## STATS 100A: BASICS \& EXAMPLES

Ying Nian Wu<br>\author{ Department of Statistics<br><br>University of California, Los Angeles }

Some pictures are taken from the internet. Credits belong to original authors.

## Basic language and notation

Experiment $\rightarrow$ outcome $\rightarrow$ number
Example 1: Roll a die
Sample Point

```
                                    Sample Space
```



Sample space $\Omega$ : The set of all the outcomes (or sample points, elements).
Visualize: randomly sample an outcome from the sample space.

## Basic language and notation

## Experiment $\rightarrow$ outcome $\rightarrow$ number

## Example 1: Roll a die



Sample space $\Omega$ : The set of all the outcomes.
Event $A$ :
(1) A statement about the outcome, e.g., bigger than 4.
(2) A subset of sample space, e.g., $\{5,6\}$.

## Basic language and notation

## Experiment $\rightarrow$ outcome $\rightarrow$ number

Example 1: Roll a die

Basics
Population
Area
Coin
Markov
Reasoning


Assume the die is fair so that all the outcomes are equally likely.
Probability: defined on event:

$$
P(A)=\frac{|A|}{|\Omega|}=\frac{2}{6}=\frac{1}{3} .
$$

$|A|$ counts the size of $A$, i.e., the number of elements in $A$.

## Basic language and notation

Experiment $\rightarrow$ outcome $\rightarrow$ number

## Example 1: Roll a die

## Basics

Population
Area
Coin
Markov

Random variable: Let $X$ be the number:

$$
P(X>4)=\frac{1}{3} .
$$

An event is a math statement about the random variable. We can either use events or use random variables. In Parts 2 and 3, we will focus on random variables.

## Basic language and notation

## Experiment $\rightarrow$ outcome $\rightarrow$ number

Example 1: Roll a die


Conditional probability: Let $B$ be the event that the number is 6 . Given that $A$ happens, what is the probability of $B$ ?

$$
P(B \mid A)=\frac{1}{2} .
$$

As if we randomly sample a number from $A$. As if $A$ is the sample space.

## Basic language and notation

Experiment $\rightarrow$ outcome $\rightarrow$ number

## Example 1: Roll a die



Random variable

$$
P(X=6 \mid X>4)=\frac{1}{2}
$$

## Basic language and notation

Example 1: Roll a die


## Complement

Statement: Not $A$
Subset: $A^{c}=\{1,2,3,4\}$.

## Basic language and notation

Example 1: Roll a die

Basics
Population
Area
Coin
Markov
Reasoning

Venn diagram
Union
Statement: $A$ or $B$.
Subset: $A \cup B$.

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& A \cup B=\{1,2,3,4,5\}
\end{aligned}
$$

## Basic language and notation

## Example 1: Roll a die

Population
Area
Coin
Markov
Reasoning

$$
\begin{aligned}
& A=\{1,2,3,4\} \\
& B=\{3,4,5,6\} \\
& A \cap B=\{3,4\}
\end{aligned}
$$



## Intersection

Statement: $A$ and $B$.
Subset: $A \cap B$.

## Population proportion

## Experiment $\rightarrow$ outcome $\rightarrow$ number

Example 2: Sample a random person from a population of 100 people, 50 males and 50 females. 30 males are taller than 6 ft , 10 females are taller than 6 ft .
The sample space $\Omega$ is the population.


## Population proportion

## Experiment $\rightarrow$ outcome $\rightarrow$ number

Example 2: Let $A$ be the event that the person is male. Let $B$ be the event that the person is taller than 6 feet (or simply the person is tall). $A$ is the sub-population of males, and $B$ is the sup-population of tall people.


## Population proportion

## Experiment $\rightarrow$ outcome $\rightarrow$ number

Example 2: $A$ male, $B$ tall.

| taller than 6 ft | male | female |
| :---: | :---: | :---: |
|  |  | 10 |
|  | 30 |  |
| shorter than 6 ft |  |  |
|  | 50 | 50 |

$$
\begin{gathered}
P(A)=\frac{|A|}{|\Omega|}=\frac{50}{100}=50 \% \\
P(B)=\frac{|B|}{|\Omega|}=\frac{30+10}{100}=40 \%
\end{gathered}
$$

Probability $=$ population proportion.

