Do you always turn to the last page of a detective mystery first? Can’t wait to learn whether Little Nell will die? Even so, read this chapter only AFTER you’ve tried to do the exercises. (The proof will be if you’ve a sheet of paper in front of you on which you’ve written out the answers.)

The object of the exercises at the end of each of the preceding chapters is to prepare you for real-world applications. These exercises force you to think through the concepts while giving you the opportunity to work through, test, and modify the program listings before you apply them to your own data. No pain, no gain. Working through problems is the one sure way to gain reusable experience. Or to put it another way: Consult this chapter only AFTER you’ve tried to do the exercises.

Chapter 2

1, 3, 6. If you repeat your calculations you may get quite different results, since random samples are involved. In any event, the confidence interval must include the original estimate. Note in question 6 that the larger the original sample, the less variation from one set of bootstrap samples to another.

2. Adding $5''$ to every observation is equivalent to shifting the entire frequency distribution $5''$ to the right. Thus, the mean, the median, and every other percentile will increase by $5''$ while the variance will be left unchanged.

If you convert from feet to inches, you will need to multiply every observation by 12. The mean and standard deviation will be in inches also, so you will need to multiply their original values by 12. As the variance is the square of the standard deviation, you will need to multiply its former value by $12 \times 12 = 144$.

3. Combine the data from the various PPO’s to form a single sample.

6. Although it was suggested that you use as many different methods as possible, you should use and report only one in practice. The percentile bootstrap should never be used in practice; strictly a classroom tool, its sole virtue is that it is easy to explain. Which of the remaining bootstrap estimates you use will depend upon the circumstances.
7. As you are attempting to determine the precision of the original estimate and as precision is a function of sample size, your bootstrap samples should be the same size as the original sample.

Chapter 3

1. There are 8 choose 4 possible relabelings of which only one is more extreme than the one we observed.
2. Use the fact that the sum of all the observations in both samples and the sum of the squares of the observations in both samples are the same for all relabelings.
3. \(p \)-value close to 0.
4. These differences are paired and you would not use the same statistic as in exercise 4.
5. Presumably you are to test the hypothesis that the fuel additive described in Section 3.3.5 increases mileage by at least 10%. Add 10% to each of the control values. Then test the hypothesis that there is no difference against the one-sided alternative that the control values are greater.

Chapter 4

1.a. When the difference is zero, the power is identical with the significance level. When the difference is very large, the power is 1.
2. \(d \) is always true.
3. Both \(a \) and \(b \) are true.
4. You should always decide which statistic you will use before you look at the results of a statistical analysis. Otherwise, the true significance level will far exceed the hypothetical one. See Common Errors in Statistics (Wiley, 2003).
5. If you put a $2 bill in your pocket originally, you will always accept the $2 hypothesis so the significance level is zero. If you put a $20 bill in your pocket originally, you will reject the $2 hypothesis 50% of the time so the power is 50%.
6. a. par, b. par or perm, c: par, d: perm, e: par, f: par, g: perm rank, h: perm.
7. For \(n = 100 \), allowing one defective would result in a significance level of 1-\(p \text{binom}(1,100,.01) \) or 26% and a power of 1-\(p \text{binom}(1,100,.02) \) or 60%.
8. The paired test as it eliminates one major source of variation.
9. The width of confidence intervals is a decreasing function of sample size. The width of a confidence interval for the difference in means is a function of the size of the combined samples.

Chapter 5

2a. data= c(221.1,224.2,217.8,208.8,206.9,205.9,211.1, 198.4,213.0,208.3,214.1,209.1,221.1,208.8, 211.1,224.2,206.9,198.4)
size=c(3,3,3,3,3,3)
> f1=F1(size,data)
> #Number MC of simulations determines precision of
 p-value
> MC = 1600
> cnt = 0
> for (i in 1:MC){
+ pdata = sample (data)
+ f1p=F1(size,pdata)
+ # counting number of rearrangements for which F1
 greater than or equal to original
+ if (f1 <= f1p) cnt=cnt+1
+ }
> cnt/N
[1] 0.448

4a. If the order in which plants (subjects, experimental units) are selected makes a
difference, then the two methods are not equivalent.

4b. Among the methods are using two coins to assign one of four treatments (HH, HT,
TH, and TT) and three coins to assign eight treatments. The six-sided die could
be used to assign three rows and two columns. Let 1, 2, and 3 assign to the first
column.

