Stat 130B Week 4 Lecture 1 2/2/04

I. WORKING WITH DATES IN SAS

How do you work with date variables, date functions, and display dates in SAS? Here is some
data (this is actually one line per observation, but it wrapped):

115 Capitola 10/28/1999 10:00 AMStorm Surge 2
2 1.0M

116 CAZ043 12/6/1999 1:50 PMHeavy Surf 1
0 150K

117 CAzZ001 12/14/1999 7:30 AMHeavy Seas 1
0 0

118 CAZ091>092 - 095 2/3/2000 11:30 AMWind 1
4 100K

The program below reads the data and creates a temporary data file called storms. Note that the
dates are read in the DATA STEP, and the format mmddyy10. is used to read the date variable.
Grab the program:

http://www.stat.ucla.edu/~vlew/stat130b/week3/calstorms.sas it is also called

http://www.stat.ucla.edu/~vlew/stat130b/week3/calstormsprogram.txt

filename in url
"http://www.stat.ucla.edu:80/~vlew/stat1l30b/week3/calstorms.prn';
data storms(drop=idno);
infile in;
input idno
location $35.
@40 ddate mmddyy10.
report_time timelO.
event $26.
deaths
injuries
cost $;
proc print;
format ddate mmddyylO. report_time timeampm8.;
run;

The output of the PROC PRINT without the format statement is presented below. Compare the
dates in the data to the values of DDATE. Note that for Capitola the input date is 10/28/1999 and
the value for DDATE is 14545. This is because dates are stored internally in SAS as the number
of days from Jan 1,1960. If we had dates before 1960 the value of DDATE would be negative. A
date exactly on January 1, 1960 would be zero.

115 Capitola 14545 36000 Storm Surge 2 2 1.0M
116 CAZ043 14584 49800 Heavy Surf 1 0 150K
117 CAZ0O01 14592 27000 Heavy Seas 1 0 0

118 CAZ091>092 - 095 14643 41400 Wind 1 4 100K

Stat 130B Week 4 Lecture 1 2/2/04

In order to see the dates in a way that we understand you would have to format the output. We
use the MMDDY 'Y 10. format to see dates in the form of the original. This is specified on a
FORMAT statement during the proc print.

Here is the output produced by the PROC PRINT statement with the right format:

115 Capitola 10/28/1999 10:00 AM Storm Surge 2 2 1.0M

116 CAZ043 12/06/1999 1:50 PM Heavy Surf 1 0 150K

117 CAZ0O01 12/14/1999 7:30 AM Heavy Seas 1 0 0

118 CAZ091>092 - 095 02/03/2000 11:30 AM Wind 1 4 100K
From SAS:

SAS date value
is a value that represents the number of days between January 1, 1960, and a specified date.
SAS can perform calculations on dates ranging from A.D. 1582 to A.D. 19,900. Dates before
January 1, 1960, are negative numbers; dates after are positive numbers.
SAS date values account for all leap year days, including the leap year day in the year 2000.

SAS date values can reliably tell you what day of the week a particular day fell on as far
back as September 1752, when the calendar was adjusted by dropping several days. SAS day-of-
the-week and length-of-time calculations are accurate in the future to A.D. 19,900.

SAS time value
is a value representing the number of seconds since midnight of the current day. SAS time
values are between 0 and 86400

So in our example above, 10:00AM is the same as 36000 (60 * 60 * 10) to SAS.
To help you understand SAS dates
Calendar Date
T4 1776 K Janl 1959 Jan11960 Jan 119l z Jan 112002

— | — — | —»

— | | |—
-a701e %7 - 385 0 il % BE300

SAE Date Valus

Look at the following data. At first glance it looks like the dates are so different that they
couldn't be read. They do have two things in common:

1) they all have numeric months,
2) they all are ordered month, day, and then year.
John 1 1 1960

Stat 130B Week 4 Lecture 1 2/2/04

Mary 07/11/1955
Joan 07-11-1955
Kate 11.12.1962
Mark 06081959

These dates can be read with the same format, MMDDYY11. An example of the use of that
format in a DATA STEP follows.

