(1). **Discrete Deformable Templates and Matching.**

These deformable template models are defined on interest point features (sparse). Attributed Features (AF's)

\[\langle (x_i, a_i) : i = 1 \ldots N \rangle \]

- \(x_i \) - spatial position.
- \(a_i \) - attributes.
 - E.g. response of Gabors
 - Lowe's SIFT Features
 - Edgelets,

Basic assumption
- Some of the AF's correspond to features on the object
- Others correspond to background.
(2) **Object Model**

AF's \(\{(Ya, Ba) : a = 1 \to M\} \)

\(Ya \) - positions
\(Ba \) - attributes, or parameters defining attribute distribution.

Define a set of correspondence variables \(\{Vai : a = 1 \to M, i = 1 \to N\} \)

\(Vai = 1 \), if AF \((ya, ba)\) on the model corresponds to AF \((xi, ai)\) in the image.

\(Vai = 0 \), otherwise.

Define a 'junk node' \(i = 0 \)

\(Vao = 1 \), means that AF \((ya, ba)\) on the model is unmatched.

Constraint: \(\sum_{i=0}^{N} Vai = 1, \forall a. \)
(3) Define a generative model for generating the image AFT's.

\[P(\{(x_i, a_i)\} | \{v_{ai}\}, \{y_{a} \beta_a\}, T) \]

\[= \frac{1}{Z_1} e^{-\frac{1}{2} \sum v_{ai} \phi(x_i, y_a, a_i, \beta_a, T)} \]

What is \(\phi(x_i, y_a, a_i, \beta_a, T) \)?

It depends on the formulation. Typically

\[\phi(x_i, y_a, a_i, \beta_a) = (x_i - y_a - T)^2 + (a_i - \beta_a)^2 \]

This is a Gaussian distribution on spatial position and attributes.

\(e.g. \beta_a \) is the mean attribute value of the distribution.

\[\text{Data} \quad \xrightarrow{\text{Model}} \quad \text{Data} \]
Need a prior model for the \(\{ V_{ai} \} \).

Typically

\[
 P(\{ V_{ai} \}) = \frac{1}{Z_2} e^{-2 \sum a_i V_{ai}} \tag{4}
\]

penalizes unmatched AFIs on the object.

Can also have a prior model on \(T \) — but assume this to be a uniform distribution.

\[
P(\{(x_i, A_i)\} | \{ V_{ai} \}, \{(y_a, b_a)\}, T) = P(\{ V_{ai} \}).
\]

Treat the correspondences \(\{ V_{oi} \} \) as hidden variables to be summed over.

\[
P(\{(x_i, A_i)\} | \{(y_a, b_a)\}, T) = \sum_{\{ V_{ai} \}} P(\{(x_i, A_i)\} | \{ V_{ai} \}, \{(y_a, b_a)\}, T) P(\{ V_{oi} \})
\]
To do inference, we have to estimate the translation T and deal with the hidden variables.

The E.M. algorithm is suitable for doing this but may get stuck in a local minima unless good initial conditions.

E.M. Algorithm.

Introduce distribution $q(U)$.

Free energy:

$$F[T, q(U)] = \sum_U q(U) \log q(U)$$

$$-\sum_U q(U) \log P(x, A, V | T)$$

This can also be written as:

$$F[T, q(U)] = -\log P(x, A | T) + \sum_U q(U) \log \frac{q(U)}{P(U | x, A, T)}$$
(6) Minimize \(F[T, q(v)] \) w.r.t. \(T \) and \(q(v) \) in alternation.

\[
q^{+1}(v) = P(v | x, A, T^+).
\]

\[
T^{+1} = \text{arg} \min_{T} - \sum_{v} q^{+1}(v) \log P(x, A, V | T)
\]

Correspondence constraints.

\[
\sum_{i=0}^{N} V_{ai} = 1, \quad \forall a.
\]

If we impose these constraints, then the nature of the distribution \(P(x, A | V, T) \) \(P(v) \) implies that \(q^{+1}(v) \) is a factorizable distribution

\[
q(v) = \prod_{a} q_{a}(v_a)
\]

where \(v_a = (v_{a0}, v_{a1}, \ldots, v_{an}) \) corresponds to independent over the object AE's.
(7) What is the price for independence? It means that we allow two AF's on the object to match to the same AF in the image

\[i \text{ s.t. } V_{ai} = 1 \text{ & } V_{bi} = 1 \]

for some \(a \neq b \).

