters
of p(L,(7)) are estimated using the MLE on training data.

log p(La(7)|G(T

4. Probabilistic Model

A parse graph is an instance of ST-AOG, explaining the
event, sequence of sub-events, and human role and object
label assignment. The solution of our video parsing is a set

of parse graphs, W = {pg;}, where every pg; explains a
subset of foreground trajectories, GG; C G, as

pgi = {ei, 7 = [tio, tir), {L(T50) s {Ti 51}, D)

where e; € Ag is the recognized event conducted by Gj;
Ti = [ti1, ;7] is the temporal extent of e; in the video
starting from frame ¢; ¢ and ending at frame ¢; 7; {L(7;.,)}
are the templates (i.e., latent sub-events) assigned to non-
overlapping, consecutive time intervals 7; ,, C 7, such that
|| = >, |Ti,ul; and r; ; is the human role or object class
assignment to jth trajectory I'; ; of G;.

Our objective is to infer W that maximizes the log-
posterior logp(W|G) « —E(W|G), given all foreground
trajectories G extracted from the video. The corresponding
energy £(W|G) is specified for a given partitioning of G
into N disjoint subsets G; as

W‘G O(Z [ logp e vroot +Z ]‘ng(/\Lu.l\/ei)

select event e; select template L,

—log p(La(73,0)|Gi(Tiu)) H

assign template

)
where G;(7;,) denotes temporal segments of fore-
ground trajectories falling in time intervals 7;,, |7 =
> |Tiul, and log p(L(7;,u)|Gi(7i,u)) is given by (3).
Also, logp(Ae,|Vioot) and logp(Ar,|Ve,) are the log-
probabilities of the corresponding switching OR nodes in
ST-AOG for selecting particular events e; € Ap and de-
formable templates L, € Ar. These two switching proba-
bilities are simply estimated as the frequency of correspond-
ing selections observed in training data.

5. Inference

Given an aerial video, we first build a video panorama
and extract foreground trajectories G. Then, the goal of
inference is to: (1) partition G into disjoint groups of tra-
jectories {G;} and assign label event e; € Ag to every Gj;
(2) assign human roles and object labels r; ; to trajectories
I'; ; within each group G;; and 3) assign latent sub-event
templates L(7; ,,) € Ar to temporal segments 7; ,, of fore-
ground trajectories within every G;. For steps (1) and (2) we
use two distinct MCMC processes. Given groups G, event
labels e; and role assignment 7; ; proposed in (1) and (2),
step (3) uses dynamic programming for efficient estimation
of sub-events L(7) and their temporal extents 7. Steps (1)—
(3) are iterated until convergence, i.e., when £(W|G), given
by (5), stops decreasing after a sufficiently large number of
iterations.

5.1. Group Segmentation

Given G, we first use [10] to perform initial cluster-
ing of foreground trajectories into atomic groups. Then,
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Figure 5: Our DP process can be illustrated by this DAG (di-
rected acyclic graph). An edge between L’;; and L* means
the transition L, — L, follows the rule defined in ST-AOG
and the time interval [t,/,t,] is assigned with template L,,.
In this sense, with the transition rules and the prior defined
in (3) (we do not consider the assignment with low prior
probability), we can define the edges of such DAG. So the
goal of DP is equivalent to finding a shortest path between
source and sink. The red edges highlight a possible path.
Suppose we find a path source — L§ — L2° — sink.
This means that we decompose [0, T'] into 2 time intervals:
[0,86%], [8dt, T'], and they are assigned with template L3
and L, respectively.

we apply the first MCMC to iteratively propose either to
merge two smaller groups into a merger, with probability
p(1) = 0.7, or to split a merger into two smaller groups,
with probability p(2) = 0.3. Given the proposal, each re-
sulting group G; is labeled with an event e; € Ag (we enu-
merate all possible labels). In each proposal, the MCMC
jumps from current solution W to a new solution W’ gen-

erated by one of the dynamics. The acceptance rate is

. W W)p(W'|G ,
a = min {1, W}, where the proposal dis-

tribution Q(W — W) is one of p(1) or p(2) depending on
the proposal, and p (W|QG) is given by (5).