DATA dates;
INPUT name $ 1-4 @6 bday mmddyyll.;
CARDS;
John 1 1 1960
Mary 07/11/1955
Joan 07-11-1955
Kate 11.12.1962
Mark 06081959

RUN;
PROC PRINT DATA=dates;

FORMAT bday date9. ;
RUN;

The results of the above PROC PRINT show that all of the dates are read correctly.

OBS NAME BDAY
1 John 01JAN1960
2 Mary 11JUL1955
3 Joan 11JUL1955
4 Kate 12N0OV1962
5 Mark 08JUN1959

There are a number of SAS informats and formats available to you when you are working with
dates and times:

Date and Time
DATEw. Reads date values in the form ddmmmyy or ddmmmyyyy

DATETIMEw. Reads datetime values in the form ddmmmyy hh:mm:ss.ss or
ddmmmyyyy hh:mm:ss.ss

DDMMYYw. Reads date values in the form ddmmyy or ddmmyyyy
EURDFDEw. Reads international date values
EURDFDTw. Reads international datetime values in the form ddmmmyy

Stat 130B Week 4 Lecture 1 2/2/04

hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss

EURDFMYw. Reads month and year date values in the form mmmyy or
mmmyyyy

JULIANw. Reads Julian dates in the form yyddd or yyyyddd

MMDDY Yw. Reads date values in the form mmddyy or mmddyyyy

MONYYw. Reads month and year date values in the form mmmyy or
mmmyyyy

TIMEw.

Reads hours, minutes, and seconds in the form hh:mm:ss.ss

TODSTAMPw.
Reads an eight-byte time-of-day stamp

YYMMDDw.
Reads date values in the form yymmdd or yyyymmdd

YYMMNw.
Reads date values in the form yyyymm or yymm

YYQw.
Reads quarters of the year

Sometimes you will see dates broken into three separate variables month, year, and day.

121957 21
11960 1
111962 12
11988 22

One option is to read these data with each portion of the date as a separate variable and then use
a function to convert the variables into a SAS date:

DATA dates;
INPUT month 1-2 year 4-7 day 9-10;
bday=MDY (month,day,year);
CARDS;
12 1957 21
1 1960 1
11 1962 12
1 1988 22

Stat 130B Week 4 Lecture 1 2/2/04

RUN;
PROC PRINT DATA=dates;
FORMAT bday date9. ;
RUN;
The results of the proc print follow. Notice we used a different date format for bday.

Obs month year day bday
1 12 1957 21 21DEC1957
2 1 1960 1 01JAN1960
3 11 1962 12 12N0OV1962
4 1 1988 22 22JAN1988

A. SAS Dates and Y2K

Consider the following data, which are the same as above except that only 2 digits are used to
signify the year, and year appears last. Suppose these are birthdates of people who are currently
alive:

71118
71148
1160

101590
1210 00

Reading the data is the same as the example above using the program:

http://www.stat.ucla.edu/~vlew/stat130b/week3/yearcutoff2000.sas

DATA dates;
INPUT month day year ;
bday=MDY(month,day,year);

CARDS;

7 11 18

7 11 48

1 160

10 15 90

12 10 00

RUN:
proc print;

format bday mmddyyl0.;
run;

The results of the PROC PRINT. What do you notice?

Obs month day year bday

Stat 130B Week 4 Lecture 1 2/2/04

1 7 11 18 07/11/2018
2 7 11 48 07/11/1948
3 1 1 60 01/01/1960
4 10 15 90 10/15/1990
5 12 10 0 12/10/2000

The first observation is showing a 2018 instead of 1918. By default, SAS assumes that two digit
years less than 20 have a "20" in front of them. To get around this, use a SAS option called
YEARCUTOFF. Get the program:

http://www.stat.ucla.edu/~vlew/stat130b/week3/yearcutoff1900.sas

options yearcutoff=1900;
DATA dates;
INPUT month day year ;
bday=MDY(month,day,year);
CARDS;
7 11 18
7 11 48
1 160
10 15 90
12 10 00

RUN;

proc print;

format bday mmddyyl0. ;
run;

Obs month day year bday
1 7 11 18 07/11/1918
2 7 11 48 07/11/1948
3 1 1 60 01/01/1960
4 10 15 90 10/15/1990
5 12 10 0 12/10/1900

There is no complete answer to the Y2K problem, but with the YEARCUTOFF= option SAS
helps. The ultimate answer is to use 4 digit years.

