Example. IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. A sample of 25 persons is drawn. How likely is it to get a sample average of 108 or more? (0.38%) How likely is it to for the first score to be 108 or more? (29.8%)

$$Z = \frac{\overline{y} - \mu_{Y}}{\frac{\sigma_{Y}}{\sqrt{n}}} = \frac{108 - 100}{\frac{15}{\sqrt{25}}} = +2.67$$

$$Z = \frac{\overline{y} - \mu_{Y}}{\frac{\sigma_{Y}}{\sqrt{n}}} = \frac{108 - 100}{\frac{15}{\sqrt{1}}} = +.53$$

Example: The Recall of Governor Davis in October 2003, Final Count (population) Treat the YES=1 and the NO=0

	Davis	Fre	q. Per	ccent	Cum.	
	NO YES	3,559,4	36 4 98 5	14.63 55.37		
	Total	7,974,8	34 10	00.00		
Davis						
Percentiles Smallest						
1%		0	0			
5%		0	0			
10%		0	0		Obs	7974834
25%		0	0		Sum of Wgt.	. 7974834
50%		1			Mean	.5536664
			Largest		Std. Dev.	.4971116
75%		1	1			
90%		1	1		Variance	.2471199
95%		1	1		Skewness	2159131
99%		1	1		Kurtosis	1.046618

The chance of getting a sample proportion (p-hat) as low as 51% or lower from a single sample of 100 is:

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{.51 - .5537}{\sqrt{\frac{.5537(.4463)}{100}}} = \frac{-.0437}{\sqrt{\frac{.2471}{100}}} \approx -.88$$

We use a Z score because our one sample comes from a much larger sampling distribution which is normal. The area to the left of -.88 is .1894 or they had a 18.94% chance of getting a sample proportion as low as or lower than 51% (when the true proportion was 55.37%)

Formulas for sample means and sample proportions

To use the normal calculation (Z score) for sample means, you should

- 1. have a sample size of at least 50 and
- 2. the sample size should not be larger than 5% of the population.

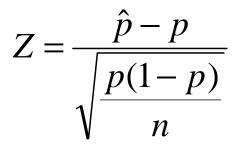
The formula is then:

 $Z = \frac{\overline{y} - \mu_{Y}}{\frac{\sigma_{Y}}{\sqrt{\mu_{Y}}}}$

To use the normal calculation (Z score) for sample proportions, you should meet the following conditions

1. np > 10 & nq > 10

2. The sample size can't be larger than 10% of the population



In either case, the samples should be random for this to work.