
9
Power and the computation of
sample size

A statistical test will not be able to detect a true difference if the sample
size is too small compared with the magnitude of the difference. When
designing experiments, the experimenter should try to ensure that a suf-
ficient amount of data are collected to be reasonably sure that a difference
of a specified size will be detected. R has methods for doing these calcu-
lations in the simple cases of comparing means using one- or two-sample
t tests and comparing two proportions.

9.1 The principles of power calculations

This section outlines the theory of power calculations and sample-size
choice. If you are practically inclined and just need to find the necessary
sample size in a particular situation, you can safely skim this section and
move quickly to subsequent sections that contain the actual R calls.

The basic idea of a hypothesis test should be clear by now. A test statistic is
defined, and its value is used to decide whether or not you can accept the
(null) hypothesis. Acceptance and rejection regions are set up so that the
probability of getting a test statistic that falls into the rejection region is a
specified significance level (α) if the null hypothesis is true. In the present
context, it is useful to stick to this formulation (as opposed to the use of
p-values), as rigid as it might be.

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_9, © Springer Science+Business Media, LLC 2008



156 9. Power and the computation of sample size

Since data are sampled at random, there is always a risk of reaching a
wrong conclusion, and things can go wrong in two ways:

• The hypothesis is correct, but the test rejects it (type I error).

• The hypothesis is wrong, but the test accepts it (type II error).

The risk of a type I error is the significance level. The risk of a type II
error will depend on the size and nature of the deviation you are trying
to detect. If there is very little difference, then you do not have much of
a chance of detecting it. For this reason, some statisticians disapprove of
terms like “acceptance region” because you can never prove that there is
no difference — you can only fail to prove that there is one.

The probability of rejecting a false hypothesis is called the power of the
test, and methods exist for calculating or approximating the power in the
most important practical situations. It is inconvenient to talk further about
these matters in the abstract, so let us move on to some concrete examples.

9.1.1 Power of one-sample and paired t tests

Consider the case of the comparison of a sample mean to a given value.
For example, in a matched trial we wish to test whether the difference be-
tween treatment A and treatment B is zero using a paired t test (described
in Chapter 5).

We call the true difference δ. Even if the null hypothesis is not true, we can
still work out the distribution of the test statistic, provided the other model
assumptions hold. It is called the noncentral t distribution and depends on
a noncentrality parameter as well as the usual degrees of freedom. For the
paired t test, the noncentrality parameter ν is a function of δ, the standard
deviation of differences σ, and the sample size n and equals

ν =
δ

σ/
√

n

That is, it is simply the true difference divided by the standard error of the
mean.

The cumulative noncentral t distribution is available in R simply by
adding an ncp argument to the pt function. Figure 9.1 shows a plot of
pt with ncp=3 and df=25. A vertical line indicates the upper end of the
acceptance region for a two-sided test at the 0.05 significance level. The
plot was created as follows:

> curve(pt(x,25,ncp=3), from=0, to=6)
> abline(v=qt(.975,25))



9.1 The principles of power calculations 157

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pt
(x

, 2
5,

 n
cp

 =
 3

)

Figure 9.1. The cumulative noncentral t distribution with ν = 3 and 25 degrees of
freedom. The vertical line marks the upper significance limit for a two-sided test
at the 0.05 level.

The plot shows the main part of the distribution falling in the rejection
region. The probability of getting a value in the acceptance region can be
seen from the graph as the intersection between the curve and the vertical
line. (Almost! See Exercise 9.4.) This value is easily calculated as

> pt(qt(.975,25),25,ncp=3)
[1] 0.1779891

or roughly 0.18. The power of the test is the opposite, the probability of
getting a significant result. In this case it is 0.82, and it is of course desirable
to have the power as close to 1 as possible.