B. Computations with Elapsed Dates

SAS date variables make computations involving dates very convenient. For example, to
calculate how long movies generally run (in days and weeks) use this program:

http://www stat.ucla.edu/~vlew/stat130b/week3/movierun.sas

or

http://www.stat.ucla.edu/~vlew/stat130b/week3/movierunprogram.txt

Stat 130B Week 4 Lecture 1 2/2/04

options yearcutoff=1920;
filename in url
“http://www.stat.ucla.edu:80/~vlew/stat130b/week3/movies.csv'';
data movies;
infile in delimiter = "," MISSOVER DSD lrecl=111 firstobs=2;
format title $49. ;
format total _gross receipts bestl2. ; /* try dollarl2. */
format opening_week gross bestl2. ;
format opening_day screens bestl2. ; /* try commal2. */
format widest _release bestl2. ;
format first week receipts bestl2. ; /* this wasn"t input correctly
*/
format per_theater_receipts bestl2. ;
format distributor $18. ;
format opening_date mmddyyl0. ; /* try mmddyyplO. */
format closing _date mmddyylO. ;

/* format controls how the variable will be presented */

informat title $49. ;
informat total _gross receipts best32. ;
informat opening_week gross best32. ;
informat opening_day screens best32. ;
informat widest _release best32. ;
informat first week receipts best32. ;
informat per_theater_receipts best32. ;
informat distributor $18. ;
informat opening_date mmddyylO. ;
informat closing_date mmddyyl0. ;

/* informat controls how the variable will be read in with the input
statement */

input
title $
total _gross_receipts
opening_week_gross
opening_day_screens
widest_release
First_week receipts
per_theater_receipts
distributor $
opening_date
closing_date

percent_receipts=First_week receipts/100;
days_run=datdif(opening_date,closing date,’act/act’);
weeks_run=days_run/7;

quarter_release=qtr(opening_date);

day of week=weekday(opening_date); /* 1= Sunday, 7=Saturday */
run;

proc sort;

by descending weeks_run;

proc print;

var title opening_date closing date days run weeks run;
run;

Stat 130B

and the output:

Obs title

Postman, The

Deep Rising

Desperate Measures

Bulletproof

Fargo

Orgazmo

Braveheart

Life is Beautiful

Bridges of Madison County, The
Saving Private Ryan

O ©WoOoO~NOO AN =

—_

Week 4 Lecture 1

2/2/04

opening_ closing_ weeks_
date date days_run run

06/14/1995 10/17/1996 491 70.1429
01/30/1998 04/23/1999 448 64.0000
01/30/1998 04/16/1999 441 63.0000
09/06/1996 10/31/1997 420 60.0000
03/08/1996 04/10/1997 398 56.8571
10/23/1998 11/19/1999 392 56.0000
05/24/1995 05/09/1996 351 50.1429
10/23/1998 10/07/1999 349 49.8571
06/02/1995 04/18/1996 321 45.8571
07/24/1998 06/03/1999 314 44.8571

to calculate time in years from days, the general procedure is to divide by 365.25.

C. Other Useful Date Functions

We ran into some of these in the previous lecture:

Function Description

month() Extracts Month

day() Extracts Day

year() Extracts Year
weekday() Extracts Day of Week
qtrQ Extracts Quarter

D. Date Summary

m=MONTH(bday) ;
d=DAY(bday) ;
y=YEAR(bday) ;
wk_d=WEEKDAY (bday) ;
q=QTR(bday);

e Dates are read with date formats, most commonly DATES. and MMDDY Y 10.

e Date functions can be used to create date values from their components (mdy(m,d,y)),
and to extract the components from a date value (month(),day(), etc.).

e The YEARCUTOFF option may be used to control where the 2000 break comes if you

have to read two digit years.