6. Subtract the initial weight from the final weight in each instance; then make an
unordered \(k \)-sample comparison of these differences.

8. 1

10. Weight your mean estimate in accordance with the relative sizes of the two popu-
lations. To create a confidence interval by bootstrap means, take separate bootstrap
samples from the Burb sample and from the City sample; form an estimate of
the mean again weighting the individual bootstrap means in accordance with the
relative sizes of the two populations.

12. Analyze as an ordered \(k \)-sample comparison. Would yours be a one-sided or a
two-sided test?

14. Analyze as an unordered \(k \)-sample comparison. Would yours be a one-sided or a
two-sided test?

15. 9!/3!^3; 6!/2!^3 \times 3! = 540.

Chapter 6

1. As we do not know the relative numbers of black and white births during the same
period, we cannot answer this question.

2. As we do not know the sizes of the two samples, we cannot answer this question.

4. Analyzing as a singly ordered table, we find a \(p \)-value close to 0.

6. Maybe. If both teams are in the same league, the entries would not be independent
and Fisher’s Exact Test would not be applicable.

9. Two rows and three ordered columns. A Monte Carlo is necessary due to the large
sample sizes. Association with the virus is significant at the 1% level.
11. Using either the Jonckheere–Terpstra test or the linear-by-linear association test for doubly ordered tables, differences among the rows are significant at the 1% level.

Chapter 7

4. As with most real-world data, we first need to reformat the observations so as to satisfy the requirements imposed by the software. Thus to use Blossom to obtain Hotelling’s-T^2 we have

<table>
<thead>
<tr>
<th>Id</th>
<th>hmpg</th>
<th>time</th>
<th>hrqi</th>
<th>smpg</th>
<th>srpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>2</td>
<td>0</td>
<td>23.5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>2</td>
<td>0</td>
<td>24.5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>2</td>
<td>1</td>
<td>20.5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>2</td>
<td>0</td>
<td>20.5</td>
<td>−1</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>22.5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>2</td>
<td>−1</td>
<td>16.5</td>
<td>−1</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>16.5</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>2</td>
<td>1</td>
<td>27.5</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>2</td>
<td>0</td>
<td>23.5</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>2</td>
<td>0</td>
<td>25.5</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>2</td>
<td>0</td>
<td>20.5</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>22.5</td>
<td>1</td>
</tr>
</tbody>
</table>

MRPP HMPG HRQI SMPG SRPI * TIME * ID

Probability (Pearson Type III) of a smaller or equal delta = 0.08

Chapter 8

2. a. positive linear
 b. + or − linear
 c. nonlinear
 d. negative log linear initially
e. nonlinear
f. negative log linear
g. exponential initially

8. Reserve the latest and most current observations for use in validation.
10. Compare with the answer you got for exercise 1 of Chapter 9.
Bibliography

301. Wu CFJ. Jackknife, bootstrap, and other resampling methods in regression analysis (with discuss.) *Annals Statist.* 1986; 14: 1261–1350.

Glossary

Accuracy – An *accurate* estimate is close to the estimated quantity.

Bootstrap Sample – A sample taken at random and with replacement from an existing sample rather than from the population at large.

Contingency Table – The entries in a contingency table are the frequencies with which specific events were observed. The marginals of the contingency table are the frequencies with which various categories of events were observed. These categories may be ordered or unordered.

Deterministic – A phenomenon is *deterministic* when its outcome is totally predictable.

Distribution-Free Methods – Require no assumptions about or knowledge of the distribution of the observations. Permutation tests, the nonparametric bootstrap, and nonparametric decision trees are all distribution-free methods.

Empirical Distribution Function – The distribution function of the observations as distinguished from the distribution function of the population itself.

Exchangeable Observations – Their joint probability distribution remains unchanged by rearrangements of their labels.

Experimental Design – A division of an experiment into blocks based on the values of one or more factors. These values may be ordinal or categorical.

Functional – Any numeric characteristic of a population such as a percentile, a mean, a standard deviation, or a combination thereof.

Nonparametric Tests – A misnomer as many such tests concern parameters. Distribution-free test is what is usually intended by this expression.
Parametric Methods – Take advantage of our knowledge of the distribution of the observations. Rejection regions and confidence intervals of parametric procedures are based on this knowledge. If our assumptions concerning the distribution of the observations are in error then the corresponding parametric methods are in error.