5.2. Human Roles Assignment

Given a partitioning of G into groups {G;} and their
event labels {e;}, we use the second MCMC process within
every (G; to assign human roles and object labels to trajec-
tories. Each trajectory I'; ; in G; is randomly assigned with
an initial human-role/object label r; ; for solution pg;. In
each iteration, we randomly select I'; ; and change it’s role
label to generate a new proposal pg;. The acceptance rate
L e ) where SEAS2D =
1 and p (pg}|G;) is maximized by dynamic programming
specified in the next section 5.3.

isa:min{

5.3. Detection of Latent Sub-events with DP

From steps (1) and (2), we have obtained the trajectory
groups {G;}, and their event {e;} and role labels {r; ;}.
Every GG; can be viewed as occupying time interval of 7; =

[ti,0,ti]. The results of steps (1) and (2) are jointly used
with detections of large objects {.S;} to estimate all unary,
pairwise, and n-ary attributes ?; of every G;. Then, we
apply dynamic programming for every G; in order to find
latent templates L(7;,) € Ap and their optimal durations
Tim C [ti0,ti,r). In the sequel, we drop notion ¢ for the
group, for simplicity.

The optimal assignment of sub-events can be formulated
using a graph, shown in Fig. 5. To this end, we partition
[to, t] into equal-length time intervals {[tx_1,¢x]}, where
ty, — ty_1 = Ot, 0t = 2sec. Nodes L” in the graph repre-
sent the assignment of templates L, € Ay, to the intervals
[tk—1,tk]. The graph also has the source and sink nodes.

Directed edges in the graph are established only between
nodes L(’j/ and L*, 1 < k' <k, to denote a possible assign-
ment of the very same template L, to the temporal sequence
[trr, tx]. The directed edges are assigned weights (a.k.a. be-
lief messages), m(LY | L¥), defined as

m(LF , L¥) = log p(La(ty , t1)|Gilti, tr)),  (6)

where log p(Lg (txr, tr)|Gi(ts, tr)) is given by (3). Conse-
quently, the belief of node LF is defined as

b(LE) = max b(LE) +m(LF ,L¥). [Forward pass]
./,a/
@)

Here b(L%) = 0. We compute the optimal assignment
of latent sub-events using the above graph in two passes. In
the forward pass, we compute the beliefs of all nodes in the
graph using (7). Then, in the backward pass, we backtrace
the optimal path between the sink and source nodes, in the
following steps:

0: Letty < tr;

1: Find the optimal sub-event assignment at time ¢j as
Lk, = argmax, b(L¥);leta « a*;

2: Find the best time moment in the past tx-, k*<k,
and its best sub-event assignment as LK. =
max,  b(LE ) +m(LE | LF); Let a<—a* and k«k*.

3: If ¢y, > tp, go to Step 2.

6. Experiments and Results

Existing Datasets. Existing datasets on aerial videos,
group events or human roles are inappropriate for our eval-
vation. These aerial videos or images indeed show some
group events, but the events are not annoted ([3, 2, 22, 21]).
Most aerial datasets are compiled for tracking evaluation
only [13, 12, 27]. Existing group-activity videos [8, 30, 4,

] or social role videos [38, 9, 16, 28, 14] are captured on
or near the ground surface, and have sufficiently high reso-
lution for robust people detection. Thus, we have prepared
and released a new aerial video dataset ! with the new chal-

IDataset can be download from http://www.stat.ucla.
edu/~tianmin.shu/AerialVideo/UCLA_Aerial_Video_
Dataset.zip
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Method Description Group Event Role
Baseline Given ground-truth tracks, ([10]) for grouping, [7] for event and role classification. | 77.71% 17.22% 13.98%
Baseline Var Given tracking result, apply Baseline method. 39.64% | 16.94% | 5.53%
Varl Given ground-truth tracks, apply our method. 95.48% | 96.38% | 89.94%
Var2 Given tracking result + ground-truth object annotations, apply our method. 87.55% | 54.75% | 28.86%
Var3 Given group labeling on tracking result, apply our method. N/A 39.92% | 18.71%
Var4 Given tracking result, apply our method without temporal event grammar 40.41% | 18.51% 8.69%
Ours Given tracking result, apply our method (with temporal event grammar) 49.47% | 32.84% | 18.92%

Table 1: Comparison of our method with baseline methods and variants of our approach. Our method yields best accuracy
based on ground-truth bounding boxes and object labels compared to the baseline methods. Using noisy tracking and object
detection results, the accuracy is limited, yet better than the baseline methods under the same condition. This demonstrates the
advantages of our joint inference. When given access to the ground-truth of objects or people grouping, our results improve.
Without reasoning about latent subevents, accuracy drops significantly, which justifies our model’s ability to capture the

structural variations of group events.

lenges listed in Sec. 1.2.

