Models of Lighting.

1. The appearance of objects will depend on the lighting conditions. Effects - shading, shadows & specularities.

Linear Lambertian Model:

\[ I(x) = a(x) \cdot n(x) \cdot \frac{s}{\pi} \]

- albedo
- surface normal
- light source direction
- \( s \) = \( n(x) \cdot s \)

Non-linear Lambertian:

\[ I(x) = \max \{ a(x) \cdot n(x) \cdot s, 0 \} \]

Deals with attached shadows.

The linear model implies that the set of images of an object lies in a three-dimensional space. (Sha'shua & Moses).

Non-linear model is harder to analyze - until Numamoottil & Hanrahan, Bajaj & Jacobs.)
Empirical Analysis.

Harvard scaffold
Take geodesic done.

Take many images of the same object under different lighting conditions.

Do PCA analysis of the images (separate PCA for each object).

\[
\bar{I}(x) = \frac{1}{N} \sum_{\mu=1}^{N} I^\mu(x)
\]

\[
K(x, y) = \frac{1}{N} \sum_{\mu=1}^{N} \langle I^\mu(x) - \bar{I}(x) \rangle \langle I^\mu(y) - \bar{I}(y) \rangle
\]

Results. 5±2 eigenvectors capture about 95% of the variation.

In spite of specularity and shadows.

These are often perceptually salient, but contribute little to the variation energy.

Justifies the Lambertian model as a good approximation - view Lambertian would predict 3 eigenvalues. Ramamoorthi predicts 5.
(3) To justify Lambertian function.

\[ J^0(x) = a(x) \eta(x) \sum_{\mu = 1}^{\mu = \infty} \]

This is a bilinear equation.

Set \( b(x) = a(x) \eta(x) \)

1. \( b(x) = a(x) \)

2. \( b(x) = \eta(x) \)

Least squares cost function

\[ E[\tilde{b} \tilde{x}] = \sum_{\mu = 1}^{\infty} \left( I(x, \mu) - \sum_{i=1}^{3} b_i(x) \xi_i(\mu) \right)^2. \]

Solve by Singular Value Decomposition (SVD).

\( I(x, \mu) \rightarrow N \times 1 \) matrix \( J \)

\( N \) - no. of images

\( 1 \times 1 \) - size of the image.

\[ \text{SVD} \quad J = U D V^T \]

\( U U^T = I \quad \Rightarrow \quad V V^T = I \quad \Rightarrow \quad D = \begin{pmatrix} d_1 & 0 & \cdots \\ 0 & d_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \]

\( U \) and \( V \) are eigenvectors of \( J^T J \) and \( J \), respectively.
(4) If the Lamberstein model is correct, then only the first three diagonal elements of $D$ are nonzero.

Let $\begin{bmatrix} f_1 \end{bmatrix}$ be the first three columns of $U$ and $\begin{bmatrix} e_1 \end{bmatrix}$ be first three columns of $V$.

Then the solution, for $b \& S$ are of form

$$b^*_1(x) = P_3 e_1(x) \quad S_3(x) = Q_3 \frac{\partial f}{\partial x}$$

where $P^T Q = P$ $\leftarrow$ the top three components of $P$

There is an ambiguity.

$$\begin{bmatrix} \frac{\partial}{\partial x} \end{bmatrix}_3 = \begin{bmatrix} A^T \end{bmatrix}_3 \quad \begin{bmatrix} \frac{\partial}{\partial y} \end{bmatrix}_3 = \begin{bmatrix} A^{-1} \end{bmatrix}_3$$

for any matrix $A$. Except that the surface consistency must be enforced.

$$\frac{\partial}{\partial x} \left( \begin{bmatrix} b_2(x) \end{bmatrix} \right) = \frac{\partial}{\partial y} \left( \begin{bmatrix} b_1(x) \end{bmatrix} \right) \quad z = f(x, y)$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial y \partial x}$$
(5) Generalized Bas Relief (GBR) ambiguity.

\[ f(x) \rightarrow f(x) + \mu x + vy \]

Can also be shown that the GBR exists when there are attached and cast shadows.

Recover the classic concave convex ambiguity as a special case when \( \mu = -1 \).

\[ \text{cast shade} \quad \text{or} \quad \text{cast shadow} \]

But GBR usually requires changes in albedo.

GBR is inherent to the Lambertian lighting model (including cast & detached shadow)
(6) KGBR Ambiguity

Object geometry \( R(u, v) \)

Surface normal \( n(u, v) \)

Albedo \( a(u, v) \)

\((u, v)\) parameter

Light source \( S \), viewpoint \( V \) on the surface.

Lambertian gives

\( I(u, v) = \max \{ 0, a(u, v) n(u, v) \cdot S \} \)

For geometry, there are known ambiguities

\( R(u, v) \to R(u', v') \leq \text{affine transformation} \)

(Koenderink & van Doorn)

Faugeras

Views of objects are invariant up to affine transformations in the image plane. Affine projection corresponds to an approximate to perspective projection.
(7) Extend affine transformations to deal with lighting. KGSK.

\[ \Sigma (u,v) \rightarrow K \Sigma (u,v) \]
\[ a(u,v) \rightarrow a(u,v) / K^{T_{1}} a(u,v) \]

implies
\[ a(u,v) / K^{T_{1}} a(u,v) \rightarrow K^{T_{1}^{-1}} a(u,v) \Sigma (u,v) \]

Claim: this is equivalent to changing viewpoint by
\[ u \rightarrow \frac{K u}{1 K u} \]

and lighting by
\[ s \rightarrow K s . \]

Cast shadows and atypical shadows are also preserved (by geometric reasoning).

If two objects are related by a KGSK, then we can always find corresponding viewpoints and lighting conditions for which they appear identical.

To reduce to the GSK, we require that the objects appear identical from the same viewpoint (but different lighting).
(8) **Alternative Lighting Models.**

The Lambertian lighting model is a good first order approximation — but often not sufficiently good for **Computer Graphics** (CG). CG uses more advanced models:

(i) **Bidirectional Reflectance Distribution Function (BRDF)** — see Wikipedia.

(ii) **Radiosity Model** — see Wikipedia.

Note: these are good for generating images (i.e. CG) and seem too complicated for the harder task of inverting the generation process (i.e. CV) — with a few exceptions — see Koseman, Belhumeur, et al.

**Statistical Models**

Lee & Potetz (2010)

Use a camera and laser-range finder to correlate between the image intensity and depth values of patches in the image:

\[ \text{image intensity} \rightarrow \text{depth value} \]

Their results show that closer objects are brighter → known to Leonardo da Vinci

The complication of image formation means that statistical studies like this are probably the best ways to do shape from shading in real images.