1. Kernel Trick

Note that the final classifier of an SVM depends on \(\mathbf{x} \) only by dot products. The final classifier is \(\hat{y}(\mathbf{x}) = \text{sign}(\sum_i \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x}) \). This depends on \(\mathbf{x} \) only by: (i) the dot product \(\mathbf{x} \cdot \mathbf{x}_i \), and (ii) the \(\alpha \)'s depend on solving the dual problem (maximizing the dual) which again depends only of the dot products of the data \(\mathbf{x}_i \cdot \mathbf{x}_j \).

This motivates the Kernel Trick

Compute features \(\varphi(\mathbf{x}) \) and reformulate the problem in feature space – i.e. seek a classifier of form:

\[
\text{sign}(c \cdot \varphi(\mathbf{x}) + b)
\]

Replace \(\mathbf{x} \) by \(\varphi(\mathbf{x}) \) everywhere in the primal & dual formulation. Then the classifier only depends on the dot product of the \(\varphi(\mathbf{x}) \)'s:

I.e. on the Kernel \(K(\mathbf{x}, \mathbf{x}') = \varphi(\mathbf{x}) \cdot \varphi(\mathbf{x}') \)

2. Why does this help?

First, using features \(\phi(.) \) can make it possible to classify data by hyperplanes, which we could not classify in the original space.

Example

Logical X-OR, \(\mathbf{x} = (x_1, x_2), x_j \in \{\pm 1\}, \omega \in \{\pm 1\} \)
The X-OR (exclusive or), see figure (1), requires a decision rule

\[\alpha(x) \text{ s.t.} \]
\[\alpha(1, 1) = \alpha(-1, -1) = 1 \]
\[\alpha(1, -1) = \alpha(-1, 1) = -1 \]

Figure 1. Data for the logical X-or problem. It is impossible to separate the positive and negative examples by a straight line (i.e. to classify them correctly by a linear classifier). But we can find features which will enable us to do this.

It is impossible to find a linear classifier to do this. But define feature \(\varphi(x_1, x_2) = (x_1, x_2, x_1 x_2) \). Now the classifier sign \(\{(0, 0, 1) \cdot \varphi(x_1, x_2)\} \) can separate the data.

Moral: increasing the dimensionality of the data by features, makes it possible to find separating hyperplanes.

Second, we do not need to specify the features \(\varphi(x) \) explicitly, we only need to specify the kernel

\[K(x, x') = \varphi(x) \cdot \varphi(x') \]

Remember: the dual problem reduces to maximizing

\[L_d(\{\alpha_\mu\}) = \sum_\mu \alpha_\mu - \frac{1}{2} \sum_{\mu, \nu} \alpha_\mu \alpha_\nu \omega_\mu \omega_\nu \varphi(x_\mu) \cdot \varphi(x_\nu) \]
LECTURE NOTE #9

$$= \sum_{\mu} \alpha_{\mu} - \frac{1}{2} \sum_{\mu,\nu} \alpha_{\mu} \omega_{\mu} \omega_{\nu} K(x_{\mu}, x_{\nu})$$

The solution is $$\hat{a} = \sum_{\mu} \hat{\alpha}_{\mu} \omega_{\mu} \varphi(x_{\mu})$$
$$\hat{a} \cdot \varphi(x) = \sum_{\mu} \hat{\alpha}_{\mu} \omega_{\mu} \varphi(x) \cdot \varphi(x_{\mu}) = \sum_{\mu} \hat{\alpha}_{\mu} \omega_{\mu} K(x, x_{\mu})$$
(Can solve for $$\hat{\sigma}$$ as before)

3. **What Kernels to Use?**

There are many choices of kernels. The difficulty is knowing which one to use. As always, cross-validation is useful for checking whether a kernel can generalize.

$$K(x, x') = (1 + x \cdot x')^d$$

$$K(x, x') = e^{-\frac{1}{\sigma^2}||x-x'||^2}$$

$$K(x, x') = \tanh\{C_1 x \cdot x' + C_2\}$$

Choice of best kernel is problem dependent.

Some kernels→ e.g. $$(1 + x \cdot x')^d$$ naturally generalized the idea of hyperplanes.

Others → e.g. $$e^{-\frac{1}{\sigma^2}||x-x'||^2}$$ are similar to nearest neighbors.

