100A

Ying Nian W

Dasics

Population

Aica

Coin

IVIAIRO

Reasonin

STATS 100A: BASICS & EXAMPLES

Ying Nian Wu

Department of Statistics University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

100A

Basics

Experiment \rightarrow **outcome** \rightarrow **number**

Example 1: Roll a die

Sample space Ω : The set of all the outcomes (or sample points, elements).

Visualize: randomly sample an outcome from the sample space.

100A

Basics

Experiment \rightarrow **outcome** \rightarrow **number**

Example 1: Roll a die

Sample space Ω : The set of all the outcomes.

Event A:

- (1) A **statement** about the outcome, e.g., bigger than 4.
- (2) A **subset** of sample space, e.g., $\{5, 6\}$.

100A

Ying Nian W

Basics

Population

Coin

Markov Reasonin $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

Example 1: Roll a die

Assume the die is fair so that all the outcomes are **equally likely**.

Probability: defined on event:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{2}{6} = \frac{1}{3}.$$

|A| counts the size of A, i.e., the number of elements in A.

100A

Ying Nian W

Basics

Population

Coin

Markov

 $\mathsf{Experiment} \to \mathsf{outcome} \to \mathsf{number}$

Example 1: Roll a die

Random variable: Let X be the number:

$$P(X > 4) = \frac{1}{3}.$$

An event is a **math statement** about the random variable. We can either use events or use random variables. In Parts 2 and 3, we will focus on random variables.

100A

Ying Nian W

Basi

Population

Area

Coin

Markov

 $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

Example 1: Roll a die

Conditional probability: Let B be the event that the number is 6. Given that A happens, what is the probability of B?

$$P(B|A) = \frac{1}{2}.$$

As if we randomly sample a number from A. As if A is the sample space.

100A

Population

Experiment \rightarrow **outcome** \rightarrow **number**

Example 1: Roll a die

Random variable

$$P(X = 6|X > 4) = \frac{1}{2}.$$

100A

Ying Nian W

Dasics

Population

, ... ca

Com

Markov

Example 1: Roll a die

Complement

Statement: Not A

Subset: $A^c = \{1, 2, 3, 4\}.$

100A

Ying Nian W

Dasics

Population

Area

Coin

Marko

Reasonir

Example 1: Roll a die

Venn diagram

Union

Statement: A or B.

Subset: $A \cup B$.

100A

Ying Nian W

Basics

Population

Area

Coin

Markov

Reasoni

Example 1: Roll a die

$$A = \{1,2,3,4\}$$

 $B = \{3,4,5,6\}$
 $A \cap B = \{3,4\}$

Statement: A and B.

Subset: $A \cap B$.

100A

Ying Nian W

Basics

Population

c

Com

Markov Reasoni $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

Example 2: Sample a random person from a population of 100 people, 50 males and 50 females. 30 males are taller than 6 ft, 10 females are taller than 6 ft.

The sample space Ω is the population.

	$_{\mathrm{male}}$	female
taller than 6 ft		10
	30	
shorter than 6 ft		
	50	50

100A

Ying Nian W

Basics
Population

Coin

Markov

 $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

Example 2: Let A be the event that the person is male. Let B be the event that the person is taller than 6 feet (or simply the person is tall). A is the sub-population of males, and B is the sup-population of tall people.

100A

Ying Nian W

Dasics

Population

, ... ca

Maulia

Reasoning

Experiment \rightarrow outcome \rightarrow number

Example 2: A male, B tall.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{50}{100} = 50\%.$$

$$P(B) = \frac{|B|}{|\Omega|} = \frac{30 + 10}{100} = 40\%.$$

Probability = population proportion.

100A

Ying Nian Wi

Population
Area

Markov

Experiment \rightarrow **outcome** \rightarrow **number Example 2**: A male, B tall.