## Population proportion

## Experiment $\rightarrow$ outcome $\rightarrow$ number

Example 2: $A$ male, $B$ tall.


Among tall people, what is the proportion of males?

$$
P(B \mid A)=\frac{|A \cap B|}{|A|}=\frac{30}{50}=60 \% .
$$

Among males, what is the proportion of tall people? Conditional probability $=$ proportion within sub-population.

## Population proportion

## Ying Nian Wu

Basics
Population
Area
Coin
Markov
Reasoning

## Link between event and random variable.

Example 2: $A$ male, $B$ tall.
Let $\omega \in \Omega$ be a person. Let $X(\omega)$ be the gender of $\omega$, so that $X(\omega)=1$ if $\omega$ is male, and $X(\omega)=0$ if $\omega$ is female. Let $Y(\omega)$ be the height of $\omega$. Then

$$
\begin{gathered}
A=\{\omega: X(\omega)=1\}, B=\{\omega: Y(\omega)>6\} \\
P(A)=P(\{\omega: X(\omega)=1\})=P(X=1) . \\
P(B)=P(\{\omega: Y(\omega)>6\})=P(Y>6) . \\
P(B \mid A)=P(Y>6 \mid X=1), P(A \mid B)=P(X=1 \mid Y>6) .
\end{gathered}
$$

## Population proportion

## Equally likely scenario

A real population of people, under purely random sampling An imagined population of equally likely possibilities


$$
P(A)=\frac{|A|}{|\Omega|}
$$

Axiom 0.
Can always translate a problem into equally likely setting.

## Population proportion

Equally likely scenario

Basics
Population
Area
Coin
Markov
Reasoning



$$
P(A \mid B)=\frac{|A \cap B|}{|B|}=\frac{|A \cap B| /|\Omega|}{|B| /|\Omega|}=\frac{P(A \cap B)}{P(B)} .
$$

As if $B$ is the sample space.
Axiom 4
Or definition of conditional probability.

## Area

Ying Nian Wu
Basics
Population
Area
Coin
Markov
Reasoning


(1) $X$ is uniform random number in $[0,1]$.
(2) $(X, Y)$ are two independent random numbers in $[0,1]$. (3) $(X, Y, Z)$ are three independent random numbers in $[0,1]$. $\Omega=[0,1]$ or $[0,1]^{2}$ or $[0,1]^{3}=$ set of points.
Population of points (uncountably infinitely many).

## Area

## Random point in a region

## Example 3: throwing point into region


$X$ and $Y$ are independent uniform random numbers in $[0,1]$. $(X, Y)$ is a random point in $\Omega=[0,1]^{2}$. $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

$$
P(A)=\frac{|A|}{|\Omega|}=\frac{\pi}{4}
$$

$|A|$ is the size of $A$, e.g., area (length, volume).

## Area

## Example 3: throwing point into region

## Ying Nian Wu

Basics
Population
Area
Coin
Markov
Reasoning

$X$ and $Y$ are independent uniform random numbers in $[0,1]$. ( $X, Y$ ) is a random point in $\Omega=[0,1]^{2}$. $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

$$
\begin{gathered}
P\left(X^{2}+Y^{2} \leq 1\right)=\pi / 4 \\
P\left(X^{2}+Y^{2}=1\right)=0
\end{gathered}
$$

Capital letters for random variables.

## Measure



Discretization $\rightarrow$ finite population of small squares.
Area $=$ number of small squares $\times$ area of each small square. Inner measure: fill inside by small squares $\rightarrow$ upper limit. Outer measure: cover outside by small squares $\rightarrow$ lower limit. Measurable: inner measure $=$ outer measure.
The collection of all measurable sets, $\sigma$-algebra.
Integral: area under curve.