Aerial Events Dataset. A hex-rotor with a GoPro
camera was used to shoot aerial videos at altitude of 25
meters from the ground. The videos show two different
scenes, viewed top-down from the flying hex-rotor. The
dataset contains 27 videos, 86 minutes, 60 fps, resolution
of 1920 x 1080, with about 15 actors in each video. All
video frames are registered on a reference plane of the video
panorama. Annotations are provided ([35]) as: bounding
boxes around groupings of people, events, human roles, and
small and large objects. The objects include: 1. Building, 2.
Vending Machine, 3. Table & Seat, 4. BBQ Oven, 5. Trash
Bin, 6. Shelter, 7. Info Booth, 8. Box, 9. Frisbee, 10. Car,
11. Desk, 12. Blanket. The events include: 1. Play Frisbee,
2. Serve Table, 3. Sell BBQ, 4. Info Consult, 5. Exchange
Box, 6. Pick Up, 7. Queue for Vending Machine, 8. Group
Tour, 9. Throw Trash, 10. Sit on Table, 11. Picnic. The
human roles include: 1. Player, 2. Waiter, 3. Customer, 4.
Chef, 5. Buyer, 6. Consultant, 7. Visitor, 8. Deliverer, 9.
Receiver, 10. Driver, 11. Queuing Person, 13. Guide, 14.
Tourist, 15. Trash Thrower, 16. Picnic Person.

Evaluation Metrics. We split the 27 videos into 3 sets,
such that different event categories are evenly distributed,
and use a three-fold cross validation for our evaluation.
Although our training and test videos show the same two
scenes, we make the assumption that the layout of ground
surfaces and large objects is unknown. Also, different
videos in our dataset cover different parts of these large
scenes, which are also assumed unknown. We evaluate ac-
curacy of: 1) grouping people, ii) event recognition, iii) role
assignment. While our approach also estimates sub-events,
note that they are latent and not annotated. The results are
all time-averaged with the lengths of trajectories in each
video. For specifying evaluation metrics we use the fol-
lowing notation. G = {G;} and G’ = {G)} are the sets
of groups in ground-truth and inference results respectively.
I';; is the jth trajectory in 4th group in ground-truth data,
with duration of |7;;|, group label g;;, event type e;; and

human role r;; in ground-truth. So is I';; in our inference.
For group G;, we call the best matched (i.e. overlapped)
group in G’ as M;. For group G, we call the best match
group in G as M. Then, precision and recall of grouping
are

Pry= 3 (3 1 (t=al) bl X Iil) ®

G,€G ‘TI'y;€G; r,;€G;

Ry= = (S 10a=g) 1l S ml) O
Glea! F;jeG; F,’UeG,’.

i

Accuracy of grouping is F, = 2/(1/Prg +1/Rey).
Event recognition accuracy E, and role assignment ac-
curacy E, are defined as

Be= ) ( > (e =cely)- |T¢j|)/ S0 nl
GleG’ T €G] GleG' T}, €G]
(10
Er= ) ( > 1(riy=ry)- |7'ij\>/ So> T Imsl
GjeG’ "I}, €G] GlEG' T}, €G]
an

Baselines. To evaluate effectiveness of each module of
our approach, we compare with baselines and variants of
our method defined in Tab. 1. For the baselines we ex-
tract the following low-level features on trajectories: shape-
context like feature [8], average velocity, aligned orienta-
tion, distance from each type of large objects. All elements
of feature vectors are normalized to fall in [0, 1].

Results. We register raw videos by RANSAC over
Harris Corner feature points, then apply method of [12]
for tracking, which is based on background subtraction
[37, 31]. We also use the detector of [29] to detect buildings
and cars, while other static objects are inferred in scene la-
beling. We do not detect portable objects, e.g., Frisbee and
Box.

