
Due: Thursday 30/May. 2013.

Question 1. Principal Component Analysis.

Suppose the data elements \(\{ \vec{x}_i \} \) where each \(\vec{x}_i \) is an M-dimensional vector. The vectors are of form \(\vec{x} = a \delta_k = (0, ..., 0, a, 0, ...) \), where the \(a \) is in the \(k^{th} \) slot, and \(k, a \) are random variables. \(k \) is uniformly distributed over \(1, ..., N \) and \(P(a) \) is arbitrary. Calculate the covariance matrix of the data \(\{ \vec{x}_i \} \). Show that it has one eigenvector of form \((1, ..., 1)\) and that the other eigenvectors all have the same eigenvalue. Discuss whether PCA is a good way to select features for this problem.

Hint: The covariance matrix \(C \) of the signals \(\vec{x} \) is of form \(C_{i,j} = \lambda + \mu \delta_{i,j} \) for some \(\lambda, \mu \).

Question 2. Fisher’s linear discriminant.

Describes Fisher’s linear discriminant. How is it used to discriminate between data from two classes.

Suppose each datapoint \(\vec{x} \) in the first class is of form \(\vec{x} = (x_1, ..., x_{2M}) \) where the \(x_i \) are i.i.d. from a Gaussian with zero mean and standard deviation \(\sigma \). The datapoints in the second class are of form \(\vec{x} = (x_1, ..., x_M, \rho + x_{M+1}, ..., \rho + x_{2M}) \) where \(\rho \) is fixed and the \(x_i \) are also generated by a Gaussian with zero mean and standard deviation \(\sigma \).

What is Fisher’s linear discriminant between these two datasets? Does the discriminant change if \(\rho \) is a random variable with distribution \(P(\rho) \)?

Question 3. ISOMAP algorithm.

Describe the ISOMAP algorithm. What are its advantages and disadvantages compared to PCA?

Question 4. Expectation-Maximization.

Do questions 3 and 4 from Chp 7 of Alypaydin’s book.
Question 5. Decision Trees.

Describe the Decision Tree algorithm. Consider the task of deciding whether a customer is low-risk $y = 1$ or high-risk $y = -1$ depending on income x_1 and savings x_2. Suppose the set of questions are tests of form $is x_1 > T_1$ and $is x_2 > T_2$, where T_1 and T_2 are thresholds. The training set has low-risk $y = 1$ points at (x_1, x_2) positions: (2, 3), (3.5, 4), (2.5, 6), (6, 3.5), (7, 8) and high-risk $y = -1$ points at (7, 1.5), (1, 8), (1.5, 1.5), (2, 2), (3, 3). Derive the best decision tree for this case, specifying the impurities at the nodes.