## Axioms

Probability as measure, i.e., count, length, area, volume ... Axiom 0: $P(A)=\frac{|A|}{|\Omega|}$ in equally likely scenario.
Axiom 1: $P(\Omega)=1$.
Axiom 2: $P(A) \geq 0$.


Axiom 3: Additivity: If $A \cap B=\phi$ (empty), then

$$
P(A \cup B)=P(A)+P(B)
$$

Axiom 4: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, assuming $P(B)>0$.

## Long run frequency



Reasoning
Throw $n$ points into $\Omega$. $m$ of them fall into $A$.

$$
P(A)=\frac{|A|}{|\Omega|} \approx \frac{m}{n} .
$$

As $n \rightarrow \infty, \frac{m}{n} \rightarrow P(A)$ in probability. $P(A)$ can be interpreted as long run frequency.

## Long run frequency

Throw $n$ points into $\Omega$. $m$ of them fall into $A$.
Among all equally likely possibilities, $99.999 \%$ are like below, where $m / n$ is close to $P(A)$.

$.00000001 \%$ are like below, where $m / n$ are far from $P(A)$.


Can prove $P\left(\left|\frac{m}{n}-P(A)\right|>\epsilon\right) \rightarrow 0$ for any fixed $\epsilon>0$.

## Long run frequency

## Example 3: $\pi$

Throw $n$ points into $\Omega$. $m$ of them fall into $A$.

$$
P(A)=\frac{|A|}{|\Omega|}=\frac{\pi}{4} \approx \frac{m}{n}
$$

Monte Carlo method:

$$
\hat{\pi}=\frac{4 m}{n}
$$

As $n \rightarrow \infty, \frac{m}{n} \rightarrow P(A)$ in probability.
$P(A)$ can be interpreted as long run frequency.

## Monte Carlo

## Deterministic method



Go over all the $n=100=10^{2}$ square cells, count inner or outer measure, i.e., how many $(m)$ fall into $A$.
3-dimensional? $n=10^{3}$ cubic cells.
4-dimensional? $n=10^{4}$ cells.
10000-dimensional? $n=10^{10000}$ cells.
Monte Carlo: sample $n=1000$ points in the hyper-cube. Count how many ( $m$ ) fall into $A$.

## Monte Carlo

## Example 3: $\pi$, buffon needle

Lazzarini threw $n=3408$ times.

$$
P(A) \approx \frac{m}{n}
$$

Monte Carlo method:

$$
\hat{\pi}=\frac{355}{113}
$$

Too accurate. $m$ is random.
For fixed $n, m$ is random. $m / n$ fluctuates around $P(A)$. As $n \rightarrow \infty, \frac{m}{n} \rightarrow P(A)$ in probability, law of large number. $P(A)$ can be interpreted as long run frequency, how often $A$ happens in the long run.

## Area

Example 3: throwing point into region

## Basics

Population
Area
Coin
Markov


Reasoning
$X$ and $Y$ are independent uniform random numbers in $[0,1]$. $(X, Y)$ is a random point in $\Omega=[0,1]^{2}$.

$$
A=\{(x, y): x<1 / 2\} .
$$

$$
P(A)=P(X<1 / 2)=\frac{|A|}{|\Omega|}=1 / 2 .
$$

## Area

## Example 3: throwing point into region

## Basics

Population
Area
Coin
Markov


Reasoning
$X$ and $Y$ are independent uniform random numbers in $[0,1]$. $(X, Y)$ is a random point in $\Omega=[0,1]^{2}$. $B=\{(x, y): x+y<1\}$.

$$
P(B)=P(X+Y<1)=\frac{|B|}{|\Omega|}=1 / 2 .
$$

## Area

## Basics

Population
Area
Coin
Markov
Reasoning
Example 3: throwing point into region


$$
\begin{gathered}
P(A \mid B)=\frac{|A \cap B|}{|B|}=\frac{1 / 2-1 / 8}{1 / 2}=3 / 4 . \\
P(X<1 / 2 \mid X+Y<1) .
\end{gathered}
$$

(1) As if randomly throw a point into $B$, as if $B$ is the sample space. Then what is the probability the point falls into $A$ ?

