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STATS 100A: BASICS & EXAMPLES

Ying Nian Wu

Department of Statistics
University of California, Los Angeles

Some pictures are taken from the internet.
Credits belong to original authors.



100A

Ying Nian Wu

Basics

Population

Area

Coin

Markov

Reasoning

2/71

Basic language and notation

Experiment → outcome → number
Example 1: Roll a die

Sample space Ω: The set of all the outcomes (or sample
points, elements).
Visualize: randomly sample an outcome from the sample
space.
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Basic language and notation

Experiment → outcome → number
Example 1: Roll a die

Sample space Ω: The set of all the outcomes.
Event A:
(1) A statement about the outcome, e.g., bigger than 4.
(2) A subset of sample space, e.g., {5, 6}.
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Basic language and notation

Experiment → outcome → number
Example 1: Roll a die

Assume the die is fair so that all the outcomes are
equally likely.
Probability: defined on event:

P (A) =
|A|
|Ω|

=
2

6
=

1

3
.

|A| counts the size of A, i.e., the number of elements in A.
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Basic language and notation

Experiment → outcome → number
Example 1: Roll a die

Random variable: Let X be the number:

P (X > 4) =
1

3
.

An event is a math statement about the random variable.
We can either use events or use random variables.
In Parts 2 and 3, we will focus on random variables.
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Basic language and notation

Experiment → outcome → number
Example 1: Roll a die

Conditional probability: Let B be the event that the number
is 6. Given that A happens, what is the probability of B?

P (B|A) =
1

2
.

As if we randomly sample a number from A.
As if A is the sample space.
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Basic language and notation

Experiment → outcome → number
Example 1: Roll a die

Random variable

P (X = 6|X > 4) =
1

2
.
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Basic language and notation

Example 1: Roll a die

Complement
Statement: Not A
Subset: Ac = {1, 2, 3, 4}.
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Basic language and notation

Example 1: Roll a die

Venn diagram
Union
Statement: A or B.
Subset: A ∪B.
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Basic language and notation

Example 1: Roll a die

Intersection
Statement: A and B.
Subset: A ∩B.
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Population proportion

Experiment → outcome → number
Example 2: Sample a random person from a population of 100
people, 50 males and 50 females. 30 males are taller than 6 ft,
10 females are taller than 6 ft.
The sample space Ω is the population.
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Population proportion

Experiment → outcome → number
Example 2: Let A be the event that the person is male. Let B
be the event that the person is taller than 6 feet (or simply the
person is tall). A is the sub-population of males, and B is the
sup-population of tall people.
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Population proportion

Experiment → outcome → number
Example 2: A male, B tall.

P (A) =
|A|
|Ω|

=
50

100
= 50%.

P (B) =
|B|
|Ω|

=
30 + 10

100
= 40%.

Probability = population proportion.
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Population proportion

Experiment → outcome → number
Example 2: A male, B tall.

P (A|B) =
|A ∩B|
|B|

=
30

40
= 75%.

Among tall people, what is the proportion of males?

P (B|A) =
|A ∩B|
|A|

=
30

50
= 60%.

Among males, what is the proportion of tall people?
Conditional probability = proportion within
sub-population.
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Population proportion

Link between event and random variable.
Example 2: A male, B tall.
Let ω ∈ Ω be a person. Let X(ω) be the gender of ω, so that
X(ω) = 1 if ω is male, and X(ω) = 0 if ω is female. Let Y (ω)
be the height of ω. Then

A = {ω : X(ω) = 1}, B = {ω : Y (ω) > 6}.

P (A) = P ({ω : X(ω) = 1}) = P (X = 1).

P (B) = P ({ω : Y (ω) > 6}) = P (Y > 6).

P (B|A) = P (Y > 6|X = 1), P (A|B) = P (X = 1|Y > 6).
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Population proportion

Equally likely scenario
A real population of people, under purely random sampling
An imagined population of equally likely possibilities

P (A) =
|A|
|Ω|

.

Axiom 0.
Can always translate a problem into equally likely setting.
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Population proportion

Equally likely scenario

P (A|B) =
|A ∩B|
|B|

=
|A ∩B|/|Ω|
|B|/|Ω|

=
P (A ∩B)

P (B)
.