Permutation Distribution – Should be called a rearrangement distribution as it consists of the values taken by a test statistic for each of the possible relabelings of a set of observations.

Permutation Test – The significance levels of a permutation test are established by reference to the permutation distribution of a test statistic.

p-value – A function of the sample and the sample statistic. Thus, it will vary from sample to sample.

Power of a Test – Defined as the probability of rejecting the hypothesis when a specific alternative is true. Thus the power is 1 minus the probability of making a Type II error.

Precision – Precise estimates take almost the same value from sample to sample. A precise interval estimate is a narrow one.

Rank Test – A permutation test in which the ranks of the observations rather than their original values are used.

Resampling Method – Any estimation, hypothesis testing, or modelling method that requires repeated resampling from the data at hand. Bootstrap, decision trees, and permutation tests are all resampling methods.

Significance Level – Defined as the probability of making a Type I error.

Stochastic Outcomes – May take any of a distribution of values. A “random fluctuation” is stochastic.

Type I Error – Made when we accept the alternative hypothesis and the primary hypothesis is true.

Type II Error – Made when we accept the primary hypothesis, yet the null hypothesis is true.

Unbiased Confidence Interval – A confidence interval that has a greater probability of containing the true value of a parameter than of any false value.

Unbiased Test – A hypothesis test that is more likely to reject any false hypothesis than any true one (if, that is, all the assumptions on which the test is based are satisfied).
Author Index

Adams, 56
Adderley, 56
Agresti, 126
Alderson, 140
Altenberg, 140
Anderson, 106, 166, 171
Anthony, 56
Antretter, Dunkel, and Haring, 56
Ardekani, 56
Arndt, 56, 166
Baglivo, Olivier, 126
Bailar, 141
Baker, 141
Barbe, 28
Barbella, Denby, and Glandwehr, 57
Barnett, 166
Barton, 140
Basu, 127
Beck, 141
Benes, 106
Beran, 28
Berger, 56
Berkson, 126
Berry, 127, 136, 137, 140, 166
Berry, Kvamme, and Mielke, 56
Bertail, 28
Bickis, 127
Bishop, 121
Blair, 140
Blair, Troendle, 141
Boess, 56
Boschloo, 114
Boyett, 140, 141
Bradbury, 106
Bradley, 57, 72
Breiman, 186
Bross, 127
Bryant, 140
Bullmore, 166
Burgess, 56
Busby, 56
Cade, 56, 136, 141, 166
Canty, 28
Carlsmith, 57
Carter, 166
Catlett, 166
Chernick, 27
Chhikara, 166
Clark, 186
Cliff, 141
Cochran’s Q, 127
Cohen, 114
Cole, 105
Copp, 56
Costanzo, 141
Crump, 56
David, 140
Daw, 56
Diaconis, 27
DiCiccio, 28
DiCiccio, Hall, 28
Dietz, 141
Diggle, 106
Do, 28
Doolittle, 166
Douglas, 140
Draper, 73
Dubuisson, 166
Dupont, 114
Duval, 27
Eden, 56
Edgington, 57
Efron, 18, 27, 28
Efron and Tibshirani, 26
Endler, 140
Ensor, 166
Falk and Reiss, 28
Faris, 56
Farrar, 56
Feder, 56
Feinstein, 56
Festinger, 57
Fienberg, 121
Fisher, 56, 105, 109, 110
Ford, Colom, and Bland, 56
Foutz, Jensen, 106
Frank, Trzos, and Good, 86
Fraumeni, 141
Freeman, 120
Gabriel, 56, 141
Gail, 56, 126
Gart, 115, 127
Gastwirht, 56
Geisser, 166
Gine, 28
Glass, 141
Gleason, 28
Gliddentracy, 56
Gliddentracy and Greenwood, 56
Gong, 166
Gonzalez, 56
Good, 56, 58, 73, 106, 114, 120, 166
Good and Hardin, 166
Goodman, 121
Graubard, 123
Graves, 141
Gray, 127
Grossman, 56
Gruzelier, 56
Gupta, 119
Haber, 127
Hall, 28, 73, 159
Hall and Wilson, 20, 25
Halton, 120
Hardin, 73
Hart, 159
Hartigan, 27
Hasegawa, Kishino, 166
Hayasaka, 140
Hettmansperger, 96
Hewlett, 56
Higgins, 73
Higgins, 56, 133
Highton, 140
Hinkley, 28
Hisdal, 56
Hjorth, 166
Hoffman, 56, 136, 141
Holland, 121
Hollander, 56
Holmes, 128
Hosmer, 168
Hossein-Zadeh, 56
Hotelling, 130
Howard, 56
Hubert, 134, 135, 140, 141
Hubert, Golledge, 141
Härdle, 28
Ingenbleek, 141
Jackson, 56
Jin, 106
Johns, 28
Jones, 27, 56
Karlin, 56, 163, 166
Kaufman, 141
Kazdin, 56
Keller-McNulty, 73
Kemphorne, 56, 73, 105, 106, 114
Kessen, 58
Khan, 140
Klauber, 56, 140, 141
Knight, 28
Koch, 73
Korn, 123
Koziol, 132
Krewski, Brennan, 127
Kruskal, 121
Kryscio, 141
Lachin, 106
Lahiri, 28
Lai, 176
Lakhand, 56
Lange, 106
Lavison, 166
Legendre, 166
Lehmann, 73
Lemeshow, 168
Levin, 140
Li, 56, 141
Loh, 28
Lunneborg, 27