I1. Sums and Counts in a Data Set

Let's look at the movie dataset again. We have a variable called total _gross_receipts and you
want to accumulate a grand total of gross receipts across all observations of a data set.

Since all observations are automatically set to missing at the top of every loop of a DATA step

the following equation will not work:

Stat 130B Week 4 Lecture 1 2/2/04

1) grand_total=grand_total+total_gross_receipts;
However, there exists an alternative statement that will produce the desired result:
2) grand_total+total _gross_receipts;

The reason the first statement does not work and the second one does work is that SAS interprets
the following two statements 1) and 2) in very different ways:

In 1) the "+" is simply the addition operator of two variables. There is no implicit initializing (of
total to the right of the "=" and to the left of the "+") or retaining (and therefore no
accumulation). In other words, a statement such as x=y+z in a DATA step yields only row-
specific values. If either y or z is missing, then x will be missing also.

Using statement 1) when the DATA step first begins, the first record creates the variable
grand_total, but since it is automatically assigned the missing data value, there isn't a number in
it and each row of the table (observation) has it's own value.

The DATA step, is like reading a spreadsheet, one line at a time, across the row from left to
right. You can use 1); however you also need to use a RETAIN statement along with it:

RETAIN grand_total 0;
grand_total=grand_total+total_gross_receipts;

will give you the desired total, since it tells SAS to retain the value of grand_total after
outputting the record to the next record and give it an initial value of 0.

To calculate the total sum of some variable across all observations, SAS provides a special type
of statement that can stand alone. With statement 2) SAS interprets the "+" as part of the
definition of a SUM statement. The SUM statement in 2) does several things implicitly,
including:

e initializes the variable on the left of the "+" (total) with a value of 0.

e RETAINS (i.e., does not set to missing) the value of this variable from one data step
iteration to the next.

e accumulates the row-by-row values of cost into the accumulator variable called
grand_total.

A different kind of sum is to sum across variables within a single observation, use the SUM
function:

sum_y = SUM(y1,y2,y3,y4);

Stat 130B Week 4 Lecture 1 2/2/04

The function N gives the number of variables in the current observation that have values.

n_y = N(yly2,y3,y4);

The function NMISS gives the number of variables in the current observation that have missing
values.

nmss_y = NMISS(y1,y2,y3,y4);

The sum of the two variables created here, n_y and nmss_y, must add to the number of variables
listed in parenthesis, 4.

Rather than list all the variable names, if you they are coded with numerical indices at the end of
the name, here is a very convenient short-hand notation to use to compute the sum, number with
values, and the number missing data:

sum_y = SUM(of y1-y20); /* the sum of all the non-missing data */
n_y = N(of yl-y20); /* the number of non-missing data*/
nmss_y = NMISS(of y1-y20); /* the number of missing data*/

The syntax SUM(y1-y20) or SUM(y1--y20) for a range of variables will not work. For example,
in the statement

sum_y = SUM(y1-y20);

the portion within the () is treated as the difference between y1 and y20 -- the other 18 variables
are ignored! Likewise, SAS interprets SUM(y1--y20) as SUM(y1-(-y20)), i.e. SUM(y1+y20),
the sum of y1 and y20.

If you have missing data, the SUM function works very differently than adding all the variables
with straight addition. For example, assume the following equation is used to add the yi's:

sum_y =yl +y2+y3+y4,

If one or more of the individual yi's are missing, then sum_y is also set to missing. The SAS
SUM function [e.g., SUM(y1,y2,y3,y4) and SUM(of y1-y4)] give the sum of the data that are
NOT missing. For that reason, it is very important to use the COUNT or NMISS functions along
with it.

3) An easy way to get grand_total is to use PROC MEANS.

proc means sum;
var total_gross_receipts;
run;

Retain and the sum operator then work well if you need a "running” total. A simpler "proc
means" with the SUM option can generate a total as well.