We evaluate our approach on both annotated bounding
boxes and real tracking results. Example qualitative results
are presented in Fig. 6. As can be seen, the results are rea-
sonably good. The quantitative results are shown in Tab.
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Figure 6: Visualization of results including grouping (large bounding boxes), event (text) and human role (small bounding
boxes with text). In events with more than one role, we use the shaded bounding box to represent the second role; small
portable objects are labeled with lighter color. From event and role recognition, we can group people even when they are
far from each other (e.g.,Play Frisbee and Sell BBQ). In the top-rightmost failure example, true event Pick Up is wrongly
recognized as Exchange Box because one person’s trajectory is inferred as Box. In bottom-rightmost failure example, our
event recognition is correct, but true Consultant role is wrongly inferred as Visitor role.
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(a) event recognition on GT (b) event recognition on tracking result (c) role assignment on GT

Figure 7: Confusion matrices of event recognition and role assignment result. (a) is event recognition result based on
ground-truth (GT) bounding boxes and object labels; (b) is result based on real tracking and detections. From (a) and (b)
we can see that Info Consult, Sit on Table, Serve Table cannot be easily distinguished from each other solely based on noisy
tracklets. Some events (e.g. Group Tour) tend to be wrongly favored by our approach, especially when we do not observe
some distinguishing objects. (c) is role assignment result confusion matrix within event class based on ground-truth bounding
boxes and object labels. Each 2 x 2 block is a confusion matrix of role assignment within that event.

1. Confusion matrices of event recognition and role assign-
ment are shown in Fig. 7. Additional results are presented
in the supplementary material.

7. Conclusion

We collected a new aerial video dataset with detailed an-
notations of humans, objects, groups, events and human
roles. The dataset presents new challenges to computer
vision, and complements existing benchmarks. We speci-
fied a framework for joint inference of events, human roles,
and people groupings, using noisy people trajectories, ob-
ject detections, and scene labeling as input features. Our
experiments showed that addressing each of these inference

tasks in isolation is very difficult in aerial videos, and thus
provided justification for our holistic framework. Our re-
sults demonstrated significant performance improvements
over baselines when we constrained uncertainty in input
features with domain knowledge, i.e., by parsing the AND-
OR graph of n-ary spatiotemporal relations among human
roles in the events. The key to our success was our innova-
tion of a latent deformable template which helped us bridge
the semantic gap between our noisy input of people track-
lets and missed object detections and concepts of events and
human roles.



Acknowledgements

This research has been sponsored in part by grants
DARPA MSEE FA 8650-11-1-7149 and ONR MURI
N00014-10-1-0933. The authors would like to thank Dr.
Michael Ryoo for the helpful discussion.

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]
[15]

[16]

(7]

(18]

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Siisstrunk. Slic superpixels compared to state-of-the-art
superpixel methods. /IEEE TPAMI, 2012. 2

AFRL. WPAFB, 2009. https://www.sdms.afrl.af.mil/index.
php?collection=wpafb2009. 6

S. Ali, V. Reilly, and M. Shah. Motion and appearance con-
texts for tracking and re-acquiring targets in aerial videos. In
CVPR, 2007. 6

M. R. Amer, D. Xie, M. Zhao, S. Todorovic, and S.-C. Zhu.
Cost-sensitive top-down/bottom-up inference for multiscale
activity recognition. In ECCV, 2012. 3, 6

B. Antic and B. Ommer. Learning latent constituents for
recognition of group activities in video. In ECCV, 2014. 3
W. Choi, Y. W. Chao, C. Pantofaru, and S. Savarese. Discov-
ering groups of people in images. In ECCV, 2014. 3

W. Choi and S. Savarese. Understanding collective activi-
ties understanding collective activities of people from videos.
IEEE TPAMI, 2014. 2, 3,7

W. Choi, K. Shahid, and S. Savarese. What are they doing?:
Collective activity classification using spatio-temporal rela-
tionship among people. In CVPR Workshops, 2009. 3, 6,
-

A. Fathi, J. K. Hodgins, and J. M. Rehg. Social interactions:
A first-person perspective. In CVPR, 2012. 2,3, 6

W. Ge, T. R. Collins, and R. B. Ruback. Vision-based analy-
sis of small groups in pedestrian crowds. IEEE TPAMI, 2012.
3,5,7

A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis. Understand-
ing videos, constructing plots learning a visually grounded
storyline model from annotated videos. In CVPR, 2009. 4
Y. Iwashita, M. Ryoo, T. J. Fuchs, and C. Padgett. Rec-
ognizing humans in motion: Trajectory-based aerial video
analysis. In BMVC, 2013. 1,3,6,7