Makinodan, 27, 104, 105

Manly, 57

Mantel, 126, 134, 135, 141

Mantel’s U, 126

Mapleson, 106

Marcus, 141

Maritz, 57

Marron, 166

Martin, 27, 28

Maxwell, 105

McCarthy, 27

McDonald, 126, 135, 141

McDonald, Davis, 114

McKinney, 112

Mehta, 120, 126, 127

Merrington, 141

Mielke, 127, 136, 137, 140, 141, 166

Milano, Maggi, and del Turco, 56

Mitchell-Olds, 56

Mooney, 27

Mosteller and Tukey, 166

Mueller, 140

Murphy, 141

Mustacchi, 141

Nayak, 141

Nguyen, 127

Nichols, 140

Noble, 56, 106, 133

Noon, 166

Noreen, 57

North, 56

Nurminen, 186

Oden, 73

Ord, 141

Pagano, 126

Parraga, 56

Passing, 141

Patefield, 126

Patel, 120, 126, 127

Patil, 127

Pearson, 57

Pena, 56

Penninckx, 166

Pericliev, 56

Peritz, 106

Perlich, Provost, 186

Pesarin, 106, 140

Petrondas, 141

Phipps, 28

Piantadosi, 56

Pike, 141

Pitman, 56

Plackett, 56

Pollard, 56

Ponton, 56

Prager and Hoenig, 56

Praska Rao, 28

Pregibon, 186

Priesendorfer, 166

Puri, 132

Quinn, 56

Rasmussen, 27

Raz, 56

Richards, 166

Ritland, 56

Roehmelt, 114

Romano, 28, 106

Rosenbaum, 106

Rothrey, 56

Rounds, 106

Royaltey, Astrachen, 140

Ryan, 166

Ryan, Tracey, 106

Ryman, 140

Sackrowitz, 114

Sainsbury, 56

Salaptek, 58

Scheffe, 105

Schenker, 28

Schultz, 135, 140, 141

Selander, 141

Sen, 132

Senchaudhuri, 117, 126

Sethuraman, 56

Shao, 166

Shi, 28
Shimbukaro, 166
Shuster, 105, 140, 141
Siemiatycki, 135, 141
Silverman, 28
Simon, 27
Simonoff, 186
Smith, 141
Smith, Forester, 126
Smythe, 106
Sokal, 140, 141
Solow, 166
Soltanian-Zadeh, 56
Soms, 106
Sonquist, 186
Spicer, 141
Stine, 27
Stone, 166
Streitberg, 114
Syrjala, 140