As if B is the sample space.
Axiom 4
Or definition of conditional probability.
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Area

(1) X is uniform random number in [0, 1].
(2) (X,Y ) are two independent random numbers in [0, 1].
(3) (X,Y, Z) are three independent random numbers in [0, 1].
Ω = [0, 1] or [0, 1]2 or [0, 1]3 = set of points.
Population of points (uncountably infinitely many).
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Area

Random point in a region
Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1].
(X,Y ) is a random point in Ω = [0, 1]2.
A = {(x, y) : x2 + y2 ≤ 1}.

P (A) =
|A|
|Ω|

=
π

4
.

|A| is the size of A, e.g., area (length, volume).
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Area

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1].
(X,Y ) is a random point in Ω = [0, 1]2.
A = {(x, y) : x2 + y2 ≤ 1}.

P (X2 + Y 2 ≤ 1) = π/4.

P (X2 + Y 2 = 1) = 0.

Capital letters for random variables.
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Measure

Discretization → finite population of small squares.
Area = number of small squares × area of each small square.
Inner measure: fill inside by small squares → upper limit.
Outer measure: cover outside by small squares → lower limit.
Measurable: inner measure = outer measure.
The collection of all measurable sets, σ-algebra.
Integral: area under curve.
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Axioms

Probability as measure, i.e., count, length, area, volume ...
Axiom 0: P (A) = |A|

|Ω| in equally likely scenario.

Axiom 1: P (Ω) = 1.
Axiom 2: P (A) ≥ 0.

Axiom 3: Additivity: If A ∩B = φ (empty), then

P (A ∪B) = P (A) + P (B).

Axiom 4: P (A|B) = P (A∩B)
P (B) , assuming P (B) > 0.
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Long run frequency

Throw n points into Ω. m of them fall into A.

P (A) =
|A|
|Ω|
≈ m

n
.

As n→∞, m
n → P (A) in probability.

P (A) can be interpreted as long run frequency.
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Long run frequency

Throw n points into Ω. m of them fall into A.
Among all equally likely possibilities, 99.999% are like below,
where m/n is close to P (A).

.00000001% are like below, where m/n are far from P (A).

Can prove P (|mn − P (A)| > ε)→ 0 for any fixed ε > 0.
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Long run frequency

Example 3: π

Throw n points into Ω. m of them fall into A.

P (A) =
|A|
|Ω|

=
π

4
≈ m

n
.

Monte Carlo method:

π̂ =
4m

n
.

As n→∞, m
n → P (A) in probability.

P (A) can be interpreted as long run frequency.
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Monte Carlo

Deterministic method

Go over all the n = 100 = 102 square cells, count inner or
outer measure, i.e., how many (m) fall into A.
3-dimensional? n = 103 cubic cells.
4-dimensional? n = 104 cells.
10000-dimensional? n = 1010000 cells.
Monte Carlo: sample n = 1000 points in the hyper-cube.
Count how many (m) fall into A.
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Monte Carlo

Example 3: π, buffon needle

Lazzarini threw n = 3408 times.

P (A) ≈ m

n
.

Monte Carlo method:

π̂ =
355

113

Too accurate. m is random.
For fixed n, m is random. m/n fluctuates around P (A).
As n→∞, m

n → P (A) in probability, law of large number.
P (A) can be interpreted as long run frequency, how often A
happens in the long run.
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Area

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1].
(X,Y ) is a random point in Ω = [0, 1]2.
A = {(x, y) : x < 1/2}.

P (A) = P (X < 1/2) =
|A|
|Ω|

= 1/2.
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Area

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1].
(X,Y ) is a random point in Ω = [0, 1]2.
B = {(x, y) : x+ y < 1}.

P (B) = P (X + Y < 1) =
|B|
|Ω|

= 1/2.
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Area

Example 3: throwing point into region

P (A|B) =
|A ∩B|
|B|

=
1/2− 1/8

1/2
= 3/4.

P (X < 1/2|X + Y < 1).