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{30}{40} = 75\%.$$

Among tall people, what is the proportion of males?

$$P(B|A) = \frac{|A \cap B|}{|A|} = \frac{30}{50} = 60\%.$$

Statistics neta

Among males, what is the proportion of tall people? Conditional probability = proportion within sub-population.

100A

Population

Link between event and random variable.

Example 2: A male, B tall.

Let $\omega \in \Omega$ be a person. Let $X(\omega)$ be the gender of ω , so that $X(\omega) = 1$ if ω is male, and $X(\omega) = 0$ if ω is female. Let $Y(\omega)$ be the height of ω . Then

$$A = \{\omega : X(\omega) = 1\}, B = \{\omega : Y(\omega) > 6\}.$$

$$P(A) = P(\{\omega : X(\omega) = 1\}) = P(X = 1).$$

$$P(B) = P(\{\omega : Y(\omega) > 6\}) = P(Y > 6).$$

$$P(B|A) = P(Y > 6|X = 1), P(A|B) = P(X = 1|Y > 6).$$

100A

Population

Equally likely scenario

A real population of people, under purely random sampling An imagined population of equally likely possibilities

$$P(A) = \frac{|A|}{|\Omega|}.$$

Axiom 0.

Can always translate a problem into equally likely setting.

100A

Ying Nian W

Population

Alea

Com

iviarko

Equally likely scenario

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{|A \cap B|/|\Omega|}{|B|/|\Omega|} = \frac{P(A \cap B)}{P(B)}.$$

As if B is the sample space.

Axiom 4

Or definition of conditional probability.

100A

Ying Nian W

Basics

Populatio

Area

Coin

Markov

- (1) X is uniform random number in [0, 1].
- (2) (X,Y) are two independent random numbers in [0,1].
- (3) (X,Y,Z) are three independent random numbers in [0,1]. $\Omega = [0,1]$ or $[0,1]^2$ or $[0,1]^3 = \text{set of points}$.

Population of points (uncountably infinitely many).

100A

Ying Nian W

Population

Area

Coin

Markov

Random point in a region Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1]. (X,Y) is a random point in $\Omega = [0,1]^2$.

$$A = \{(x, y) : x^2 + y^2 \le 1\}.$$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\pi}{4}.$$

Statistics

|A| is the size of A, e.g., area (length, volume).

100A

Ying Nian W

Populatio

Area

Marko

Markov Reasonir

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1]. (X, Y) is a random point in $\Omega = [0, 1]^2$.

$$A = \{(x, y) : x^2 + y^2 \le 1\}.$$

$$P(X^2 + Y^2 \le 1) = \pi/4.$$

$$P(X^2 + Y^2 = 1) = 0.$$

Capital letters for random variables.

Measure

100A

Ying Nian W

Population

Area Coin

Markov Reason

Discretization \rightarrow finite population of small squares.

 $\label{eq:Area} \textit{Area} = \textit{number of small squares} \times \textit{area of each small square}.$

Inner measure: fill inside by small squares \rightarrow upper limit.

Outer measure: cover outside by small squares \rightarrow lower limit.

Measurable: inner measure = outer measure.

The collection of all measurable sets, σ -algebra.

Integral: area under curve.

Axioms

100A

Area

Probability as measure, i.e., count, length, area, volume ...

Axiom 0: $P(A) = \frac{|A|}{|\Omega|}$ in equally likely scenario.

Axiom 1: $P(\Omega) = 1$. **Axiom 2**: $P(A) \ge 0$.

Axiom 3: Additivity: If $A \cap B = \phi$ (empty), then

$$P(A \cup B) = P(A) + P(B).$$

Axiom 4: $P(A|B) = \frac{P(A \cap B)}{P(B)}$, assuming P(B) > 0.

Long run frequency

100A

Ying Nian W

Basics
Population
Area

Coin

Markov

Reasoning

Throw n points into Ω . m of them fall into A.

$$P(A) = \frac{|A|}{|\Omega|} \approx \frac{m}{n}.$$

As $n \to \infty$, $\frac{m}{n} \to P(A)$ in probability. P(A) can be interpreted as **long run frequency**.