## Example 3: throwing point into region

## Ying Nian Wu

## Basics

Population
Area
Coin
Markov
Reasoning


$$
\begin{gathered}
P(A \mid B)=\frac{|A \cap B|}{|B|}=\frac{1 / 2-1 / 8}{1 / 2}=3 / 4 . \\
P(X<1 / 2 \mid X+Y<1)
\end{gathered}
$$

(2) Consider throwing a lot of points into $\Omega$. How often $A$ happens? How often $B$ happens?
When $B$ happens, how often $A$ happens?
Among all the points in $B$, what is the fraction belongs to $A_{3_{171}}$

## Coin flipping

## Experiment $\rightarrow$ outcome $\rightarrow$ number

## Example 4: Coin flipping

(4.1) Flip a coin $\rightarrow$ head or tail $\rightarrow 1$ or 0
(4.2) Flip a coin twice $\rightarrow$ (head, head), or (head, tail), or (tail, head) or (tail, tail) $\rightarrow 11$ or 10 or 01 or 00


The sample space is $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

## Coin flipping

Experiment $\rightarrow$ outcome $\rightarrow$ number

## Example 4: Coin flipping

(4.3) Flip a coin $n$ times $\rightarrow 2^{n}$ binary sequences.


Sample space $\Omega$ : all $2^{n}$ sequences.
Each $\omega \in \Omega$ is a sequence.
Visualize: randomly pick a sequence from $2^{n}$ sequences. $Z_{i}(\omega)=1$ if $i$-th flip is head; $Z_{i}(\omega)=0$ if $i$-th flip is tail.

## Coin flipping

## Example 4: Coin flipping

$Z_{i}(\omega)=1$ if $i$-th flip is head; $Z_{i}(\omega)=0$ if $i$-th flip is tail.

> HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, HHTH, TTHH, HTTH, HTTT, HTHH, THTH, TTTH, TTTT

Flip a fair coin 4 times independently, let $A$ be the event that there are 2 heads.
Visualize: randomly pick a sequence from 16 sequences.

$$
\begin{gathered}
P(A)=\frac{|A|}{|\Omega|}=\frac{6}{2^{4}}=\frac{3}{8} \\
A=\left\{\omega: Z_{1}(\omega)+Z_{2}(\omega)+Z_{3}(\omega)+Z_{4}(\omega)=2\right\}
\end{gathered}
$$

## Coin flipping

## Example 4: Coin flipping

$Z_{i}(\omega)=1$ if $i$-th flip is head; $Z_{i}(\omega)=0$ if $i$-th flip is tail.

Let $X(\omega)$ be the number of heads in the sequence $\omega$.

$$
\begin{gathered}
X(\omega)=Z_{1}(\omega)+Z_{2}(\omega)+Z_{3}(\omega)+Z_{4}(\omega) \\
P\left(A_{k}\right)=P(\{\omega: X(\omega)=k\})=P(X=k)=p_{k} \\
\left(p_{k}, k=0,1,2,3,4\right)=(1,4,6,4,1) / 16
\end{gathered}
$$

## Coin flipping

## Example 4: Coin flipping

Basics
Population
Area
Coin
Markov
Reasoning

HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, ННТН, TTHH, HTTH, HTTT, HTHH, THTH, TTTH, TTTT
$\left|A_{2}\right|=6$.
$\left|A_{2}\right|=\binom{4}{2}=\frac{4 \times 3}{2}$.
4 positions, choose 2 of them to be heads, and the rest are tails.

