Data x in some parameter space classify as $y \in \{\pm 1\}$.

Specify a rule $\phi(x) \in \{\pm 1\}$

Example: separation by hyperplane.

Rule: x above plane label as $y = 1$
x below plane label as $y = -1$

Geometrically define plane by $a \cdot x + b = 0$

Rule $\phi(x) = \pm 1$, $\ell \geq a \cdot x + b \geq 0$.
How to determine the plane?

Train with labelled training examples

\((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\).

Need an algorithm to find the "best" plane.

Perceptron Algorithm — guaranteed to converge to a plane that separates the positive \((y = +1)\) and the negative \((y = -1)\) examples (provided a plane exists).

Generalization vs. Memorization.

Generalization: need this plane (rule) to successfully classify data that you haven't trained on (new test dataset).

Memorization: classifies training data perfectly, but fails to generalize to new data. Want Generalization.
Idea of best plane \rightarrow margin.

Try to find the plane with the biggest margin.

Intuitively, this will give the best chance of generalizing.

Mathematical theory justifies the intuition.
Some Mathematics

Constrained Optimization

Lagrangian multipliers.

\[L_p(a, b, z; x, i) = \frac{1}{2} a^2 + \gamma \sum_{i=1}^{N} z_i \]

\[- \sum_{i=1}^{N} z_i \left(y_i (x_i a + b) - (1 - z_i) \right) - \frac{\gamma}{2} \sum_{i=1}^{N} z_i z_i. \]

Minimize \(L_p \) w.r.t. \(a, b, z \)

maximize w.r.t. \(a, i \).

\(a, b \) specifies the plane
\(|a| \) specifies the inverse margin
\(z_i \) enables training points to be + misclassified - but pay a penalty +

Intuitively: Find the plane with biggest margin that moves points by a minimum amount.
Algorithms exist to minimize Lp and obtain the “best” plane.

Result: the solution is of form

\[\hat{\alpha} = \sum_{i=1}^{N} \alpha_i x_i y_i \]

where \(\alpha_i = 0 \), unless \(x_i \) is on the margin (after \(z_i \)).

Here \(\hat{\alpha} \) depends only on the support vectors → i.e., only on the data near the separating bounding (ignores data away from the boundary).

Solution: \(\alpha(x) = \text{sign} (\hat{\alpha} \cdot x + \hat{b}) \)

Planes, Margin, Support Vectors.

\[\alpha(x) = \text{sign}(\sum_{i=1}^{N} \alpha_i x_i x + \hat{b}) \]
Kernel Trick.

What if we don’t want to use planes?

The kernel trick is a very simple way to greatly extend this method.

Send $x \rightarrow \phi(x)$, $\phi(\cdot)$ arbitrary feature.

Solution depends only on quantities like $\phi(x)$. $\phi(x') = K(x, x')$

$\alpha(x) = \text{sign} \left(\sum_{i=1}^{N} \alpha_i K(x, x_i) + b \right)$. (Different α).

Support Vector Machine
Risk & Empirical Risk.

\[R(x) = \sum_{x,y} P(x,y) L(y, d(x)) \]

\[\text{Empirical Risk} \]

\[\text{Empirical Risk} = \sum_{c=1}^{C} L(y_i, d(x_i)) \]

In the limit as \(N \to \infty \)

\[\text{Empirical Risk} \to R(x) \]

Technical Constraint

Discriminative approaches (e.g., SVM)

minimize \(\text{Empirical Risk} \) directly to get the decision rule \(\hat{d} \).

Bayesian approaches use the data \((x_i, y_i)\)

to learn the distribution

\[P(x, y) = P(x \mid y) P(y) \]

then finds \(\hat{d} \) to minimize the risk.
AdaBoost.

Learn a classifier from a set of weak classifiers \(\{ \phi_i(x) \} \)
\[\phi_i(x) \in \{ \pm 1 \} \]

Weak classifiers are correct > 50% time

Build a strong classifier:
\[H(x) = \text{sign} \sum_{\mu=1}^{\Theta} \lambda_{\mu} \phi_{\mu}(x) \]

Algorithm \(\rightarrow \) can be expressed as greedy steepest descent.

Define \(\mathcal{Z} = \prod_{r=1}^{n} J \)
\[\frac{\partial}{\partial \lambda_i} \mathcal{Z} = \sum_{i=1}^{n} e^{-y_i \sum_{\mu=1}^{\Theta} \lambda_{\mu} \phi_{\mu}(x)} \]
Initialize \(\lambda_i = 0, \forall i \).

Time step \(t \): solve \(\frac{\partial}{\partial \lambda_i} \mathcal{Z} = 0 \), for each \(\lambda_i \) (other \(\lambda \)'s fixed).

Select \(i \) to maximally decrease \(\mathcal{Z} \).

Update \(\lambda_i \).
AdaBoost (Cont).

You are selecting the choice of weak classifier to use—and its weight.

Generalization—versus Memorization

Need to keep a training set and a test set. Train on training set, evaluate on test set & tuning set.

If results on training set are better than results on test set—then you have overgeneralized.

Vapnik's Results

bound generalization error in terms of training error + VC dimension.

Nice! Mathematically—practical use?
Learning the Posterior.

Adaboost was formulated in terms of classification.

It can be reformulated in terms of estimating the conditional distribution \(p(y|x) \).

Why does this matter?

Bayes says learn \(p(x|y) \) generative model and \(p(y) \) prior.

Then perform inference to maximize

\[
p(y|x) = \frac{p(x|y)p(y)}{p(x)}
\]

Why not learn \(p(y|x) \) directly? (discriminative model)
Some forms of machine learning attempt to directly learn the posterior distribution \(p(y|x) \) directly.

This posterior distribution can become complex — e.g. \(y \) can have multiple states — and the distribution can have hidden variables.

These types of models become very similar to generative Bayesian models.

They can be extremely useful in practice — when it is hard to specify a generative model.
Summary

1. Classification
2. Support Vector Machine
 hyperplanes, margin, support vector, kernel trick.
4. Vapnik's Bounds & VC dimension.
5. AdaBoost
6. AdaBoost to learn the posterior.