4. **When do Kernels Correspond to Features?**

Suppose we specify $$K(x, x')$$, is it equal to $$\varphi(x) \cdot \varphi(x')$$ for some features $$\varphi(x)$$?
Figure 2. One type of kernel, e.g. \(\{1 + \vec{x} \cdot \vec{x}'\}^d \), corresponds to using curved surfaces to separate the data. The other type of kernel, \(\exp\{-|\vec{x} - \vec{x}'|^2\} \) is like nearest neighbour.

Theoretical results can be obtained.

e.g. Mercer’s Theorem

Compute eigenfunctions of \(K(\vec{x}, \vec{x}') \)

\[
\int K(\vec{x}, \vec{x}') \psi(\vec{x}')d\vec{x}' = \lambda \psi(\vec{x}) \quad \text{with} \quad \int \{\psi(\vec{x})\}^2 d\vec{x} \quad \text{finite.}
\]

Provided \(K(\vec{x}, \vec{x}') \) is positive definite, then the features are \(\varphi^\mu(\vec{x}) = \sqrt{\lambda^\mu} \psi^\mu(\vec{x}) \)

Similar to linear algebra expansion of a symmetric matrix in terms of eigenvectors.

\[
A_{ij} = \sum_\mu \lambda^\mu e^\mu_i e^\mu_j, \quad \text{where} \quad \sum_j A_{ij} e_j^\mu = \lambda^\mu e^\mu_i
\]

If \(A_{ij} \) is positive definite.

\[
A_{ij} = \sum_\mu \{\lambda^\mu_{1/2} e^\mu_i\} \{\lambda^\mu_{1/2} e^\mu_j\} = \sum_\mu \varphi^\mu_i \cdot \varphi^\mu_j
\]

5. Kernel PCA
The kernel trick can be applied to an quadratic problem - e.g. PCA

\[C = \frac{1}{m} \sum_{k=1}^{m} (x_k - \bar{x})(x_k - \bar{x})^T \]

w.l.o.g. \(\bar{x} = \frac{1}{m} \sum_{k=1}^{m} x_k = 0 \)

Go to feature space

\[x \rightarrow \varphi(x) \]

\[C = \frac{1}{m} \sum_{k=1}^{m} \varphi(x_k)\varphi^T(x_k) \]

All non-zero eigenvectors \(e \) of \(C \) are of form

\[e = \sum_{j=1}^{m} \alpha_j \varphi(x_j), \text{ for some } \{\alpha_j\} \]

Substituting: \(C e = \lambda e \)

\[\rightarrow \frac{1}{m} \sum_{k=1}^{m} \varphi(x_k)\{(\varphi(x_k) \cdot e)\} = \lambda e \]

\[\rightarrow \frac{1}{m} \sum_{k=1}^{m} \varphi(x_k) \sum_{j=1}^{m} \alpha_j \{\varphi(x_k) \cdot \varphi(x_j)\} = \lambda \alpha_j \varphi(x_j) \]

Equating coefficients of \(\varphi(x_j) \) gives new eigenvalue equations.

\[\frac{1}{m} \sum_{j} K(x_k, x_j) \alpha_j = \lambda \alpha_k \]

Index \(\lambda^\mu, \alpha_k^\mu \)

\[\frac{1}{m} \sum_{j} K(x_k, x_j) \alpha_j^\mu = \lambda^\mu \alpha_k^\mu \quad \mu = 1 \text{ to } m \]

Solving this, gives us the eigenvectors.

\[e^\mu = \sum_{j=1}^{m} \alpha_j^\mu \varphi(x_j), \text{ eigenvalue } \lambda^\mu. \text{ (depends on } \varphi) \]
But the projections $\mathbf{e}^\mu \cdot \varphi(x)$ of the data are

$$\mathbf{e}^\mu \cdot \varphi(x) = \sum_{j=1}^{m} \alpha_j^\mu K(x_j, x)$$

which is independent of φ and depends only on $K(.,.)$.

Hence:

The projection of the data onto the eigenvectors requires only knowing the kernel $K(x_i, x_j)$ (i.e. not knowing φ)

Knowledge of the kernel is used twice:

(1) to compute the $\{\alpha_j^\mu\}$

(2) to compute the projections $\mathbf{e}^\mu \cdot \varphi(x)$