Long run frequency

100A Ying Nian W

Populatio

Area Coin

Markov Reasoni Throw n points into Ω . m of them fall into A. Among all equally likely possibilities, 99.999% are like below, where m/n is close to P(A).

.0000001% are like below, where m/n are far from P(A).

Can prove $P(|\frac{m}{n} - P(A)| > \epsilon) \to 0$ for any fixed $\epsilon > 0$.

Long run frequency

100A

Ying Nian W

Populatio

Area

Coin

Markov

Example 3: π

Throw n points into Ω . m of them fall into A.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\pi}{4} \approx \frac{m}{n}.$$

Monte Carlo method:

$$\hat{\pi} = \frac{4m}{m}.$$

As $n \to \infty$, $\frac{m}{n} \to P(A)$ in probability. P(A) can be interpreted as **long run frequency**.

Monte Carlo

100A

Ying Nian Wi

Basics
Population
Area

Markov

Deterministic method

Go over all the $n=100=10^2$ square cells, count inner or outer measure, i.e., how many (m) fall into A.

3-dimensional? $n = 10^3$ cubic cells.

4-dimensional? $n = 10^4$ cells.

10000-dimensional? $n = 10^{10000}$ cells.

Monte Carlo: sample n=1000 points in the hyper-cube. Count how many (m) fall into A.

Monte Carlo

100A

Ying Nian W

Basics

Populati

Area Coin

Markov _____

Example 3: π , buffon needle

Lazzarini threw n=3408 times.

$$P(A) \approx \frac{m}{n}$$
.

Monte Carlo method:

$$\hat{\pi} = \frac{355}{113}$$

Too accurate. m is random.

For fixed n, m is random. m/n fluctuates around P(A). As $n\to\infty$, $\frac{m}{n}\to P(A)$ in probability, law of large number.

P(A) can be interpreted as long run frequency, how often A happens in the long run.

100A

Ying Nian W

Basics
Populatio
Area

Area Coin Markov

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1]. (X,Y) is a random point in $\Omega = [0,1]^2$. $A = \{(x,y) : x < 1/2\}$.

$$P(A) = P(X < 1/2) = \frac{|A|}{|\Omega|} = 1/2.$$

100A

Ying Nian W

Basics
Population
Area

Coin Markov

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1]. (X,Y) is a random point in $\Omega=[0,1]^2$. $B=\{(x,y): x+y<1\}$.

$$P(B) = P(X + Y < 1) = \frac{|B|}{|\Omega|} = 1/2.$$

100A

Ying Nian W

Basics
Population
Area
Coin

Example 3: throwing point into region

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{1/2 - 1/8}{1/2} = 3/4.$$
$$P(X < 1/2|X + Y < 1).$$

(1) As if randomly throw a point into B, as if B is the sample space. Then what is the probability the point falls into A?

100A

Ying Nian Wı

Basics

Populatio

Area

Coin

iviarkov

Example 3: throwing point into region

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{1/2 - 1/8}{1/2} = 3/4.$$
$$P(X < 1/2|X + Y < 1).$$

(2) Consider throwing a lot of points into Ω . How often A happens? How often B happens? When B happens, how often A happens? Among all the points in B, what is the fraction belongs to $A_{1/71}^2$

100A

Coin

Experiment \rightarrow **outcome** \rightarrow **number Example 4: Coin flipping**

(4.1) Flip a coin \rightarrow head or tail \rightarrow 1 or 0

(4.2) Flip a coin twice \rightarrow (head, head), or (head, tail), or (tail, head) or (tail, tail) \rightarrow 11 or 10 or 01 or 00

The sample space is {HH, HT, TH, TT}

100A

Ying Nian W

Basics

Populatio

Coin

N A muleo

Reasor

 $\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

Example 4: Coin flipping

(4.3) Flip a coin n times $\rightarrow 2^n$ binary sequences.