(1) As if randomly throw a point into B, as if B is the sample
space. Then what is the probability the point falls into A?
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Example 3: throwing point into region

P (A|B) =
|A ∩B|
|B|

=
1/2− 1/8

1/2
= 3/4.

P (X < 1/2|X + Y < 1).

(2) Consider throwing a lot of points into Ω.
How often A happens? How often B happens?
When B happens, how often A happens?
Among all the points in B, what is the fraction belongs to A?
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Coin flipping

Experiment → outcome → number
Example 4: Coin flipping
(4.1) Flip a coin → head or tail → 1 or 0
(4.2) Flip a coin twice → (head, head), or (head, tail), or (tail,
head) or (tail, tail) → 11 or 10 or 01 or 00
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Coin flipping

Experiment → outcome → number
Example 4: Coin flipping
(4.3) Flip a coin n times → 2n binary sequences.

Sample space Ω: all 2n sequences.
Each ω ∈ Ω is a sequence.
Visualize: randomly pick a sequence from 2n sequences.
Zi(ω) = 1 if i-th flip is head; Zi(ω) = 0 if i-th flip is tail.
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Coin flipping

Example 4: Coin flipping
Zi(ω) = 1 if i-th flip is head; Zi(ω) = 0 if i-th flip is tail.

Flip a fair coin 4 times independently, let A be the event that
there are 2 heads.
Visualize: randomly pick a sequence from 16 sequences.

P (A) =
|A|
|Ω|

=
6

24
=

3

8
.

A = {ω : Z1(ω) + Z2(ω) + Z3(ω) + Z4(ω) = 2}.
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Coin flipping

Example 4: Coin flipping
Zi(ω) = 1 if i-th flip is head; Zi(ω) = 0 if i-th flip is tail.

Let X(ω) be the number of heads in the sequence ω.

X(ω) = Z1(ω) + Z2(ω) + Z3(ω) + Z4(ω).

P (Ak) = P ({ω : X(ω) = k}) = P (X = k) = pk.

(pk, k = 0, 1, 2, 3, 4) = (1, 4, 6, 4, 1)/16.
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Coin flipping

Example 4: Coin flipping

|A2| = 6.
|A2| =

(
4
2

)
= 4×3

2 .
4 positions, choose 2 of them to be heads, and the rest are
tails.
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Multiplication

Ordered pair: roll a die twice

Experiment 1 has n1 outcomes. For each outcome of
experiment 1, experiment 2 has n2 outcomes. The number of
all possible pairs is n1 × n2.
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Multiplication

Multiplication
Ordered pair: flip a coin and roll a die
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Multiplication

Multiplication
Ordered triplet
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Permutation

n different cards. Choose k of them. Order matters. Number
of different sequences:

Pn,k = n(n− 1)...(n− k + 1). P4,2 = 4× 3 = 12.

Pn,n = n!.

How many different ways to permute things.
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Combination

n different balls. Choose k of them. Order does NOT matters.
Number of different combinations:(

n

k

)
=
Pn,k

k!
=
n(n− 1)...(n− k + 1)

k!
=

n!

k!(n− k)!
.

(
4

2

)
=

4× 3

2
= 6.
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Combination

Each combination corresponds to k! permutations.(
n

k

)
=
Pn,k

k!
=
n(n− 1)...(n− k + 1)

k!
=

n!

k!(n− k)!
.

(
4

2

)
=

4× 3

2
= 6.
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Coin flipping

Example 4: Coin flipping

|A2| =
(

4
2

)
= 4×3

2 = 6.
In general, flip a fair coin n times independently,

P (Ak) = P ({ω : X(ω) = k}) = P (X = k) =

(
n
k

)
2n

.
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Random walk

Either go forward or backward by flipping a fair coin.
Walk n steps.

Number of heads X = k, then random walk ends up at
Y = m = k − (n− k) = 2k − n, k = (m+ n)/2.

P (Y = m) = P (X = k) =

(
n
k

)
2n

=

(
n

(m+n)/2

)
2n

.
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Random walk

Either go forward or backward by flipping a fair coin.

Number of heads X = k, then random walk ends up at
Y = m = k − (n− k) = 2k − n, k = (m+ n)/2.

