Bayes rule \(\rightarrow \) posterior
\[
P(C_i | x) = \frac{p(x | C_i) p(C_i)}{\frac{\sum_{k=1}^{K} p(x | C_k) p(C_k)}{K}}
\]

discriminant function
\[
\tilde{g}_i(x) = p(x | C_i) p(C_i)
\]
or
\[
g_i(x) = \log p(x | C_i) + \log p(C_i).
\]

If Gaussian:
\[
p(x | C_i) = \frac{1}{\sqrt{2\pi \sigma_i^2}} e^{-\frac{(x - \mu_i)^2}{2\sigma_i^2}}
\]

Then
\[
g_i(x) = -\frac{1}{2} \log 2\pi - \log \sigma_i - \frac{(x - \mu_i)^2}{2\sigma_i^2} + \log p(C_i)
\]

Example: Car Company \(x \) income.
\(C_i \) customers who buy type 1.

Sample \(x = \langle x^1, x^2, \ldots \rangle \), \(i \in C_0 \cup C_1 \)

\(g_i \in \{1, 0\} \) if \(x^t \in C_i \)
\(= 0 \) if \(x^t \in C_k, k \neq i \)

For each class - estimate of mean & variance
\[
m_i = \frac{\sum x^t r_i^t}{\sum r_i^t}, \quad s_i^2 = \frac{\sum (x^t - m_i)^2 r_i^t}{\sum r_i^t}
\]

Estimate prior
\[
\hat{p}(C_i) = \frac{\sum r_i^t}{\sum r_i^t}, \quad \sum r_i^t
\]
Plugging estimates into discriminant function:

\[g_i(x) = -\frac{1}{2} \log 2\pi - \log \sigma_i - \frac{(x-m_i)^2}{2\sigma_i^2} + \log \hat{\pi}(y) \]

Common Simplification:

(i) \(\hat{\pi}(y) \) constant, \(\sigma_i \) constant (map of \(i \))

dropping terms that are constant:

\[g_i(x) = -\frac{(x-m_i)^2}{2\sigma_i^2} \]

Choose \(C_i \) of \(|x-m_i| = \min_k |x-m_k| \) nearest model.

![Decision boundary diagram](image)

- **Decision boundary is**
 - at \(x = \frac{1}{2} (m_1 + m_2) \)

Note:

1. If we have prior knowledge of \(\{m_i, \sigma_i\} \)
 then we should estimate them by MAP & not ML.

2. Beware of Gaussian assumption. Gaussian is non-robust. We can make big errors if we assume data is Gaussian but it isn’t.

Statistics literature - has tests for Gaussian nature.

At least - look at the data to see if it has Bell shape.
\[E[R(x)] = w_1 x + w_0 \]

Write output (dependent variable) as a function of the input (independent variable).

\[y = f(x) + \epsilon \]

Output = unknown function of input

Write to approximate \(f(x) \) by an estimator \(g(x|\theta) \).

\[\theta \text{ - unknown parameter} \]

Standard assumption:

\[\epsilon \sim N(0, \sigma^2) \]

\[p(r(x)) = N(g(x|\theta), \sigma^2) \]

Use ML to learn the parameters \(\theta \)

\[p(x, r) = p(r(x)|p(x)) \quad x = \{x^t, r^1, \ldots, r^N\} \]

Log likelihood:

\[L(\theta|X) \]

\[= \prod_{t=1}^{N} p(x^t, \epsilon^t) \]

\[= \sum_{t=1}^{N} \log p(r^t|x^t) + \sum_{t=1}^{N} \log p(x^t) \]

\[L(\theta|X) \]

\[= -N \log(\sqrt{2\pi\sigma}) - \frac{1}{2} \sum_{t=1}^{N} \left[\frac{r^t - g(x^t|\theta)}{\sigma^2} \right]^2. \]

Max w.r.t. \(\theta \) is equivalent to min.

\[\sum_{t=1}^{N} \left[r^t - g(x^t|\theta) \right]^2 \]

Least square estimator

(Gaussian distribution - quadratic minimization)
Regression (Cont.)