M. Keck, L. Galup, and C. Stauffer. Real-time tracking of
low-resolution vehicles for wide-area persistent surveillance.
In WACV, 2013. 1, 3,6

S. Kwak, B. Han, and J. H. Han. Multi-agent event detection:
Localization and role assignment. In CVPR, 2013. 3, 6

J. Kwon and K. M. Lee. Wang-landau monte carlo-based
tracking methods for abrupt motions. /EEE TPAMI, 2012. 3
T. Lan, L. Sigal, and G. Mori. Social roles in hierarchical
models for human activity recognition. In CVPR, 2012. 2, 3,
6

T. Lan, Y. Wang, W. Yang, S. N. Robinovitch, and G. Mori.
Discriminative latent models for recognizing contextual
group activities. I[EEE TPAMI, 2012. 3

R. Li, P. Porfilio, and T. Zickler. Finding group interactions
in social clutter. In CVPR, 2013. 3, 6

(19]

[20]

(21]
(22]
(23]

(24]

(25]

[26]

(27]
(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

C. C. Loy, T. Xiang, and S. Gong. Incremental activ-
ity modelling in multiple disjoint cameras. IEEE TPAMI,
34(9):1799-1813, 2012. 3

R. Nevatia, T. Zhao, and S. Hongeng. Hierarchical language-
based representation of events in video streams. In /EEE
Workshop on Event Mining, 2003. 3

S. Oh et al. A large-scale benchmark dataset for event recog-
nition in surveillance video. In CVPR, 2011. 6

0. Oreifej, R. Mehran, and M. Shah. Human identity recog-
nition in aerial images. In CVPR, 2010. 1, 3,6

M. Pei, Z. Si, B. Yao, and S.-C. Zhu. Video event parsing
and learning with goal and intent prediction. CVIU, 2013. 4
S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. You’ll
never walk alone: Modeling social behavior for multi-target
tracking. In /ICCV, 2009. 2

H. Pirsiavash and D. Ramanan. Parsing videos of actions
with segmental grammars. In CVPR, 2014. 4

T. Pollard and M. Antone. Detecting and tracking all moving
objects in wide-area aerial video. In CVPR Workshops, 2012.
3

J. Prokaj and M. Gerard. Persistent tracking for wide area
aerial surveillance. In CVPR, 2014. 1, 3,6

V. Ramananthan, B. Yao, and L. Fei-Fei. Social role discov-
ery in human events. In CVPR, 2013. 2,3, 6

B. Rothrock, S. Park, and S.-C. Zhu. Integrating grammar
and segmentation for human pose estimation. In CVPR,
2013. 2,7

M. S. Ryoo and J. K. Aggarwal. Stochastic representation
and recognition of high-level group activities. 1JCV, 2011.
2,3,6

A. Sobral. BGSLibrary: An opencv c++ background sub-
traction library. In IX Workshop de Visdo Computacional
(WVC’2013),2013. 7

L. Sun, H. Ai, and S. Lao. Activity group localization by
modeling the relations among participants. In ECCV, 2014.
3

E. Swears, A. Hoogs, Q. Ji, and K. Boyer. Complex activity
recognition using granger constrained dbn (gcdbn) in sports
and surveillance video. In CVPR, 2014. 3

K. Tu, M. Meng, M. W. Lee, T. E. Choi, and S.-C. Zhu. Joint
video and text parsing for understanding events and answer-
ing queires. IEEE MultiMedia, 21(2):42-70, 2014. 3

C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scal-
ing up crowdsourced video annotation. IJCV, 2013. 7

J. Xiao, H. Cheng, H. Sawhney, and F. Han. Vehicle de-
tection and tracking in wide field-of-view aerial video. In
CVPR, 2010. 3

J. Yao and J.-M. Odobez. Multi-layer background subtrac-
tion based on color and texture. In CVPR Workshops, 2007.
7

J. Zhang, W. Hu, B. Z. Yao, Y. Wang, and S.-C. Zhu. Infer-
ring social roles in long timespan video sequence. In ICCV
Workshops, 2011. 3,6


https://www.sdms.afrl.af.mil/index.php?collection=wpafb2009
https://www.sdms.afrl.af.mil/index.php?collection=wpafb2009