## Multiplication

Ordered pair: roll a die twice

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $(1,1)$ | $(1,2)$ | $(1,3)$ | $(1,4)$ | $(1,5)$ | $(1,6)$ |
| $\mathbf{2}$ | $(2,1)$ | $(2,2)$ | $(2,3)$ | $(2,4)$ | $(2,5)$ | $(2,6)$ |
| $\mathbf{3}$ | $(3,1)$ | $(3,2)$ | $(3,3)$ | $(3,4)$ | $(3,5)$ | $(3,6)$ |
| $\mathbf{4}$ | $(4,1)$ | $(4,2)$ | $(4,3)$ | $(4,4)$ | $(4,5)$ | $(4,6)$ |
| $\mathbf{5}$ | $(5,1)$ | $(5,2)$ | $(5,3)$ | $(5,4)$ | $(5,5)$ | $(5,6)$ |
| $\mathbf{6}$ | $(6,1)$ | $(6,2)$ | $(6,3)$ | $(6,4)$ | $(6,5)$ | $(6,6)$ |

Experiment 1 has $n_{1}$ outcomes. For each outcome of experiment 1 , experiment 2 has $n_{2}$ outcomes. The number of all possible pairs is $n_{1} \times n_{2}$.

## Multiplication

## Multiplication

Ordered pair: flip a coin and roll a die


Basics
Population
Area
Coin
Markov
Reasoning

## Multiplication

100A
Ying Nian Wu
Basics
Population
Area
Coin
Markov
Reasoning
Multiplication
Ordered triplet

SHOES PANTS SHIRT


12

## Permutation

100A

$n$ different cards. Choose $k$ of them. Order matters. Number of different sequences:

$$
\begin{gathered}
P_{n, k}=n(n-1) \ldots(n-k+1) . P_{4,2}=4 \times 3=12 . \\
P_{n, n}=n!.
\end{gathered}
$$

How many different ways to permute things.

## Combination

100A
Ying Nian Wu
Basics
Population
Area
Coin
Markov
Reasoning

$n$ different balls. Choose $k$ of them. Order does NOT matters. Number of different combinations:

$$
\begin{gathered}
\binom{n}{k}=\frac{P_{n, k}}{k!}=\frac{n(n-1) \ldots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!} \\
\binom{4}{2}=\frac{4 \times 3}{2}=6
\end{gathered}
$$

## Combination

100A

## Ying Nian Wu

Basics
Population
Area


Each combination corresponds to $k$ ! permutations.

$$
\begin{gathered}
\binom{n}{k}=\frac{P_{n, k}}{k!}=\frac{n(n-1) \ldots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!} \\
\binom{4}{2}=\frac{4 \times 3}{2}=6
\end{gathered}
$$

## Coin flipping

## Example 4: Coin flipping

Basics
Population
Area
Coin
Markov
Reasoning

$$
A=\{\omega: x(\omega)=2\}
$$

HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, HHTH, TTHH, HTTH, HTTT, HTHH, THTH, TTTH, TTTT

$$
(1,3)=(3,1)
$$

$$
\left|A_{2}\right|=\binom{4}{2}=\frac{4 \times 3}{2}=6 .
$$

In general, flip a fair coin $n$ times independently,

$$
P\left(A_{k}\right)=P(\{\omega: X(\omega)=k\})=P(X=k)=\frac{\binom{n}{k}}{2^{n}}
$$

## Random walk

100A
Ying Nian Wu

Basics
Population
Area
Coin
Markov
Reasoning

H H H H 4 heads
H H H T 3 heads
H T H H 3 heads
H H T H 3 heads
T H H H 3 heads
H H T T 2 heads
H T H T 2 heads
H T T H 2 heads
T H H T 2 heads
T H T H 2 heads
T T H H 2 heads
H T T T 1 heads
T H T T 1 heads
T T H T 1 heads
T T T H 1 heads
T T T T 0 heads
Number of heads $X=k$, then random walk ends up at $Y=m=k-(n-k)=2 k-n, k=(m+n) / 2$.

$$
P(Y=m)=P(X=k)=\frac{\binom{n}{k}}{2^{n}}=\frac{\binom{n}{(m+n) / 2}}{2^{n}}
$$

## Random walk

100A

Either go forward or backward by flipping a fair coin.

