Lecture 6

8. Converting the percentiles under the normal curve back to original scores (Part 2)

I found some GMAT (graduate management admissions test) information on the internet:

-GMAT is scaled from 200 to 800 on a "bell shaped curve" (normal) -Median GMAT is 500 -99th percentile is 750

Two questions:

(a) What's the standard deviation for the GMAT?

(b) You scored a 660, what's your percentile? (you need the answer for part a to complete

part b)

(a) The 99th percentile corresponds to a Z=+2.33 or there are 2.33 standard (deviation) units between a Z=0 (score 500, the median or mean) and a Z=+2.33 (score 750)

Divide the 250 point difference by 2.33 and you get $\sigma = 107.296$ points

Drawing a picture might help you to see how that works.

(b) To find your percentile, it's easy now

$$Z = \frac{660 - 500}{107.3} = +1.49$$

A Z=1.49 is around the 93rd percentile, congratulations, that score will get you consideration at the best MBA programs in the US.

9. When is a Z score Large?

In some situations a Z-score can be used to identify outliers (extreme observations). It depends.

greater than +1.65 or less than -1.65 is large to some people (identifies the top and bottom 5%) greater than +1.96 or less than -1.96 (identifies the top and bottom 2.5%, commonly used in research) greater than +2.33 or less than -2.33 (identifies the top and bottom 1%) greater than +2.58 or less than -2.58 (national merit scholarship winners on the SAT) greater than +3 or less than -3 (a 1600 on the SAT is a Z=+3.0 a 400 on the SAT is a Z=-3.0) greater than +6 or less than -6 (basketball player Shaquille O'Neal has a Z=+6.0 or "six sigma")

The table in your textbook stops at +3.90 and -3.90, effectively saying once Z scores get past this size, you are looking at an extreme observation.

10. Assessing Normality

A. Use some common sense: if the normal curve implies nonsense results (for example, that people have negative incomes, or that some women have a negative number of children), the normal curve doesn't apply and using the normal curve will give the wrong answer.

Example: The average age at death for an American solider during Operation Iraqi Freedom (through September 7^{th} , 2004) is approximately 26.4 years with a standard deviation of 7.1 years. Given this information, can you calculate the age of a soldier at the 5^{th} percentile? How about the 90^{th} percentile?

Can't do it, it's not normal. The 5^{th} percentile has a Z= -1.65. That would translate into 11.7 years BELOW the average or 14.7 years.

B. Construct a histogram: if the data look like a normal curve, the normal curve probably applies; otherwise, it does not.

Here's the Operation Iraqi Freedom data, it's strongly (left/right? negatively/positively?) skewed:

Example: A sample of 1,000 American men. A histogram with a

normal drawn on it:

It's not perfectly normal, but very close, certainly much closer than the Operation Iraqi Freedom ages. You can check some statistics if they are available: height2

	Percentiles	Smallest				
1%	61.09424	59.50402				
5%	63.11546	60.32792				
10%	64.39524	60.73294	Obs	1000		
25%	66.69721	60.81042	Sum of Wgt.	1000		
50%	69.181		Mean	69.09834		
		Largest	Std. Dev.	3.5		
75%	71.50625	78.18031				
90%	73.54923	79.31596	Variance	12.25		
95%	74.85286	80.08887	Skewness	008467		
99%	76.89695	80.5591	Kurtosis	2.781324		

The median and the mean are nearly equal. (Note: Skewness is nearly 0, with a Kurtosis (peakedness) of about 3, you don't need to know these, they are advanced topics, but they can help you determine normality)

Compare it with Iraqi Freedom

		Age		
	Percentiles	Smallest		
1%	18	18		
5%	19	18		
10%	20	18	Obs	999
25%	21	18	Sum of Wgt.	999
50%	24		Mean	26.38238
		Largest	Std. Dev.	7.066952
75%	30	52		
90%	37	54	Variance	49.94181
95%	41	55	Skewness	1.303998
99%	50	59	Kurtosis	4.452734

C. Do the data fall in a 68-95-99.7% pattern? If yes, normality is probably being met.

We could a check on the men, I'll round their heights to half inches:

heightround	Freq.	Percent	Cum.
59.5	1	0.10	0.10
60.5	2	0.20	0.30
61	9	0.90	1.20
61.5	7	0.70	1.90
62	7	0.70	2.60
62.5	9	0.90	3.50
63	19	1.90	5.40
63.5	17	1.70	7.10
64	18	1.80	8.90
64.5	24	2.40	11.30
65	34	3.40	14.70
65.5	29	2.90	17.60
66	31	3.10	20.70
66.5	47	4.70	25.40
67	52	5.20	30.60
67.5	42	4.20	34.80
68	52	5.20	40.00
68.5	50	5.00	45.00
69	53	5.30	50.30
69.5	59	5.90	56.20
70	64	6.40	62.60
70.5	47	4.70	67.30

Statistics 10		I	Lecture 6	
71	58	5.80	73.10	
71.5	41	4.10	77.20	
72	42	4.20	81.40	
72.5	39	3.90	85.30	
73	27	2.70	88.00	
73.5	32	3.20	91.20	
74	18	1.80	93.00	
74.5	16	1.60	94.60	
75	16	1.60	96.20	
75.5	12	1.20	97.40	
76	6	0.60	98.00	
76.5	9	0.90	98.90	
77	2	0.20	99.10	
77.5	4	0.40	99.50	
78	2	0.20	99.70	
79.5	1	0.10	99.80	
80	1	0.10	99.90	
80.5	1	0.10	100.00	
Total	1,000	100.00		

D. NEVER ASSUME THAT A VARIABLE IS NORMAL.

Recall this example

Example: The average age at death for an American solider during Operation Iraqi Freedom (through September 7^{th} , 2004) is approximately 26.4 years with a standard deviation of 7.1 years. Given this information, can you calculate the age of a soldier at the 5^{th} percentile? How about the 90^{th} percentile?

Just because you have a mean and standard deviation does not allow you to automatically assume a variable is normal.

Either you will be told it's normal or you will be given enough information (like a histogram) to safely assume it's normal.