Notice that the power (traditionally denoted β) depends on four quanti-
ties: δ, σ, n, and α. If we fix any three of these, we can adjust the fourth to
achieve a given power. This can be used to determine the necessary sam-
ple size for an experiment: You need to specify a desired power (β = 0.80
and β = 0.90 are common choices), the significance level (usually given by
convention as α = 0.05), a guess of the standard deviation, and δ, which
is known as the “minimal relevant difference” (MIREDIF) or “smallest
meaningful difference” (SMD). This gives an equation that you can solve
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for n. The result will generally be a fractional number, which should of
course be rounded up.

You can also work on the opposite problem and answer the following
question: Given a feasible sample size, how large a difference should you
reasonably be able to detect?

Sometimes a shortcut is made by expressing δ relative to the standard
deviation, in which case you would simply set σ to 1.

9.1.2 Power of two-sample t test

Procedures for two-sample t tests are essentially the same as for the one-
sample case, except for the calculation of the noncentrality parameter,
which is calculated as

ν =
δ

σ
√

1/n1 + 1/n2

It is generally assumed that the variance is the same in the two groups;
that is, using the Welch procedure is not considered. In sample-size calcu-
lations, one usually assumes that the group sizes are the same since that
gives the optimal power for a given total number of observations.

9.1.3 Approximate methods

For hand calculations, the power calculations can be considerably simpli-
fied by assuming that the standard deviation is known, so that the t test
is replaced by a test in the standard normal distribution. The practical ad-
vantage is that the approximate formula for the power is easily inverted
to give an explicit formula for n. For the one- and two-sample cases, this
works out as

n =
(Φα/2 + Φβ

δ/σ

)2

one-sample

n = 2×
(Φα/2 + Φβ

δ/σ

)2

two-sample, each group

with the Φx denoting quantiles on the normal distribution. This is for two-
sided tests. For one-sided tests, use α instead of α/2.

These formulas are often found in textbooks, and some computer pro-
grams implement them rather than the more accurate method described
earlier. They do have the advantage of more clearly displaying theoretical
properties such as the proportionality of δ and 1/

√
n for a given power.
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However, they become numerically unsatisfactory when the degrees of
freedom falls below 20 or so.

9.1.4 Power of comparisons of proportions

Suppose you wish to compare the morbidity between two populations
and have to decide the number of persons to sample from each pop-
ulation. That is, you plan to perform a comparison of two binomial
distributions as in Section 8.2 using prop.test or chisq.test.

For binomial comparisons, exact power calculations become unwieldy,
so we rely on normal approximations to the binomial distribution. The
power will depend on the probabilities in both groups, not just their dif-
ference. As for the t test, the group sizes are assumed to be equal. The
theoretical derivation of the power proceeds along the same lines as before
by calculating the distribution of p̂1 − p̂2 when p1 6= p2 and the probabil-
ity that it falls outside the range of values compatible with the hypothesis
p1 = p2. Assuming equal numbers in the two groups, this leads to the
sample-size formula

n =

(
Φα/2

√
2p(1− p) + Φβ

√
p1(1− p1) + p2(1− p2)

|p2 − p1|

)2

in which p = (p1 + p2)/2.

Since the method is only approximate, the results are not reliable unless
the expected number in each of the four cells in the 2× 2 table is greater
than 5.

9.2 Two-sample problems

The following example is from Altman (1991, p. 457) and concerns the
influence of milk on growth. Two groups are to be given different diets,
and their growth will be measured. We wish to compute the sample size
that with a power of 90%, using a two-sided test at the 1% level, can find
a difference of 0.5 cm in a distribution with a standard deviation of 2 cm.
This is done as follows:

> power.t.test(delta=0.5, sd=2, sig.level = 0.01, power=0.9)

Two-sample t test power calculation

n = 477.8021
delta = 0.5
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sd = 2
sig.level = 0.01

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

delta stands for the “true difference”, and sd is the standard deviation.
As is seen, the calculation may return a fractional number of experimental
units. This would, of course, in practice be rounded up to 478. In the orig-
inal reference, a method employing nomograms (a graphical technique) is
used and the value obtained is 450. The difference is probably due to diffi-
culty in reading the value off the nomogram scale. To know which power
you would actually obtain with 450 in each group, you would enter