## Basics

Population
Area
Coin
Markov
Reasoning


Number of heads $X=k$, then random walk ends up at $Y=m=k-(n-k)=2 k-n, k=(m+n) / 2$.

$$
P(Y=m)=P(X=k)=\frac{\binom{n}{k}}{2^{n}}=\frac{\binom{n}{(m+n) / 2}}{2^{n}} .
$$

## Random walk

## Example 4: Coin flipping Pascal triangle

## Basics

Population
Area


## Galton board

## Example 4: Coin flipping



All $2^{n}$ paths are equally likely.
Number of paths that end up in $k$-th bin $=\binom{n}{k}$. $X$ : destination. $P(X=k)=\binom{n}{k} / 2^{n}$. How often the balls fall into $k$-th bin.

## Transition probability

Either go forward or backward

## Ying Nian Wu

Basics
Population
Area
Coin
Markov
Reasoning


$$
X_{t}=Z_{1}+Z_{2}+\ldots+Z_{t}
$$

$Z_{k}=1$ or -1 with probability $1 / 2$ each.

$$
\begin{gathered}
X_{t+1}=X_{t}+Z_{t+1} \\
P\left(X_{t+1}=x+1 \mid X_{t}=x\right)=P\left(X_{t+1}=x-1 \mid X_{t}=x\right)=1 / 2
\end{gathered}
$$

## Markov chain

Example 5: Random walk over three states

## Basics

Population
Area
Coin
Markov
Reasoning

With probability $1 / 2$, stay. With probability $1 / 4$, go to either states.

$$
K_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right)
$$

Markov property: past history before $X_{t}$ does not matter.

## Population migration

## Example 5: Random walk over three states

## Ying Nian Wu

Basics
Population
Area
Coin
Markov

With probability $1 / 2$, stay. With probability $1 / 4$, go to either of the other two states.

$$
K_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right)
$$

Imagine 1 million people migrating. At each step, for each state, half of the people stay, $1 / 4$ go to each of the other two states.

## Transition matrix

## Example 5: Random walk over three states

## Ying Nian Wu

Basics
Population
Area
Coin
Markov
Reasoning


With probability $1 / 2$, stay. With probability $1 / 4$, go to either of the other two states.

$$
\begin{gathered}
K_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right) . \\
\mathbf{K}=\left[\begin{array}{lll}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right]
\end{gathered}
$$

## Marginal probability

## Example 5: Random walk over three states

With probability $1 / 2$, stay. With probability $1 / 4$, go to either of the other two states.

$$
\begin{gathered}
K_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right) . \\
p_{i}^{(t)}=P\left(X_{t}=i\right)
\end{gathered}
$$

Imagine 1 million people migrating. $p_{i}^{(t)}$ is the number of people (in million) in state $i$ at time $t$.

$$
\mathbf{p}^{(t)}=\left(p_{1}^{(t)}, p_{2}^{(t)}, p_{3}^{(t)}\right)
$$

## Population migration

## Example 5: Random walk over three states

## Basics

Population
Area
Coin


Markov
Reasoning

$$
p_{i}^{(t)}=P\left(X_{t}=i\right)
$$

Imagine 1 million people migrating. $p_{i}^{(t)}$ is the number of people (in million) in state $i$ at time $t$.

$$
\mathbf{p}^{(t)}=\left(p_{1}^{(t)}, p_{2}^{(t)}, p_{3}^{(t)}\right)
$$

## Population migration

## Example 5: Random walk over three states



$$
\begin{gathered}
K_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right) . \\
p_{i}^{(t)}=P\left(X_{t}=i\right) . \\
p_{j}^{(t+1)}=\sum_{i} p_{i}^{(t)} K_{i j} .
\end{gathered}
$$

Number of people in state $j$ at time $t+1=$ sum number of people in state $i$ at time $t \times$ fraction of those in $i$ who go to $j_{54}$

## Random walk

## Example 5: Random walk over three states



Stationary distribution

$$
\begin{gathered}
p_{j}^{(t+1)}=\sum_{i} p_{i}^{(t)} K_{i j} \\
p_{i}^{(t)} \rightarrow \pi_{i} \\
\pi_{j}=\sum_{i} \pi_{i} K_{i j}
\end{gathered}
$$

Stationary distribution, arrow of time.