P (Y = m) = P (X = k) =

(
n
k

)
2n

=

(
n

(m+n)/2

)
2n

.
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Random walk

Example 4: Coin flipping
Pascal triangle
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Galton board

Example 4: Coin flipping

All 2n paths are equally likely.
Number of paths that end up in k-th bin =

(
n
k

)
.

X: destination. P (X = k) =
(
n
k

)
/2n.

How often the balls fall into k-th bin.



100A

Ying Nian Wu

Basics

Population

Area

Coin

Markov

Reasoning

48/71

Transition probability

Either go forward or backward

Xt = Z1 + Z2 + ...+ Zt.

Zk = 1 or −1 with probability 1/2 each.

Xt+1 = Xt + Zt+1.

P (Xt+1 = x+ 1|Xt = x) = P (Xt+1 = x− 1|Xt = x) = 1/2.
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Markov chain

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either
states.

Kij = P (Xt+1 = j|Xt = i).

Markov property: past history before Xt does not matter.
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Population migration

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of
the other two states.

Kij = P (Xt+1 = j|Xt = i).

Imagine 1 million people migrating. At each step, for each
state, half of the people stay, 1/4 go to each of the other two
states.
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Transition matrix

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of
the other two states.

Kij = P (Xt+1 = j|Xt = i).

K =

1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2


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Marginal probability

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of
the other two states.

Kij = P (Xt+1 = j|Xt = i).

p
(t)
i = P (Xt = i).

Imagine 1 million people migrating. p
(t)
i is the number of

people (in million) in state i at time t.

p(t) = (p
(t)
1 , p

(t)
2 , p

(t)
3 ).
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Population migration

Example 5: Random walk over three states

p
(t)
i = P (Xt = i).

Imagine 1 million people migrating. p
(t)
i is the number of

people (in million) in state i at time t.

p(t) = (p
(t)
1 , p

(t)
2 , p

(t)
3 ).
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Population migration

Example 5: Random walk over three states

Kij = P (Xt+1 = j|Xt = i).

p
(t)
i = P (Xt = i).

p
(t+1)
j =

∑
i

p
(t)
i Kij .

Number of people in state j at time t+ 1 = sum number of
people in state i at time t × fraction of those in i who go to j.
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Random walk

Example 5: Random walk over three states

p
(t+1)
j =

∑
i

p
(t)
i Kij .

p
(t)
i → πi.

πj =
∑
i

πiKij .

Stationary distribution, arrow of time.
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Matrix multiplication

Example 5: Random walk over three states

p
(t+1)
j =

∑
i

p
(t)
i Kij .

p(t+1) = p(t)K.

p(t) = p(0)Kt → π.
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Google pagerank

Example 5: Random walk

p
(t+1)
j =

∑
i

p
(t)
i Kij .

p
(t)
i → πi.

πj =
∑
i

πiKij .

πi: proportion of people who are in page i.
Popularity of i depends on the popularities of pages linked to i.
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Chain rule

P (A|B) =
P (A ∩B)

P (B)
.

(1) As if we randomly throw a point into B.
(2) When B happens, how often A happens.
Chain rule:

P (A ∩B) = P (B)P (A|B).

B happens 1/2 times. When B happens, A happens 3/4 times.
How often A and B happen together?
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Chain rule and rule of total probability

P (A|B) =
P (A ∩B)

P (B)
.

Chain rule:
P (A ∩B) = P (B)P (A|B).

P (Xt+1 = j ∩Xt = i) = P (Xt = i)P (Xt+1 = j|Xt = i)

= p
(t)
i Kij .

Rule of total probability:

P (Xt+1 = j) =
∑
i

P (Xt+1 = j ∩Xt = i).

p
(t+1)
j =

∑
i

p
(t)
i Kij .

Add up probabilities of alternative chains of events.
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Independence

Conditional:

P (A|B) =
P (A ∩B)

P (B)
.

Chain rule:
P (A ∩B) = P (B)P (A|B).

Independence
P (A|B) = P (A).

P (A ∩B) = P (A)P (B).

A and B have nothing to do with each other.



