Now we show that the kernel trick can be applied to PCA.

In this lecture we set the means to zero \(\mu_{x_i} = 0 \). This is easy to arrange (by subtraction).

\[\sum_{i=1}^{N} \phi(x_i) = 0 \]

The output of PCA is the projection of the data \(\{x_i: i \in \mathbb{N}\} \) onto the subspace defined by \(\{e_1, \ldots, e_N\} \), i.e., the coefficients \((x_i \cdot e_1, x_i \cdot e_2, \ldots, x_i \cdot e_N) \), \(i \in \mathbb{N} \).

This depends on dot products, which suggests we can use the kernel trick if we replace \(x \) by \(\phi(x) \).

But what about the \(e_i \)'s? They are eigenvectors of the correlation function. How do they change if we replace \(x \) by \(\phi(x) \)?

To understand this, we need another way to compute the eigenvector of \(\Sigma = \frac{1}{N} \sum_{i=1}^{N} x_i x_i^T \).

Claim: The eigenvectors with non-zero eigenvalues can be expressed in form \(e_i = \frac{1}{\sqrt{\lambda_i}} x_i e_i \). The eigenvectors with zero eigenvalues are of the form \(e_i, \forall i \in \mathbb{N} \).

Proof: Suppose \(x_i \cdot e \neq 0 \), \(i \in \mathbb{N} \).

then \(e_i e = \frac{1}{N} \sum_{i=1}^{N} x_i (x_i \cdot e) = 0 \), hence \(e_i \) is an eigenvector with zero eigenvalue. This proves the last sentence.

The remaining eigenvectors must be orthogonal to the zero eigenvectors. Hence they are of form \(\sum_{i=1}^{N} \lambda_i e_i \).
(2) **Intuition:** Suppose we have data in 3-2D space spanned by axes i, j, k. Suppose all the data lies in the plane spanned by i, j.

\[
\begin{align*}
\mathbf{e}_i &= x_i \mathbf{i} + y_i \mathbf{j} \\
\mathbf{e}_j &= x_j \mathbf{i} + y_j \mathbf{j} \\
\mathbf{e}_k &= x_k \mathbf{i} + y_k \mathbf{j}
\end{align*}
\]

Then all vectors in the i, j plane can be written as $y = \frac{y_i}{x_i} x_i \mathbf{i}$.

The eigenvectors of the correlation function lie in the i, j plane, except for the zero eigenvalue with eigenvector $e = k$.

Now replace x by $\Phi(x)$

\[
\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} \Phi(x_n) \Phi(x_n)
\]

All non-zero eigenvectors \mathbf{e} of \mathbf{C} are of form

\[
\mathbf{e} = \sum_{j=1}^{N} \alpha_j \Phi(x_j)
\]

Substitution: \(e = \frac{1}{e} \mathbf{e} \)

\[
\mathbf{C} \mathbf{e} = \lambda \mathbf{e}
\]

\[
\mathbf{C} = \frac{1}{N} \sum_{k=1}^{N} \Phi(x_k) \Phi(x_k) \mathbf{e}
\]

Equating coefficients of $\Phi(x_j)$ gives new eigenvalue equations

\[
\sum_{j} K(x_k, x_j) \alpha_j = \lambda \alpha_k
\]

Index: n
(3)

\[\gamma N \sum_{j} K(x_k, x_j) x_j = \sum_{k} \lambda_k^\mu x_k \quad \mu = 1, \ldots, D. \]

Solving this, gives us the eigenvectors

\[e_\mu = \sum_{j=1}^{N} \lambda_j^\mu \phi(x_j) , \text{ eigenvalue } \lambda_\mu. \]

But the projections \(e_\mu \cdot \phi(x) \) of the data are

\[e_\mu \cdot \phi(x) = \sum_{j=1}^{N} \lambda_j^\mu K(x_k, x_j), \]

which is independent of \(\phi \)

(depending only on \(K \)).

Hence:

the projections of the data onto the eigenvectors require only knowing the kernel \(K(x_k, x_j) \) (i.e. not knowing \(\phi \))

Knowledge of the kernel is used twice:

1) to compute the \(\lambda_j^\mu \)
2) to compute the projections \(e_\mu \cdot \phi(x) \).