Tajuddin, 140
Tan, 56
Thaler-Neto, Fries and Thaller, 56
Thompson, Bridges, 166
Tibshirani, 18, 20, 27, 28
Titterington, 73, 166
Toth, 56
Tracy, 140
Troendle, 138, 141
Tsuji, 56
Tsutakawa, 56
Tu, 19, 166
Tukey, 56
Tukey, Brillinger, 56
Valdes-Perez, 56
van-putten, 140
vanKeerberghen, 56
Vanlier, 56
Varga, 56
Wald, 57, 130
Walker, 132
Wei, 106
Wei, Smythe and Smith, 106
Welch, 106
Westfall, 141
Whaley, 140
Whinston, 141
Wilk, 105, 106
Williams, 56, 128, 163
Williams-Blangero, 140
Witzum, Rips, and Rosenberg, 56
Wolfowitz, 57, 130
Wong, 176
Wong, Chidambaram, 141
Wu, 28
Währendorf and Brown, 103, 106
Xu, 56
Yang, 56
Yano, 166
Yates, 56
Young, 27, 28, 141
Zempo, 56
Zerbe, 106, 132, 141
Zhang, 19
Zheng, Ombao, Turetsky, 56
Zinn, 28
Zucker and Mazeh, 56
Zumbo, 106
Subject Index

acceptance region, 35, 67
accuracy, 51
accuracy and precision, 7
accurate, 16, 18, 28
additive model, 83
age, 104
algorithms, 117
alternative, 32, 34, 37, 65, 71, 112
alternatives
ordered, 85
Aly’s statistic, 52
archaeological, 136
arcsin, 72
association, 121
assumptions, 35, 51, 61, 69
asymptotic approximations, 119
asymptotically exact, 159
average, 143
back-up statistic, 114
balanced design, 93
baseline, 133
between-treatment, 83
bias, 16, 97, 161
binomial, 21, 38, 67, 70, 102
bioequivalence, 131
biological, 103
birth weight, 168
bivariate dependence, 149
bivariate normal distribution, 25
block, 78, 80, 129
blocking, 77
bootstrap, 8, 9, 30, 46, 70, 73, 100, 103, 149, 152, 157, 160, 161, 165
 BCa, 158
 bias-corrected, 18
 interated, 26
 parametric, 21
 smoothed, 25
 tilted, 25
bootstrap percentile, 18
bootstrap-t, 20
boundaries, 101
box and whiskers plot, 7
boxplot, 12
categories, 109
causation, 122
cell culture, 57
cells, 104
chemotherapy, 125
chi-square distribution, 35, 71, 117
chi-square statistic, 120
chi-squared statistic, 114
classification, 171
classification tree, 179
Cochran’s Q, 122
coefficient of variation, 7
coefficients, 151, 152, 161
cognitive dissonance, 57
certainty interval, 16, 18, 26, 67, 68, 73, 105, 125, 149
certainty intervals, 29, 152
cofounded, 104
cofounding, 92
conservative, 72
consistent, 8
tingency table, 109, 119
tingency tables, 35
tinuous distribution, 24
trol, 43
trols, 79
correlation, 25, 149
counting processes, 71
covariance matrix, 25, 130
cross-validation, 161, 164
prative distribution function, 5
customer attitudes, 178
data
categorical, 69
metric, 69
data is
tordinal, 69
design, 78
designs
 balanced, 89
deviates, 91
deviations, 83
discrimination, 115
dispersion, 7
distribution, 35, 158
 symmetric, 159
distribution free, 73
distribution-free, 36
distribution-free tests, 72
dose response, 87, 167
economist, 59
efficient, 18, 73
empirical distribution function, 24
epidemiology, 135
estimate, 20
 interval, 18
 plug-in, 8, 17, 29
 point, 17
estimates, 79, 149
 plug-in, 160
estimation, 164
estimation procedure, 151
exact, 35, 61, 68, 119, 130, 157
exact test, 72
example, 17, 133, 136
exchangeable, 51, 68, 70, 149, 159
expected, 16
expected values, 92
experiment, 31
exploratory data analysis, 163
exponential, 61, 71
exponential distribution, 23

Fisher’s Exact Test, 109
Fisher’s nonparametric combination, 133
Freeman–Halton statistic, 119
generalized quadratic form, 134
global protection, 86
goodness of fit, 164
gradient, 97
group sequential designs, 100
growth, 132
guidelines, 165

