Advanced AdaBoost.

Variant of AdaBoost (Viola & Jones)

Strong classifier:
\[H_n(x) = \sum_{\mu=1}^{m} \left[\alpha_\mu h_\mu(x) + \beta_\mu \right] \]

\[h_\mu(x) - \text{weak classifier} \]

Modify the update rule:

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) e^{-\omega_i \left(\alpha_t h_\mu(x) + \beta_t \right)} \]

Let \(W_pq \) be the sum of the weights if the weak class is \(p \) and the true class is \(q \).

Pick weak classifier to minimize

\[2 \left(\sqrt{w_+ w_-} + \sqrt{w_- w_+} \right) \]

Set
\[\alpha_t - \beta_t = \log \frac{\sqrt{w_+} + \sqrt{w_-}}{\sqrt{w_-} + \sqrt{w_+}} \]

Proof - natural extension of basic proof.
(2) We may want to penalize false positives and false negatives in a different way. For example, detecting faces in images.

In a typical image, there will far more non-faces than faces. So we want to be very certain before labelling a window as a face.

Loss function:

\[
L = \begin{cases}
\sqrt{|k|}, & \text{if } \omega_i = 1, \text{ and } H(x_i) = -1 \\
\sqrt{|k|}, & \text{if } \omega_i = -1, \text{ and } H(x_i) = 1 \\
0, & \text{otherwise}
\end{cases}
\]

Modify the update rule:

\[
D_{t+1}(c) = \frac{1}{Z_t} e^{-\omega_i (d_{tk} + c_k + \beta_t)} e^{\omega_i \log |k|}
\]

Verify that the weighted loss is bounded.

\[
\frac{1}{N} \sum_{i=1}^{N} \left(\sqrt{|k|} S_{w,1} S_{H(x_i),1} + (\sqrt{|k|}) S_{w,1} S_{H(x_i),1} \right)
\leq \frac{1}{N} \sum_{i=1}^{N} e^{-\omega_i \sum_{k=1}^{K} (d_{tk} + c_k + \beta_t)} e^{\omega_i \log |k|}
\]
(3) This modifies the update rule by

\[\beta_t \rightarrow \beta_t + (K_t \log \sqrt{n}) \]

Cascade.

Motivation
\[P(x_i|\alpha) = \frac{e^{w_i^* \alpha}}{e^{w_i^* \alpha} + e^{-w_i^* \alpha}} \]

Formulate a log-likelihood:

\[l(\lambda, \phi) = \log \prod_{i=1}^{m} P(x_i|\alpha) \]

\[= -\frac{1}{2} \sum_{i=1}^{m} \log (1 + e^{-2w_i \lambda \phi(x_i)}) \]

This requires solving the optimization problem:

\[(\lambda, \phi)^* = \arg \max l(\lambda, \phi) \]

\[= \arg \min \sum_{i=1}^{m} \log (1 + e^{-2w_i \lambda \phi(x_i)}) \]

This differs from AdaBoost criteria:

\[(\lambda, \phi)^* = \arg \min \sum_{i=1}^{m} \exp \left(-w_i \lambda \phi(x_i)\right) \]

Claim — they become similar as \(m \rightarrow \infty \).

Replace sample mean by expectation:

\[\text{AdaBoost} \quad (\lambda, \phi)^* = \lambda \log E_{p(x)} \log (1 + e^{-2\lambda \phi(x)}) \]

\[\text{LogitBoost} \quad (\lambda, \phi)^* = \lambda \log E_{p(x)} \left(e^{-\lambda \phi(x)} \right) \]
Claim: these problem have the same
mean at

\[F(x) = \sum_{(\omega, y)} \theta(\omega) q(\omega) = \frac{1}{Z} \sum_{(\omega, y)} \log \frac{p(\omega=1|x)}{p(\omega=-1|x)} \]

Proof: \[A(F) = \frac{1}{Z} \int P(x, y) \log \left(\frac{1}{2} e^{-2y F(s)} \right) ds \]

Since \[A(F) = 0 \]

\[p(x, y=+1) \frac{2}{1 + e^{-2F(x)}} + p(x, y=-1) \frac{2}{1 + e^{2F(x)}} = 0 \]

Solving gives:

\[F^*(x) = \frac{1}{Z} \log \frac{p(\omega=+1|x)}{p(\omega=-1|x)} \]

Viola & Jones paper.