Sample space Ω : all 2^n sequences.

Each $\omega \in \Omega$ is a sequence.

Visualize: randomly pick a sequence from 2^n sequences.

 $Z_i(\omega)=1$ if *i*-th flip is head; $Z_i(\omega)=0$ if *i*-th flip is tail.

100A

Ying Nian W

Basics
Population
Area
Coin

Example 4: Coin flipping

 $Z_i(\omega)=1$ if i-th flip is head; $Z_i(\omega)=0$ if i-th flip is tail.

HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, HHTH, TTHH, HTTH, HTTT, HTHH, THTH, TTTH, TTTT

HTHH, THTH, TTTH, TTTT

Flip a fair coin 4 times independently, let A be the event that

there are 2 heads.

Visualize: randomly pick a sequence from 16 sequences.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{6}{2^4} = \frac{3}{8}.$$

$$A = \{\omega : Z_1(\omega) + Z_2(\omega) + Z_3(\omega) + Z_4(\omega) = 2\}.$$

100A

Coin

Example 4: Coin flipping

 $Z_i(\omega) = 1$ if i-th flip is head; $Z_i(\omega) = 0$ if i-th flip is tail.

```
H H H H 4 heads
     H H 3 heads
     H H 3 heads
H H T T 2 heads
    H T 2 heads
HTTH 2 heads
    H T 2 heads
T H T H 2 heads
    H H 2 heads
H T T T 1 heads
T H T T 1 heads
T T T H 1 heads
T T T T O heads
```

Let $X(\omega)$ be the number of heads in the sequence ω .

$$X(\omega) = Z_1(\omega) + Z_2(\omega) + Z_3(\omega) + Z_4(\omega).$$

$$P(A_k) = P(\{\omega : X(\omega) = k\}) = P(X = k) = p_k.$$

$$(p_k, k = 0, 1, 2, 3, 4) = (1, 4, 6, 4, 1)/16.$$

100A

Ying Nian W

Basics

Populatio

Area

Coin

Marko

Example 4: Coin flipping

HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, HHTH, TTHH, HTTH, HTTT, HTHH, THTH, TTTH

$$|A_2| = 6.$$

 $|A_2| = {4 \choose 2} = \frac{4 \times 3}{2}.$

4 positions, choose 2 of them to be heads, and the rest are tails.

Multiplication

100A

Ying Nian W

Basics Populatio Area

Area Coin

Markov Reasoning Ordered pair: roll a die twice

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Experiment 1 has n_1 outcomes. For each outcome of experiment 1, experiment 2 has n_2 outcomes. The number of all possible pairs is $n_1 \times n_2$.

Multiplication

Multiplication

Ordered pair: flip a coin and roll a die

100A

Ying Nian W

Basics

Population

Area

Coin

ivialito

Reasonin

Multiplication

100

Ying Nian W

Basics

Populatio

Area

Coin

Markov

Reasonii

Multiplication

Ordered triplet

Permutation

100A

Ying Nian W

Basics
Population
Area
Coin

n different cards. Choose k of them. Order matters. Number of different sequences:

$$P_{n,k} = n(n-1)...(n-k+1).$$
 $P_{4,2} = 4 \times 3 = 12.$

$$P_{n,n} = n!$$
.

How many different ways to permute things.

