1. Overview

The usual two numbers summarizing a distribution are the "center"[the "typical" value] and the "spread" [how close or far the data are to each other, i.e. variability].

2. "Spread"

- A. Minimum
- B. Maximum
- C. Range
- D. Percentiles & Quartiles
- E. IQR (inter quartile range)

THOSE ARE NICE ROBUST MEASURES (e.g. relatively resistant to extreme observations) GOOD FOR GETTING AN IDEA OF WHAT THE DISTRIBUTION LOOKS LIKE (e.g. patterns) but not as commonly used as...

3. The Sample Standard Deviation (SD)

The usual measure of spread is the STANDARD DEVIATION, written as SD or as a lowercase "s" when calculated for samples.

A. Formulas

The sample SD is defined as follows: given a list of numbers x1, x2, ..., xn,

$$s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n - l}}$$

often rewritten as

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

where ${\it X}$ is the mean of the n numbers.

(we use n-1 here because we'd really like the sample standard deviation to be a good estimate of the population standard deviation. For reasons beyond the scope of this course, it turns out that the divisor n-1 gives a better estimate of the population standard deviation and population variance than the divisor n does)

The square of the sample standard deviation or s^2 is called the sample variance

The population has a standard deviation with notation σ and it has a variance σ^2

Example:

An interview with 5 UCLA students reveals the time in hours spent surfing the web in a given week: 7, 17, 3, 14, 7

C. Five-Number Summary & Boxplots

A five number summary for a variable is its minimum, first quartile, median, third quartile, and maximum. A Boxplot is a graphical summary that use the five number summary to provide a lot of information in a very simple drawing.

D. Drawing a boxplot

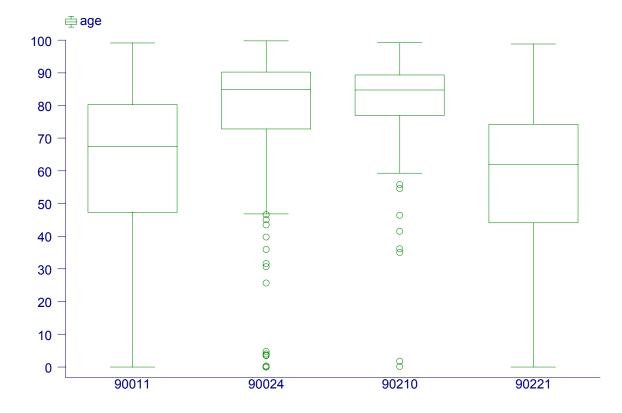
- Construct either a vertical or horizontal axis
- Construct a Box whose lower edge (if scaled vertically) or left edge (if scaled horizontally) represents the value of the 25th percentile
- Construct a Box whose upper edge (if scaled vertically) or right edge (if scaled horizontally) represents the value of the 75th percentile
- Draw a line segment (horizontal if scaled vertically, vertical if scaled horizontally) at the value of the median.
- Extend vertical (if scaled vertically) or horizontal (if scaled horizontally) line segments to the minimum if the minimum does not exceed the value of (the 25th percentile (1.5*IQR)). Your book calls this a "whisker". If the minimum does exceed that value, then draw a perpendicular line to mark that value. Any values lower than the value of (the 25th percentile (1.5*IQR)) are represented by open circles or asterisks.
- Extend vertical (if scaled vertically) or horizontal (if scaled horizontally) line segments to the maximum if the maximum does not exceed the value of (the 75th percentile + (1.5*IQR)). Your book calls this a "whisker". If the maximum does exceed that value, then draw a perpendicular line to mark that value. Any values higher than the value of (the 75th percentile + (1.5*IQR)) are represented by open circles or asterisks.

Your textbook identifies values as outliers if they are more that 1.5*IQR away from the nearest edge of the "box" and extreme outliers are values that are more than 3.0*IQR away from the nearest edge of the "box". These values are represented by circles and asterisks. Stata just uses circles and doesn't make the distinction.

Values exceeding 1.5*IQR is a common criterion for outliers.

D. Remarks

Note that the standard deviation is in the same units as the data. In our case, it's hours. This is why the standard deviation involves the square root, it allows for easier interpretation than hours-squared for example. The SD measures how close the numbers in the list are to the average; i.e., not all numbers are equal to the mean; the SD is a measure of the "average" distance between each point and the average. The SD is tied to the mean, usually people talk about them together. It also has some of the same problems as the mean, that is, it is very sensitive to outliers.


Standard deviations usually make more sense when you are comparing them for example, these are comparisons of the age of death in Los Angeles for 4 different zip codes:

-> zipcode = Variable		Mean	Std. Dev.	Min	Max
age	410	61.71821	24.74859	0	99.08282

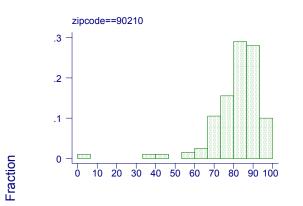
Statistics 10

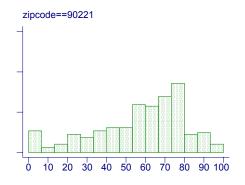
Lecture 4

Variable	•	s Mear	n Std. Dev.	. Min	Max
age		8 78.38765	5 19.28202	0	99.73169
-> zipcode =	90210				
Variable	Ob	s Mear	n Std. Dev.	. Min	Max
age	20	0 81.64175	5 13.44267	.1259411	99.20876
-> zipcode =	90221				
Variable	•	s Mear	n Std. Dev.	. Min	Max
age	24	5 57.18768	3 23.36865	0	98.80356

Let's take a closer look at two of the zip codes to see how very different they are.

[.] summarize age if zip==90210, detail


age				
1% 5% 10% 25%	Percentiles 18.36413 61.57563 68.55031 76.90349	Smallest .1259411 1.724846 35.00342 36.18617	Obs Sum of Wgt.	200 200
50% 75%	84.70774 89.34702	Largest 97.8371	Mean Std. Dev.	81.64175 13.44267


Lecture 4

90%	93.44969	98.08624	Variance	180.7055
95%	96.10678	98.23135	Skewness	-2.848412
99%	98.15879	99.20876	Kurtosis	15.72241

. summarize age if zip==90221, detail

age				
	Percentiles	Smallest		
1%	0	0		
5%	4.788501	0		
10%	22.17112	0	Obs	245
25%	44.06297	0	Sum of Wgt.	245
50%	61.90554		Mean	57.18768
		Largest	Std. Dev.	23.36865
75%	74.23956	94.64476		
90%	81.11156	94.84463	Variance	546.0939
95%	89.17728	94.98152	Skewness	7722799
99%	94.84463	98.80356	Kurtosis	2.962964

age Histograms by zipcode