Linear regression: \(g(x^t | w_0, w_1) = w_1 x^t + w_0. \)

Differentiate energy w.r.t. \(w_0, w_1 \) gives two equations:

\[
\sum_t r^t = NW_0 + W_1 \sum_t x^t
\]

\[
\sum_t r^t x^t = W_0 \sum_t x_t + W_1 \sum_t (x_t)^2 .
\]

Expressed in linear algebra form as: \(A \mathbf{w} = \mathbf{y} \)

\[
A = \begin{bmatrix} N & \sum_t x^t \\ \sum_t x^t & \sum_t (x^t)^2 \end{bmatrix}, \quad w = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}, \quad y = \begin{bmatrix} \sum_t r^t \\ \sum_t r^t x^t \end{bmatrix}
\]

Solved to give: \(\mathbf{w} = A^{-1} \mathbf{y}. \)

Polynomial Regression:

\(g(x^t | w_0, w_1, \ldots, w_k, w_{k+1}) = w_0 (x^t)^k + \ldots + w_k x^t + w_{k+1}. \)

Let \(k+1 \) parameters \(w_0, \ldots, w_{k+1}. \)

Diff. energy - gives \(k+1 \) linear eqns in \(k+1 \) vars.

Can write: \(A = \mathbf{D}^T \mathbf{D} , \quad y = \mathbf{D}^T \mathbf{r} \)

\[
\mathbf{D} = \begin{bmatrix} x^t_1 \\ \vdots \\ x^t_t \end{bmatrix}
\]

Solve to get:\(\mathbf{w} = (\mathbf{D}^T \mathbf{D})^{-1} \mathbf{D}^T \mathbf{r} \)

\[
r = \begin{bmatrix} r^1 \\ \vdots \\ r^t \end{bmatrix}
\]

Must adjust the complexity of the model to the amount of data available.

Complexity of poly regression is \(k \) parameters \(k \).

Need to pick \(k \) to give best generalization error.
1. **Tuning Model Complexity: Bias/Variance Dilemma.**

Sample $X = \{x^i, r^i\}$ drawn from unknown $p(x, r)$.

Construct an estimate $g(\cdot)$.

Expected Square Error can be expressed as:

$$E_X (r - g(x))^2 | x] = \frac{E_X [r - E_X r(x)]^2 | x]}{\text{noise}} + \frac{(E_X r(x) - g(x))^2}{\text{square error}}$$

Can't be removed no matter what estimator we use. Doesn't depend on g or x.

$$E_X \{ (E_X r(x) - g(x))^2 | x] = (E_X r(x) - E_X g(x))^2$$

$$+ E_X \{ (g(x) - E_X g(x))^2$$

Variance.

2. **Inductive Example**

Average on datasets to quantify how good g is.

X is the sample $\{ x^i, r^i \}$

E_X is averaging draw the sample from distribution $p(x, r)$.

Generate a set of datasets $X_i = \{ x^i, r^i \}$

$i = 1$ to 10.

Use each dataset to make an estimate $g_i(\cdot)$.

Then estimate

$$E_T g(x) = \frac{1}{N} \sum_{i=1}^{m} g_i(x)$$

$$\text{Bias}^2(g) = \frac{1}{N} \sum_{i=1}^{N} [g_i(x) - \bar{g}(x)]^2$$

$$\text{Variance}(g) = \frac{1}{N} \sum_{i=1}^{N} [g_i(x) - \bar{g}(x)]^2.$$
A more complex models gives better fit to the data (i.e. to underlying model)
→ reduces bias.

But small changes in dataset lead to big change in fitted model
→ increases variance.

Low orders - risk of underfitting
High orders - risk of overfitting.

To get a small error we should have the proper inductive bias and have large enough dataset so that variability is constrained by data.

Note: take very high-variance models, use average (lale)
Model Selection Procedure

1. Cross-validation: divide dataset into two parts as training & validation set.
 - Train models of different complexity and test their error on the validation set.
 - As model complexity increases, error on training set decreases. But error on validation set decreases and increases.

 \[e' = e_{\text{error on data}} + \lambda \cdot \text{model complexity} \]

2. Regularization

 - Augment error function
 - Also penalizes model complexity

3. Structural Risk Minimization (Vapnik)

4. Minimum Description Length (Rissanen)

 - Penalize complexity by cost of encoding model

5. Bayesian Model Selection

 - If some prior knowledge
 \[p(\text{model} | \text{data}) = \frac{p(\text{data} | \text{model})p(\text{model})}{p(\text{data})} \]
 (gives higher prob to simpler models)