Combination

100A

Coin

n different balls. Choose k of them. Order does NOT matters. Number of different combinations:

$$\binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$

$$\binom{4}{2} = \frac{4 \times 3}{2} = 6.$$

Combination

100A

Ying Nian W

Basics Population

Coin

Markov

Basics

Each combination corresponds to k! permutations.

$$\binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$
$$\binom{4}{2} = \frac{4 \times 3}{2} = 6.$$

Coin flipping

100A

Coin

Example 4: Coin flipping

HHHH, THHH, HTHT, TTHT, HHHT, HHTT, THHT, THTT, HHTH, TTHH, HTTH, HTTT, HTHH, THTH, TTTH, TTTT

$$|A_2| = {4 \choose 2} = \frac{4 \times 3}{2} = 6.$$

In general, flip a fair coin n times independently,

$$P(A_k) = P(\{\omega : X(\omega) = k\}) = P(X = k) = \frac{\binom{n}{k}}{2^n}.$$

100A

Markov

Either go forward or backward by flipping a fair coin. Walk n steps.

Number of heads X = k, then random walk ends up at Y = m = k - (n - k) = 2k - n, k = (m + n)/2.

$$P(Y = m) = P(X = k) = \frac{\binom{n}{k}}{2^n} = \frac{\binom{n}{(m+n)/2}}{2^n}.$$

100A

Ying Nian Wi

Either go forward or backward by flipping a fair coin.

Basics
Population
Area
Coin

Markov

Reasoning

Number of heads X = k, then random walk ends up at Y = m = k - (n - k) = 2k - n, k = (m + n)/2.

$$P(Y = m) = P(X = k) = \frac{\binom{n}{k}}{2^n} = \frac{\binom{n}{(m+n)/2}}{2^n}.$$

100/

Ying Nian W

Basics

Populatio

Markov

Reasonin

Example 4: Coin flipping Pascal triangle

n = 0	Н	н	н	н	4 heads
	Н	Н	Н	Т	3 heads
	Н	Т	Н	Н	3 heads
n=1	Н	Н	Т	Н	3 heads
	T	Н	Н	Н	3 heads
	Н	Н	Т	Т	2 heads
n=2	Н	Т	Н	Т	2 heads
	Н	Т	T	Н	2 heads
2	Т	Н	Н	Т	2 heads
n=3	Т	Н	Т	Н	2 heads
	Т	Т	Н	Н	2 heads
	Н	Т	Т	Т	1 heads
n = 4	Т	Н	T	Т	1 heads
	Т	Т	Н	Т	1 heads
	Т	Т	Т	Н	1 heads
n = 5	T	Т	T	Т	0 heads

Galton board

100A

Ying Nian W

Basics

Populatio

Area

Coin

Markov

Reasonin

Example 4: Coin flipping

All 2^n paths are equally likely.

Number of paths that end up in k-th bin $= \binom{n}{k}$.

X: destination. $P(X = k) = \binom{n}{k}/2^n$. How often the balls fall into k-th bin.

la

Transition probability

100A

Ying Nian W

Populatio

Area Coin

Markov

Either go forward or backward

$$X_t = Z_1 + Z_2 + \dots + Z_t.$$

 $Z_k = 1$ or -1 with probability 1/2 each.

$$X_{t+1} = X_t + Z_{t+1}$$
.

$$P(X_{t+1} = x + 1 | X_t = x) = P(X_{t+1} = x - 1 | X_t = x) = 1/2.$$

Markov chain

100A

Ying Nian W

Basics
Population
Area
Coin

Markov

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

Markov property: past history before X_t does not matter.

Population migration

100A

Ying Nian W

Basics
Population
Area
Coin
Markov

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

Statistics ucta

Imagine 1 million people migrating. At each step, for each state, half of the people stay, 1/4 go to each of the other two states.