Hotelling’s T^2, 130

hypergeometric distribution, 110, 120
hypotheses, 109, 138
 formulate, 76
hypothesis, 34, 36, 111, 112
 compound, 72

identically distributed, 159
importance sampling, 25
independence, 159
independent, 51, 70
 random values, 159
interaction, 102, 104, 158
interactions, 89, 91

k-sample comparison, 82
k-way analysis, 89

(LAD) goodness of fit, 151
laboratory, 106
Latin Square, 97
Likert scale, 109
likert scale, 176
logarithms, 71
loss, 160
loss functions, 181
losses, 64, 76, 151
low birth weight, 181
lymphocytes, 104

main effects, 89, 90, 102
marginals, 109, 113, 120
matched pairs, 43, 108
mathematical expectation, 8
maximum, 7
mean, 29
 arithmetic, 6
 geometric, 7
median, 6, 24, 29
metric, 161
mid-p, 114
midrank scores, 124
Miliken, 114
minimum, 7
misclassification, 182
monotonic function, 130
monotonic increasing function, 107
Monte Carlo, 37, 85, 89, 117
MRPP, 136
multinomial, 120
multiple tests, 68
multivariate, 132
mutagenicity, 86

nearest neighbors, 163
negative binomial, 70
nodes, 179
nonparametric tests, 37
normal, 70, 99
normal distribution, 7, 18, 21, 61
normal scores, 72
normality, 133
normally distributed, 130
null hypothesis, 32, 61, 67, 68, 99, 100

observations
 multivariate, 158
 paired, 149
odds ratio, 115
of binomial, 72
OLS, 151
one-sided, 67
one-sided vs two-sided, 42
one-tailed and two-tailed, 112
one-tailed or a two-tailed, 127
optimism, 161
ordered tables, 125
ordinal scale, 123
outliers, 71, 72

p-value, 35, 37, 55, 67, 117
parallel, 132
parameters, 5, 151
parametric, 70
parametric methods, 36
percentile, 151
percentiles, 5
permutation, 159
 analysis, 98
 distribution, 148
permutation distribution, 43, 87, 99, 112, 120, 136
permutation method, 32
permutation methods, 82
permutation test, 61, 71, 73

permutation tests, 36, 68, 70
permutations
 symmetric, 89
physics, 143
pie charts, 69
Pitman correlation, 87, 89, 148
Pitman statistic, 86
Pitman’s correlation, 141
Poisson, 21, 70, 71
power, 35, 36, 65, 67, 72, 74, 100
precise, 8, 129
precision, 51, 75, 130
predict, 151, 167
prediction, 160
 error, 160
prediction error, 165
predictor, 157, 178
predictors, 158, 166, 182
categorical, 182
preventive measures, 77
prior knowledge, 181
proportions, 109, 114
prune, 179
pruning, 185

random
 fluctuation, 32, 146
 fluctuations, 143
 number, 97
random number, 99
randomization, 82
randomize, 114
randomized blocks, 89
rank test, 37
ranks, 72, 83, 132
rearrangement, 82
rearrangements, 33, 35, 38, 42, 125, 131, 163
regression, 132, 182
 linear, 151
 quantile, 151
 stepwise, 185
regression tree, 178
rejection region, 35
relationship, 143, 150
 linear, 146
nonlinear, 145
relationships, 167
repeated measures, 131
replicated, 96
representative, 71
resample, 8
resampling, 130, 155
resampling method, 104
residuals, 96, 156
rule
classification, 173
sample, 8
sample size, 66, 99, 114
sample sizes, 55
sensitivity analysis, 114
significance level, 35, 43, 65–67, 72, 89, 112, 117, 130, 139
significance levels, 159
slope, 158
smoothing, 23
sociological, 135
soil, 97
square roots, 71
standard deviation, 7, 21, 79
standard deviations, 149
standard error, 20
statistics, 5
\(F_1 \) and \(F_2 \), 86
stripchart, 12
Student’s \(t \), 46
Studentize, 159
Studentized, 20
superadditive, 91
survey, 109, 123, 176
survival rates, 109
symmetric, 71
synchronized rearrangements, 92
synergistic, 91
techniques
regression, 181
terminal node, 178
test, 117, 121
for association, 148
linear-by-linear, 126
test of parallelism, 132
test statistic, 87, 98
testing hypotheses, 129
tests
parametric, 68
ties, 88
transformation, 34, 71
logarithmic, 58
variance stabilizing, 20
treatment comparisons, 81
tree
classification, 171
trend, 138
two-sample comparison, 159
two-sided, 55
two-sided or a one-sided, 112
Type I error, 35, 63, 65, 68, 72
Type II error, 20
unbalanced designs, 102
unbiased, 8, 73
validation, 161, 164
K-forl, 173
variables
explanatory, 146
variance, 7, 9, 25, 78
variances, 46, 71
variation, 34, 77, 143, 146
with replacement
sampling, 9
within-treatment, 83