> power.t.test(n=450, delta=0.5, sd=2, sig.level = 0.01)

Two-sample t test power calculation

n = 450
delta = 0.5

sd = 2
sig.level = 0.01

power = 0.8784433
alternative = two.sided

NOTE: n is number in *each* group

The system is that exactly four out of five arguments (power, sig.level,
delta, sd, and n) are given, and the function computes the missing one
(defaults exist to set sd=1 and sig.level=0.05 — if you wish to have
those calculated, explicitly pass them as NULL). In addition, there are two
optional arguments: alternative, which can be used to specify one-
sided tests; and type, which can be used to specify that you want to
handle a one-sample problem. An example of the former is

> power.t.test(delta=0.5, sd=2, sig.level = 0.01, power=0.9,
+ alt="one.sided")

Two-sample t test power calculation

n = 417.898
delta = 0.5

sd = 2
sig.level = 0.01

power = 0.9
alternative = one.sided

NOTE: n is number in *each* group
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9.3 One-sample problems and paired tests

One-sample problems are handled by adding type="one.sample" in
the call to power.t.test. Similarly, paired tests are specified with
type="paired"; although these reduce to one-sample tests by forming
differences, the printout will be slightly different.

One pitfall when planning a study with paired data is that the literature
sometimes gives the intra-individual variation as “standard deviation of
repeated measurements on the same person” or similar. These may be cal-
culated by measuring a number of persons several times and computing
a common standard deviation within persons. This needs to be multiplied
by
√

2 to get the standard deviation of differences, which power.t.test
requires for paired data. If, for instance, it is known that the standard de-
viation within persons is about 10, and you want to use a paired test at the
5% level to detect a difference of 10 with a power of 85%, then you should
enter

> power.t.test(delta=10, sd=10*sqrt(2), power=0.85, type="paired")

Paired t test power calculation

n = 19.96892
delta = 10

sd = 14.14214
sig.level = 0.05

power = 0.85
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of

*differences* within pairs

Notice that sig.level=0.05 was taken as the default.

9.4 Comparison of proportions

To calculate sample sizes and related quantities for comparisons of
proportions, you should use power.prop.test. This is based on ap-
proximations with the normal distribution, so do not trust the results if
any of the expected cell counts drop below 5.

The use of power.prop.test is analogous to power.t.test, although
delta and sd are replaced by the hypothesized probabilities in the two
groups, p1 and p2. Currently, it is not possible to specify that one wants
to consider a one-sample problem.
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An example is given in Altman (1991, p. 459) in which two groups are
administered or not administered nicotine chewing gum and the binary
outcome is smoking cessation. The stipulated values are p1 = 0.15 and
p2 = 0.30. We want a power of 85%, and the significance level is the
traditional 5%. Inserting these values yields

> power.prop.test(power=.85,p1=.15,p2=.30)

Two-sample comparison of proportions power calculation

n = 137.6040
p1 = 0.15
p2 = 0.3

sig.level = 0.05
power = 0.85

alternative = two.sided

NOTE: n is number in *each* group

9.5 Exercises

9.1 The ashina trial was designed to have 80% power if the true
treatment difference was 15% and the standard deviation of differences
within a person was 20%. Comment on the sample size chosen. (The
power calculation was originally done using the approximative formula.
The imbalance between the group sizes is due to the use of an open
randomization procedure.)

9.2 In a trial comparing a binary outcome between two groups, find the
required number of patients to find an increase in the success rate from
60% to 75% with a power of 90%. What happens if we reduce the power
requirement to 80%?

9.3 Plot the density of the noncentral t distribution for ncp=3 and df=25
and compare it with the distribution of t + 3, where t has a central t
distribution with df=25.

9.4 In two-sided tests, there is also a risk of falling into the rejection
region on the opposite side of the true value. The power calculations
in R only take this into account if you set strict=TRUE. Discuss the
consequences.

9.5 It is occasionally suggested to choose n to “make the true differ-
ence significant”. What power would result from choosing n by such a
procedure?
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