10

Stat 130B Week 4 Lecture 1 2/2/04

I11. Use of Arrays

What is a SAS array?
A SAS array is a set of variables grouped together for the duration of a data step by being given
a name in an ARRAY statement

array pop(5) ga sc nc va wv;

array name is "pop"

the sequence of variable names ga sc nc va wv is the "array list"

the variables in the array list are the "array elements"

each array element in this example has a position number in the array list from 1to 5

% ok ¥

They are convenient to use. For example: pop(3) refers to the variable in position # 3 in the
array pop (nc in above example). The Array elements must all be of same type (numeric or
character) and they can be variables which exist or which will be created in the data step.

Here are some examples of "one-dimensional arrays:

array x(1:6)abcdef,; X(5) same as e

array x(0:5)abcdef; X(4) same as e

array quiz(20) g1-920; equivalent array declarations

array quiz(1:20) q1-q20; quiz(4) same as g4

array quiz(*) q1-920; subscript lower bound=1, upper bound=20
array quiz(20); SAS creates quiz1-quiz20 as array elements

array color(1:3) $ 1 red blue green; character array, elements have length=1 character
color(2) same as blue

array pop(1:5) yr95-yr99; pop(2) same as yr96

array pop(95:99) yr95-yr99; pop(96) same as yr96

array X(*) _numeric_; all numeric variables on the observation
array y(*) _character_; all character variables on the observation
array z(*) _all_; all variables on the observation

(there are two dimensional arrays, but that's advanced)

Why use SAS arrays?

e repeat an action or set of actions on each of a group of variables
e write shorter programs

® restructure a SAS data set to change the unit of observation

Here is a situation. You have been given survey data and you need to "reverse scales" for a
number variables. Suppose each of these variables have five responses to questions on a
surveys. For example, responses might run from from "strongly agree" to "strongly disagree."” :

11

Stat 130B Week 4 Lecture 1 2/2/04

strongly agree

somewhat agree

neither agree nor disagree
somewhat disagree
strongly disagree

arwE

Long surveys may reverse the order of responses to break the monotony of the survey or “check™
to see if the respondent is really answering the question.

When it comes time to perform the analysis, it would be nice if the data all follow the same
order. You might try to fix the problem in the following manner:

if varl = 1 then newvarl = 5 ;
else if varl 2 then newvar2
else if varl 3 then newvar?2
else if varl 4 then newvar2
else if varl 5 then newvar2
if var2= 1 then newvar2 =5;
/* etc etc */
/*or you might try to be clever: */
newvarl = 6 - varl;
newvar2 = 6 - var2;

RPNWA

This kind of coding subject to error. It requires that each value of each question to be reversed be
specified or that each variable be specified. A SAS ARRAY allows us to group all variables that
are to be treated similarly in one area. Here is one way to use a SAS array to reverse the scoring
on three questions:

array stuff {*} varl var2 var3;
dol=1to3;
stuff{l} = 6 - stuff{l} ;
end ;
drop I ;

This SAS code will reverse a five point scale by subtracting the current value of whichever
question we are working with (when | = 1, stuff{l} is stuff{1} which is varl; when | = 2, it is
var2 and when | = 3, it is var3) from 6. Missing values will remain missing.

Simple examples using one-dimensional arrays
1. Recode the set of variables A B C D E F G in the same way: if the variable has a value of 99
recode it to SAS missing.

array v(7)abcdefg;

dok=1to7;
if v(k)=99 then v(k)=.;

12

Stat 130B Week 4 Lecture 1 2/2/04

end;

2. Each observation of your data set has five variables SEX1 SEX2 SEX3 SEX4 SEX5 which
give the sex (1=male, 2=female) of up to 5 persons. You want to count the number of males
(MALES) and the number of females (FEMALES) on each observation.

array sex(1:5) sex1-sex5;
males=0;
females=0;
doi=1to5;
if sex(i)=1 then males=males+1;
else if sex(i)=2 then females=females+1;
end,

3. Recode all numeric variables in your data set as follows: if a variable has a value of 98 or 99
recode it to SAS missing.

array nvar(*) _numeric_;

do i=1 to dim(nvar);

if nvar(i)=98 or nvar(i)=99 then nvar(i)=.;
end;

13