Transition matrix

100A

Ying Nian W

Basics
Population
Area
Coin

Markov

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

$$\mathbf{K} = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{bmatrix}$$

Marginal probability

100A

Ying Nian W

Basics
Population
Area
Coin
Markov

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

$$p_i^{(t)} = P(X_t = i).$$

Imagine 1 million people migrating. $p_i^{(t)}$ is the number of people (in million) in state i at time t.

$$\mathbf{p}^{(t)} = (p_1^{(t)}, p_2^{(t)}, p_3^{(t)}).$$

Population migration

100A

Ying Nian W

Basics
Population
Area
Coin

Markov Reasoning

Example 5: Random walk over three states

$$p_i^{(t)} = P(X_t = i).$$

Imagine 1 million people migrating. $p_i^{(t)}$ is the number of people (in million) in state i at time t.

$$\mathbf{p}^{(t)} = (p_1^{(t)}, p_2^{(t)}, p_3^{(t)}).$$

Population migration

100A

Markov

Example 5: Random walk over three states

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

$$p_i^{(t)} = P(X_t = i).$$

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$

Number of people in state j at time t + 1 = sum number ofpeople in state i at time $t \times$ fraction of those in i who go to j.

100A

Markov

Example 5: Random walk over three states

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$
$$p_i^{(t)} \to \pi_i.$$
$$\pi_j = \sum_i \pi_i K_{ij}.$$

Stationary distribution, arrow of time.

Matrix multiplication

100A

Ying Nian W

Basics

Population

C-:-

Markov

Reasoning

Example 5: Random walk over three states

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$
$$p^{(t+1)} = p^{(t)} K.$$
$$p^{(t)} = p^{(0)} K^t \to \pi.$$

Google pagerank

100A

Ying Nian W

Basics
Population
Area
Coin

Markov

Example 5: Random walk

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$

$$p_i^{(t)} \to \pi_i$$
.

$$\pi_j = \sum_i \pi_i K_{ij}.$$

Statistics recta

 π_i : proportion of people who are in page i.

Popularity of i depends on the popularities of pages linked to i.

Chain rule

100A

Ying Nian W

Basics Population Area

Marko

Markov Reasoning

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

- (1) As if we randomly throw a point into B.
- (2) When B happens, how often A happens.

Chain rule:

$$P(A \cap B) = P(B)P(A|B).$$

B happens 1/2 times. When B happens, A happens 3/4 times. How often A and B happen together?

Chain rule and rule of total probability

100A

Ying Nian V

Basics

Populatio

Α....

Coin

Markov

_

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Chain rule:

$$P(A \cap B) = P(B)P(A|B).$$

$$P(X_{t+1} = j \cap X_t = i) = P(X_t = i)P(X_{t+1} = j | X_t = i)$$
$$= p_i^{(t)} K_{ij}.$$

Rule of total probability:

$$P(X_{t+1} = j) = \sum_{i} P(X_{t+1} = j \cap X_t = i).$$

$$p_j^{(t+1)} = \sum_{i} p_i^{(t)} K_{ij}.$$

Add up probabilities of alternative chains of events.

Independence

100A

Ying Nian W

Basic

Populatio

Area

Coin

Markov

Reason

Conditional:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Chain rule:

$$P(A\cap B)=P(B)P(A|B).$$

Independence

$$P(A|B) = P(A).$$

$$P(A \cap B) = P(A)P(B).$$

A and B have nothing to do with each other.

Independence

100A

Ying Nian Wi

Markov

Definition 1:

$$P(A|B) = P(A).$$

Definition 2:

$$P(A \cap B) = P(A)P(B).$$

Conditional independence

100A

Markov

Markov chain: $C \to B \to A$,

$$P(A|B,C) = P(A|B).$$

$$P(X_{t+1} = j | X_t = i, X_{t-1}, ..., X_0) = P(X_{t+1} = j | X_t = i).$$

Future is independent of the past given present.

Immediate cause (parent), remote cause (grandparent).

Shared cause: $C \leftarrow B \rightarrow A$.

$$P(A \cap C|B) = P(A|B)P(C|B).$$

Children given parent.

Reasoning

100A

Ying Nian W

Basics

opulatio

Area

Coin

iviarko

Reasoning

Example 6: Rare disease example

1% of population has a rare disease.

A random person goes through a test.

If the person has disease, 90% chance test positive.

If the person does not have disease, 90% chance test negative.