## Matrix multiplication

100A
Ying Nian Wu
Basics
Population
Area
Coin
Markov
Reasoning
Example 5: Random walk over three states

$$
\begin{gathered}
p_{j}^{(t+1)}=\sum_{i} p_{i}^{(t)} K_{i j} \\
p^{(t+1)}=p^{(t)} K \\
p^{(t)}=p^{(0)} K^{t} \rightarrow \pi
\end{gathered}
$$

## Google pagerank

## Example 5: Random walk

## Ying Nian Wu

Basics
Population
Area
Coin
Markov
Reasoning

## Chain rule

100A

Basics
Population
Area
Coin
Markov
Reasoning

$$
P(A \cap B)=P(B) P(A \mid B)
$$

$B$ happens $1 / 2$ times. When $B$ happens, $A$ happens $3 / 4$ times. How often $A$ and $B$ happen together?
(1) As if we randomly throw a point into $B$.
(2) When $B$ happens, how often $A$ happens.

Chain rule:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

## Chain rule and rule of total probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Chain rule:

$$
\begin{aligned}
P(A \cap B) & =P(B) P(A \mid B) \\
P\left(X_{t+1}=j \cap X_{t}=i\right) & =P\left(X_{t}=i\right) P\left(X_{t+1}=j \mid X_{t}=i\right) \\
& =p_{i}^{(t)} K_{i j}
\end{aligned}
$$

Rule of total probability:

$$
\begin{gathered}
P\left(X_{t+1}=j\right)=\sum_{i} P\left(X_{t+1}=j \cap X_{t}=i\right) . \\
p_{j}^{(t+1)}=\sum_{i} p_{i}^{(t)} K_{i j}
\end{gathered}
$$

Add up probabilities of alternative chains of events.

## Independence

Conditional:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Chain rule:

$$
P(A \cap B)=P(B) P(A \mid B)
$$

## Independence

$$
\begin{gathered}
P(A \mid B)=P(A) \\
P(A \cap B)=P(A) P(B)
\end{gathered}
$$

$A$ and $B$ have nothing to do with each other.

## Independence

100A
Ying Nian Wu

Basics
Population
Area
Coin
Markov
Reasoning
Definition 1:

$$
P(A \mid B)=P(A)
$$

Definition 2:

$$
P(A \cap B)=P(A) P(B)
$$



## Conditional independence

Markov chain: $C \rightarrow B \rightarrow A$,

Future is independent of the past given present. Immediate cause (parent), remote cause (grandparent). Shared cause: $C \leftarrow B \rightarrow A$,

$$
P(A \cap C \mid B)=P(A \mid B) P(C \mid B)
$$

Children given parent.

## Reasoning

## Example 6: Rare disease example

$1 \%$ of population has a rare disease.
A random person goes through a test.
If the person has disease, $90 \%$ chance test positive.
If the person does not have disease, $90 \%$ chance test negative.
If tested positive, what is the chance he or she has disease?
$P(D)=1 \%$.
$P(+\mid D)=90 \%, P(-\mid N)=90 \%$.
$P(D \mid+)=$ ?

## Reasoning

Example 6: Rare disease example
$P(D)=1 \%$.
$P(+\mid D)=90 \%, P(-\mid N)=90 \%$.
$P(D \mid+)=$ ?

$P(D \mid+)=\frac{9}{9+99}=\frac{1}{12}$.
$P$ (alarm \| fire) vs $P$ (fire | alarm).

## Chain rule, rule of total probability, Bayes rule

100A
Ying Nian Wu

Basics
Population
Area
Coin
Markov
Reasoning

## Example 6: Rare disease example

$$
\begin{aligned}
& P(D)=1 \% \\
& P(+\mid D)=90 \%, P(-\mid N)=90 \% .
\end{aligned}
$$


$P(D \cap+)=P(D) P(+\mid D)=1 \% \times 90 \%$.
$P(N \cap+)=P(N) P(+\mid N)=99 \% \times 10 \%$.
$P(+)=P(D \cap+)+P(N \cap+)=1 \% \times 90 \%+99 \% \times 10 \%$.
$P(D \mid+)=\frac{P(D \cap+)}{P(+)}=\frac{9}{9+99}=\frac{1}{12}$.

