Global Segmentation: Weak Membranes

In the early 1980's three closely related, but independent, models emerged:

1. Weak Membrane: Blake & Zisserman
2. Geman & Geman
3. Mumford & Shah

These models have a close relation: Rudin-Osher-Fatemi, TV model.

These first generation models are good for segmentation and de-noising for a restricted type of images.

We will cover the second generation, which is more successful for natural images.

Region Competition / Image Parsing

- Zhu & Yuille, Ted Zhu

Normalized Cuts

- Shi & Malik
- Sharon et al.

Two Issues:

1. Global Criteria
2. Algorithms
(2) Weak-Membrane

Mumford-Shah. \(D(x,y) \) input image.

\[
\min_{M,F} E(M,F) = \int \left(\frac{1}{2} (F(x,y) - D(x,y))^2 + \alpha \int \sqrt{\nabla F(x,y)^2} \, dx \, dy \right) \, dA + \int_{\partial M} c \, ds.
\]

Minimize \(E(M,F) \)

w.r.t. \(M \) and \(F \)

to find the boundary, \(M^* \)
and the smoothed intensity values \(F^*(x,y) \).

Assumption: (1) Images are piecewise
slowly varying, or smooth,
(2) The boundaries \(M \) are as
short as possible.

From probabilistic perspective, see later, the
image is corrupted by additive Gaussian noise.

Ideal image (1D) is

How to minimize this
functional? (Discrete & Continuous Variables)

(Historically it was hard to prove that it had
a well-defined minimum).
(3) **Weak-Membrane**

Ambrosio-Tortorelli

Minimizing Mumford-Shah with $F \in \Gamma$ is equivalent to minimizing the following functional Ambrosio-Tortorelli in the limit as $\varepsilon > 0$

$$E_{\varepsilon} = \frac{1}{2} \int \left\{ F(\nabla u) + \lambda \right\} \text{d}x \text{d}y$$

$$+ \int (1 - \alpha \nabla u)^2 \left| \nabla F(\nabla u) \right|^2 \text{d}x \text{d}y$$

$$- \int \left\{ \varepsilon \left| \nabla \alpha \right|^2 + \varepsilon^{-1} \alpha^2 \right\} \text{d}x \text{d}y.$$

$\alpha(x,y)$ is a *thin process*.

Intuitively: if $\alpha(x,y) = 1$, then the smoothness constraint $\left| \nabla F(\nabla u) \right|^2$ is cut, and there is a boundary (i.e., $\alpha(x,y) \approx 1$, corresponds to Γ).

Fix edges smooth F.

Fix F smooth α.

Algorithm:

1. Fix α: minimize $E_{\varepsilon} = \left\{ F(\nabla u) + \lambda \right\}$ with α.

2. Fix F: minimize $E_{\varepsilon} = \left\{ F(\nabla u) + \lambda \right\}$ with α.

At each step solve a linear differential equation.
Week-Membrane

Hence steps (1) & (2) while decreasing c

Continuation Method

Both processes — for $c(x,y) = f(x,y)$ — are forms of diffusion.

Alternatively, direct steepest descent on

$$E_{A-T}[F, l, c]$$

$$\frac{df}{dt} = -S E_{A-T}, \quad \frac{dl}{dt} = -S E_{A-T}$$

Problem determining the step size for t

when doing the discretization of $\frac{d}{dt}$

Note: $E[F, l, c]$ and $E_{A-T}[F, l, c]$

are functionals (i.e., their arguments are functions)

Taking derivatives S

requires calculus of variations.
Weak Membrane

Rudin-Osher-Fatemi. TV restoration.

\[E[F] = \int_{\Omega} \left[|\nabla F(x,y)|^2 + \frac{1}{2} \left(\frac{F(x,y) - D(x,y)}{\sqrt{1 - \delta(x,y)}} \right)^2 \right] dx \]

\[\delta(x,y) \text{ is a non-negative function.} \]

This is a convex function of \(F \). Hence there is a unique minimum. Any algorithm that decreases the energy is guaranteed to find it.

Alternating steepest descent:

\[\frac{dF}{dt} = -\frac{\delta F}{\delta F} \]

Alternative Insight (Shek & Yulke?)

Equivalent to minimizing:

\[E[F, \delta] = \frac{1}{2} \int_{\Omega} \left((1 - \delta(x,y)) |\nabla F(x,y)|^2 + \frac{1}{2} \left(\frac{F(x,y) - D(x,y)}{\sqrt{1 - \delta(x,y)}} \right)^2 \right) dx \]

Proof: Minimize w.r.t. \(\delta \) given \(1 - \delta(x,y) = \frac{1}{\sqrt{1 - \delta(x,y)}} \)

result follows by substitution.

Algorithm, minimize \(E[F, \delta] \) w.r.t. \(\delta \) and \(F \) alternately:

1. Fix \(\delta \), solve
 \[-\nabla \left((1 - \delta(x,y)) |\nabla F(x,y)|^2 \right) \]
 for \(F(x,y) \)

2. Fix \(F \), solve
 \[1 - \delta(x,y) = \frac{1}{\sqrt{1 - \delta(x,y)}} \]
 for \(\delta(x,y) \)

Each stage decreases the energy, guaranteed to converge to global optimum.

Algorithm known as lagged diffusion.