Unsupervised Structure Learning of Stochastic And-Or Grammars

Kewei Tu, Maria Pavlovskaja and Song-Chun Zhu
Departments of Statistics and Computer Science, University of California, Los Angeles

Stochastic And-Or Grammar

Stochastic And-Or grammars (AOG) are a generalization of stochastic grammars of language that can be used to model other types of data. A stochastic context-free And-Or grammar contains the following elements:

- A set \mathcal{X} of atomic patterns
- A set \mathcal{N} of nonterminal patterns
 - Two disjoint subsets: And-nodes, Or-nodes
- A start symbol $S \in \mathcal{N}$
- A set \mathcal{A} of probabilistic production rules
 - And-rule (stochastic composition): Composition of an And-node from sub-patterns; a set of relations are specified between the sub-patterns
 - Or-rule (stochastic reconfiguration): An alternative configuration of an Or-node

A grammar fragment is a set of grammar rules that are rooted at a new nonterminal node and specify how the new nonterminal node generates one or more configurations of existing nodes.

And-Or Fragment

We propose to search for And-Or fragments in the algorithm. An And-Or fragment contains:

- A new And-node as the root
- A set of new Or-nodes under the And-node
- A set of existing nodes under each new Or-node

By learning with And-Or fragments, we induce compositions and reconfigurations in a unified manner that is more efficient and robust than learning with other types of grammar fragments.

Posterior gain computation

The posterior gain of adding an And-Or fragment can be efficiently computed based on a set of sufficient statistics.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Nonterminal</th>
<th>Relations in And-rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Phrase</td>
<td>Deterministic “concatenating” relations</td>
</tr>
<tr>
<td>Image</td>
<td>Visual word (e.g., Gabor bases)</td>
<td>Image patch</td>
</tr>
<tr>
<td>Event</td>
<td>Atomic action (e.g., standing, drinking)</td>
<td>Event or sub-event</td>
</tr>
</tbody>
</table>

Unsupervised Learning

Learning a stochastic grammar involves two parts:

- Learning the grammar rules (structure)
- Learning the rule probabilities (parameters)

Unsupervised learning:

- Learning from unannotated i.i.d. data samples (e.g., natural language sentences, quantized images, action sequences)

Our objective function is the posterior probability of the grammar:

$$P(G|X) \propto P(G) P(X|G) = e^{-\lambda ||(x,s)||} \prod_{x \in X} P(x;G)$$

| Grammar | Unannotated training data | Prior that penalizes the grammar size | Likelihood (to be approximated by Viterbi likelihood) |

Algorithm

1. Start with the maximum-likelihood grammar (simply the union of all the training samples)

2. Repeat:
 - Add a new grammar fragment and use it to reduce training samples s.t. the posterior is maximally increased
 - Until no more fragment can be learned

A part of the learned event And-Or grammar

Experiments on Event Data

We applied our approach to learn event grammars from human activity data. Each input video was preprocessed into a sequence of binary vectors; each element in the vector represents an atomic action. The learned event grammar is evaluated by comparing the events identified by the grammar against the manual annotations on the test data.

<table>
<thead>
<tr>
<th>Data 1</th>
<th>Data 2</th>
<th>ADROS [15]</th>
<th>0.810</th>
<th>0.204</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ours (f)</td>
<td>0.765</td>
<td>0.623</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ours (c+f)</td>
<td>0.768</td>
<td>0.624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ours (c)</td>
<td>0.767</td>
<td>0.613</td>
</tr>
</tbody>
</table>

Evaluation results (F-measure) of our approach and two previous approaches

Experiments on Image Data

We tested our approach in learning image grammars from images.

On a synthetic dataset of animal face sketches, we compared the learned grammar against the true grammar by measuring the precision and recall of the sets of images generated from the two grammars, as well as the KL-divergence between the distributions defined by the two grammars.

Evaluation results of our approach and a previous approach.

On a real dataset of animal faces, we first quantized the images with a set of learned atomic patterns; we then applied our approach and evaluated the perplexity of the learned image grammar.

Evaluation results of our approach and a previous approach (lower is better).