## Chain rule, rule of total probability, Bayes rule

## General formula

$m$ causes: $C_{1}, \ldots, C_{i}, \ldots, C_{m}$.
$n$ effects: $E_{1}, \ldots, E_{j}, \ldots, E_{n}$.
Given:
Prior: $P\left(C_{i}\right), i=1, \ldots, m$.
Conditional: $P\left(E_{j} \mid C_{i}\right), j=1, \ldots, n$.


## Chain rule, rule of total probability, Bayes rule

Prior: $P\left(C_{i}\right), i=1, \ldots, m$.
Conditional: $P\left(E_{j} \mid C_{i}\right), j=1, \ldots, n$.

Posterior: $P\left(C_{i} \mid E\right)$.

$$
P\left(C_{i} \cap E\right)=P\left(C_{i}\right) P\left(E \mid C_{i}\right) .
$$

$$
P(E)=\sum_{i} P\left(C_{i} \cap E\right)=\sum_{i} P\left(C_{i}\right) P\left(E \mid C_{i}\right)
$$

$$
P\left(C_{i} \mid E\right)=\frac{P\left(C_{i} \cap E\right)}{P(E)}=\frac{P\left(C_{i}\right) P\left(E \mid C_{i}\right)}{\sum_{i^{\prime}} P\left(C_{i^{\prime}}\right) P\left(E \mid C_{i^{\prime}}\right)}
$$

## Chain rule, rule of total probability, Bayes rule

$$
\begin{aligned}
& X=\text { cause } \in\{1, \ldots, i, \ldots, m\} . \\
& Y=\text { effect } \in\{1, \ldots, j, \ldots, n\} .
\end{aligned}
$$

## Basics

Population
Area
Coin
Markov
Reasoning


$$
\begin{aligned}
P(X=i \mid Y=j) & =\frac{P(X=i \cap Y=j)}{P(Y=j)} \\
& =\frac{P(X=i) P(Y=j \mid X=i)}{\sum_{i^{\prime}} P\left(X=i^{\prime}\right) P\left(Y=j \mid X=i^{\prime}\right)} .
\end{aligned}
$$

## Chain rule, rule of total probability, Bayes rule



$$
\begin{aligned}
P(X=i \mid Y=j) & =\frac{P(X=i \cap Y=j)}{P(Y=j)} \\
& =\frac{P(X=i) P(Y=j \mid X=i)}{\sum_{i^{\prime}} P\left(X=i^{\prime}\right) P\left(Y=j \mid X=i^{\prime}\right)} .
\end{aligned}
$$

$$
p(x \mid y)=\frac{p(x, y)}{p(y)}=\frac{p(x) p(y \mid x)}{\sum_{x^{\prime}} p\left(x^{\prime}\right) p\left(y \mid x^{\prime}\right)}
$$

## Reasoning

Conditional probability is regular probability, (1) cause $\rightarrow$ effect, physical, $P(E \mid C)$ is given, $C$ defines experiment.
(2) effect $\rightarrow$ cause, mental, $P(C \mid E)=P(C \cap E) / P(E)$, as if $E$ is the sample space.
Bayes network, directed acyclic graph, graphic model


Conditional independence:
(1) Sibling nodes are independent given parent node.
(2) Child node is independent of grandparents given parent. 70/71

## Take home message

As long as you can count
Count the number of people (equally likely possibilities)
Count the number of points (or repetitions)
Count the number of sequences (of coin flipping)

## Two things

(1) Intuition, visualization and motivation
(2) Precise notation and formula

## Accomplished

Most of the important concepts via intuitive examples Next
Systematic and more in-depth treatments