This is unlikely to happen since it will have low probability (penalized by the \(\phi \) term). Later, we will gone another way to prevent it.

\[q_a(V_{ai} = 1) = \frac{e^{-\phi(x_i, A_i, y_a, B_a, T)}}{\sum_{j=1}^{n} e^{-\phi(x_i, A_j, y_a, B_a, T)} e^{-\lambda}} \]

\[q_a(V_{ao} = 1) = \frac{e^{-\lambda}}{\sum_{j=1}^{n} e^{-\phi(x_i, A_j, y_a, B_a, T)} + e^{-\lambda}} \]
\[
\hat{T} = \arg \min_{\tau} \sum_{i,a} q_{\alpha}(V_{ai}) \phi(x_{ai}, y_{ai}, b_{ai}, \tau)
\]

\[
\phi(x_{ai}, y_{ai}, b_{ai}, \tau) = (x_{ai} - y_{ai} - \tau)^2 + (a_{i} - b_{ai})^2
\]

Then \(\hat{T} \) can be solved by quadratic minimization:

When does this approach work?

The EM algorithm is fairly good if the number of object AF's is fairly similar to the number of image AF's.

And if the feature points have very different attributes \(\Rightarrow \) (i.e. easy to distinguish one attribute from another).
otherwise, there are too many local minima and the correspondence problem (determining the $\langle \nu_i \rangle$) becomes too difficult.

There is a chicken & egg problem. If you can estimate the translation T, then it is often easy to estimate the correspondence ν. And vice-versa.

I'll return to this issue in later lectures.

Variation on the model.

Allow the $\langle y_a \rangle$ to become variables, remove the T, put a prior $P(\langle y_a \rangle)$ on the $\langle y_a \rangle$'s.

\[P(\langle y_a \rangle) = \frac{1}{Z} e^{-E(\langle y_a \rangle)} \]

where $E(\langle y_a \rangle)$ is a quadratic function of the differences of the $\langle y_a \rangle$'s, e.g. $\sum_{a,b} (y_a - y_b)^2$.
(18) Repeat the same formula:
\[P(\{x_i\} | \{y_i, B_i\}, V) P(V) P(\{B_i\}) \]

Free Energy

\[
\sum_{V} q(V) \log q(V) - \sum_{V} q(V) \log P(\{B_i\}, V | x_i, y_i)
\]

$q(V)$ factorizable as before:

\[q_a(V_{ai}=1) = \frac{e^{-\phi(x_i; A_i, y_a, B_a)}}{\sum_{j=1}^{n} e^{-\phi(x_i; A_i, y_a, B_a)} + e^{-\gamma}} \]

\[q_a(V_{ao}=1) = \frac{e^{-\gamma}}{\sum_{j=1}^{n} e^{-\phi(x_i; A_i, y_a, B_a)} + e^{-\gamma}} \]
\[\hat{B} = \frac{\delta}{\delta \lambda} \log \sum_a q_a(V_{ai}) \phi(x_i, A_i, y_{ai}, \lambda) + E_p[y_{ai}] \]

Again, if \(\phi(\cdot) \) is quadratic in the \(\{y_{ai}\} \) and \(E_p[y_{ai}] \) is quadratic, then we can solve for \(\hat{B} \) by quadratic minimization.

Beyond EM, Mean Field Theory.

Suppose we want to prevent two AF's in the object from matching the same AF in the image.

We can impose constraints by adding energy terms to the prior PTU:

\[E_{V,I,U} = -\frac{1}{2} \sum_{a,b,i} V_{ai} V_{bi}. \]
(12) This will prevent the $q(.)$ from factorizing, because it includes terms that couple the matching of object AF a with object AF b.

Instead, restrict the form of $q(.)$ to ensure that it is factorizable.

This is an approximate to \mathbb{E}_M.

It can be shown that this corresponds to replacing the free energy by

$$\sum_{i \in \mathcal{A}} q_a(V_{ai}) \phi(x_i; A_i, y_i, b_i) + \mathbb{E}_p[\{y_{ai}\}]$$

$$+ \sum_{i \in \mathcal{A}} q_a(V_{ai}) \log q(V_{ai})$$

with constraint $\sum_{i \in \mathcal{A}} q_a(V_{ai}) = 1$.

Mean Field Approximation.
Alternatively, we can restrict to a problem where $N=M$ and all points are matched.

Impose 1-1 constraint by

$$\sum_i V_{ai} = 1, \forall a \quad \sum_a V_{ai} = 1, \forall i$$

Put into free energy with N-F approximation

$$\sum_{i,a} q_a(V_{ai}) \phi(x_i, A_i, y_a, B_a) + E(p, y_a)$$

$$+ \sum_q q_a(V_{ai}) \log q(V_{ai})$$

$$+ \sum_i \beta_i \left(\sum_a q_a(V_{ai}) - 1 \right)$$

Lagrange multiplier:

$$- \sum_a \lambda_i \left(\sum_a q_a(V_{ai}) - 1 \right)$$

Solving for the q_a corresponds to the linear assignment problem - (poly-time).