8. Converting the percentiles under the normal curve back to original scores (Part 2)

I found some GMAT (graduate management admissions test) information on the internet:
-GMAT is scaled from 200 to 800 on a "bell shaped curve" (normal)
-Median GMAT is 500
-99th percentile is 750
Two questions:
(a) What's the standard deviation for the GMAT?
(b) You scored a 660, what's your percentile? (you need the answer for part a to complete part b)
(a) The 99th percentile corresponds to a $\mathrm{Z}=+2.33$ or there are 2.33 standard (deviation) units between a $\mathrm{Z}=0$ (score 500 , the median or mean) and a $\mathrm{Z}=+2.33$ (score 750)

Divide the 250 point difference by 2.33 and you get $\sigma=107.296$ points
Drawing a picture might help you to see how that works.
(b) To find your percentile, it's easy now

$$
Z=\frac{660-500}{107.3}=+1.49
$$

A $Z=1.49$ is around the $93^{r d}$ percentile, congratulations, that score will get you consideration at the best MBA programs in the US.

9. When is a Z score Large?

In some situations a Z-score can be used to identify outliers (extreme observations). It depends.
greater than +1.65 or less than -1.65 is large to some people (identifies the top and bottom 5%)
greater than +1.96 or less than -1.96 (identifies the top and bottom 2.5%, commonly used in research)
greater than +2.33 or less than -2.33 (identifies the top and bottom 1\%)
greater than +2.58 or less than -2.58 (national merit scholarship winners on the SAT)
greater than +3 or less than -3 (a 1600 on the SAT is a $\mathrm{Z}=+3.0$ a 400 on the SAT is a $\mathrm{Z}=-3.0$)
greater than +6 or less than -6 (basketball player Shaquille O'Neal has a $\mathrm{Z}=+6.0$ or "six sigma")
The table in your textbook stops at +3.90 and -3.90 , effectively saying once Z scores get past this size, you are looking at an extreme observation.

10. Assessing Normality

A. Use some common sense: if the normal curve implies nonsense results (for example, that people have negative incomes, or that some women have a negative number of children), the normal curve doesn't apply and using the normal curve will give the wrong answer.

Example: The average age at death for an American solider during Operation Iraqi Freedom (through September $7^{\text {th }}, 2004$) is approximately 26.4 years with a standard deviation of 7.1 years. Given this information, can you calculate the age of a soldier at the $5^{\text {th }}$ percentile? How about the $90^{\text {th }}$ percentile?

Can't do it, it's not normal. The $5^{\text {th }}$ percentile has a $\mathrm{Z}=-1.65$. That would translate into 11.7 years BELOW the average or 14.7 years.
B. Construct a histogram: if the data look like a normal curve, the normal curve probably applies; otherwise, it does not.

Here's the Operation Iraqi Freedom data, it’s strongly (left/right? negatively/positively?) skewed:

normal drawn on it:

Example: A sample of 1,000 American men. A histogram with a

It's not perfectly normal, but very close, certainly much closer than the Operation Iraqi Freedom ages. You can check some statistics if they are available:

	Percentiles	Smallest		
1\%	61.09424	59.50402		
5\%	63.11546	60.32792		
10\%	64.39524	60.73294	Obs	1000
25\%	66.69721	60.81042	Sum of Wgt.	1000
50\%	69.181		Mean	69.09834
		Largest	Std. Dev.	3.5
75\%	71.50625	78.18031		
90\%	73.54923	79.31596	Variance	12.25
95\%	74.85286	80.08887	Skewness	-. 008467
99\%	76.89695	80.5591	Kurtosis	2.781324

The median and the mean are nearly equal. (Note: Skewness is nearly 0 , with a Kurtosis (peakedness) of about 3, you don't need to know these, they are advanced topics, but they can help you determine normality)

Compare it with Iraqi Freedom
Age

	Percentiles	Smallest		
1\%	18	18		
5\%	19	18		
10\%	20	18	Obs	999
25\%	21	18	Sum of Wgt.	999
50\%	24		Mean	26.38238
		Largest	Std. Dev.	7.066952
75\%	30	52		
90\%	37	54	Variance	49.94181
95\%	41	55	Skewness	1.303998
99\%	50	59	Kurtosis	4.452734

C. Do the data fall in a 68-95-99.7\% pattern? If yes, normality is probably being met.

We could a check on the men, I'll round their heights to half inches:

| heightround | Freq. | Percent |
| ---: | ---: | ---: | Cum.

71	58	5.80	73.10
71.5	41	4.10	77.20
72	42	4.20	81.40
72.5	39	3.90	85.30
73	27	2.70	88.00
73.5	32	3.20	91.20
74	18	1.80	93.00
74.5	16	1.60	94.60
75	16	1.60	96.20
75.5	12	1.20	97.40
76	6	0.60	98.00
76.5	9	0.90	98.90
77	2	0.20	99.10
77.5	4	0.40	99.50
78	2	0.20	99.70
79.5	1	0.10	99.80
80	1	0.10	99.90
80.5	1	0.10	100.00

D. NEVER ASSUME THAT A VARIABLE IS NORMAL.

Recall this example
Example: The average age at death for an American solider during Operation Iraqi Freedom (through September $7^{\text {th }}$, 2004) is approximately 26.4 years with a standard deviation of 7.1 years. Given this information, can you calculate the age of a soldier at the $5^{\text {th }}$ percentile? How about the $90^{\text {th }}$ percentile?

Just because you have a mean and standard deviation does not allow you to automatically assume a variable is normal.

Either you will be told it's normal or you will be given enough information (like a histogram) to safely assume it's normal.