100A

Ying Nian Wu

Basics

Population

Area

Coin

Markov

Reasoning

61/71

Independence

Definition 1:
P (A|B) = P (A).

Definition 2:
P (A ∩B) = P (A)P (B).
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Conditional independence

Markov chain: C → B → A,

P (A|B,C) = P (A|B).

P (Xt+1 = j|Xt = i,Xt−1, ..., X0) = P (Xt+1 = j|Xt = i).

Future is independent of the past given present.
Immediate cause (parent), remote cause (grandparent).
Shared cause: C ← B → A,

P (A ∩ C|B) = P (A|B)P (C|B).

Children given parent.
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Reasoning

Example 6: Rare disease example
1% of population has a rare disease.
A random person goes through a test.
If the person has disease, 90% chance test positive.
If the person does not have disease, 90% chance test negative.
If tested positive, what is the chance he or she has disease?
P (D) = 1%.
P (+|D) = 90%, P (−|N) = 90%.
P (D|+) =?
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Reasoning

Example 6: Rare disease example
P (D) = 1%.
P (+|D) = 90%, P (−|N) = 90%.
P (D|+) =?

P (D|+) = 9
9+99 = 1

12 .
P (alarm | fire) vs P (fire | alarm).
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Chain rule, rule of total probability, Bayes rule

Example 6: Rare disease example
P (D) = 1%.
P (+|D) = 90%, P (−|N) = 90%.

P (D ∩+) = P (D)P (+|D) = 1%× 90%.
P (N ∩+) = P (N)P (+|N) = 99%× 10%.
P (+) = P (D ∩+) + P (N ∩+) = 1%× 90% + 99%× 10%.

P (D|+) = P (D∩+)
P (+) = 9

9+99 = 1
12 .
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Chain rule, rule of total probability, Bayes rule

General formula
m causes: C1, ..., Ci, ..., Cm.
n effects: E1, ..., Ej , ..., En.
Given:
Prior: P (Ci), i = 1, ...,m.
Conditional: P (Ej |Ci), j = 1, ..., n.
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Chain rule, rule of total probability, Bayes rule

Prior: P (Ci), i = 1, ...,m.
Conditional: P (Ej |Ci), j = 1, ..., n.

Posterior: P (Ci|E).
P (Ci ∩ E) = P (Ci)P (E|Ci).
P (E) =

∑
i P (Ci ∩ E) =

∑
i P (Ci)P (E|Ci).

P (Ci|E) = P (Ci∩E)
P (E) = P (Ci)P (E|Ci)∑

i′ P (Ci′ )P (E|Ci′ )
.
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Chain rule, rule of total probability, Bayes rule

X = cause ∈ {1, ..., i, ...,m}.
Y = effect ∈ {1, ..., j, ..., n}.

P (X = i|Y = j) =
P (X = i ∩ Y = j)

P (Y = j)

=
P (X = i)P (Y = j|X = i)∑
i′ P (X = i′)P (Y = j|X = i′)

.
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Chain rule, rule of total probability, Bayes rule

P (X = i|Y = j) =
P (X = i ∩ Y = j)

P (Y = j)

=
P (X = i)P (Y = j|X = i)∑
i′ P (X = i′)P (Y = j|X = i′)

.

p(x|y) =
p(x, y)

p(y)
=

p(x)p(y|x)∑
x′ p(x′)p(y|x′)

.



100A

Ying Nian Wu

Basics

Population

Area

Coin

Markov

Reasoning

70/71

Reasoning

Conditional probability is regular probability,
(1) cause → effect, physical, P (E|C) is given, C defines
experiment.
(2) effect → cause, mental, P (C|E) = P (C ∩ E)/P (E), as if
E is the sample space.
Bayes network, directed acyclic graph, graphic model

Conditional independence:
(1) Sibling nodes are independent given parent node.
(2) Child node is independent of grandparents given parent.
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Take home message

As long as you can count
Count the number of people (equally likely possibilities)
Count the number of points (or repetitions)
Count the number of sequences (of coin flipping)
Two things
(1) Intuition, visualization and motivation
(2) Precise notation and formula
Accomplished
Most of the important concepts via intuitive examples
Next
Systematic and more in-depth treatments
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