If tested positive, what is the chance he or she has disease?

$$P(D) = 1\%.$$

$$P(+|D) = 90\%, P(-|N) = 90\%.$$

$$P(D|+) = ?$$

Reasoning

100A

Ying Nian Wu

Basics

Populatio

Area

Coir

IVIAIKU

Reasoning

Example 6: Rare disease example

$$P(D) = 1\%.$$

$$P(+|D) = 90\%$$
, $P(-|N) = 90\%$.

$$P(D|+) = ?$$

 $P(D|+) = \frac{9}{9+99} = \frac{1}{12}$. $P(\text{alarm} \mid \text{fire}) \text{ vs } P(\text{fire} \mid \text{alarm})$.

100A

Ying Nian W

Basi

Populati

Aron

Coin

Marko

Reasoning

Example 6: Rare disease example

$$P(D) = 1\%.$$

 $P(+|D) = 90\%, P(-|N) = 90\%.$

$$P(D \cap +) = P(D)P(+|D) = 1\% \times 90\%.$$

 $P(N \cap +) = P(N)P(+|N) = 99\% \times 10\%.$

$$P(D|+) = \frac{P(D\cap+)}{P(+)} = \frac{9}{9+99} = \frac{1}{12}.$$

100A

Ying Nian Wi

Basics

Population

Coin

Coin

Marko

Reasoning

General formula

 $m \text{ causes: } C_1, ..., C_i, ..., C_m.$

 $n \text{ effects: } E_1,...,E_j,...,E_n.$

Given:

Prior: $P(C_i), i = 1, ..., m$.

Conditional: $P(E_j|C_i), j = 1, ..., n$.

Cause

Effect

Causal direction

100A

Ying Nian W

Basic

Population

Alea

Markov

Reasoning

Prior: $P(C_i), i = 1, ..., m$.

Conditional: $P(E_j|C_i), j = 1, ..., n$.

Posterior: $P(C_i|E)$.

$$P(C_i \cap E) = P(C_i)P(E|C_i).$$

$$P(E) = \sum_{i} P(C_i \cap E) = \sum_{i} P(C_i) P(E|C_i).$$

$$P(C_i|E) = \frac{P(C_i \cap E)}{P(E)} = \frac{P(C_i)P(E|C_i)}{\sum_{i'} P(C_{i'})P(E|C_{i'})}.$$

100A

Ying Nian W

Basics

Population

Area

Coin

Marko

Reasoning

$$P(X = i | Y = j) = \frac{P(X = i \cap Y = j)}{P(Y = j)}$$
$$= \frac{P(X = i)P(Y = j | X = i)}{\sum_{i'} P(X = i')P(Y = j | X = i')}.$$

100A

Ying Nian W

Basic

Populati

Area

. .

Coli

Reasoning

$$P(X = i | Y = j) = \frac{P(X = i \cap Y = j)}{P(Y = j)}$$
$$= \frac{P(X = i)P(Y = j | X = i)}{\sum_{i'} P(X = i')P(Y = j | X = i')}.$$

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(x)p(y|x)}{\sum_{x'} p(x')p(y|x')}.$$

Reasoning

100A

Ying Nian W

Basics Population

Area

Coin

Markov Reasoning Conditional probability is regular probability,

- (1) cause \rightarrow effect, physical, P(E|C) is given, C defines experiment.
- (2) effect \to cause, mental, $P(C|E) = P(C \cap E)/P(E),$ as if E is the sample space.

Bayes network, directed acyclic graph, graphic model

Statistics

Conditional independence:

- (1) Sibling nodes are independent given parent node.
- (2) Child node is independent of grandparents given parent. 70/71

Take home message

100A

Ying Nian W

Basic

Populatio

C-:-

Markov

Reasoning

As long as you can count

Count the number of people (equally likely possibilities)

Count the number of points (or repetitions)

Count the number of sequences (of coin flipping)

Two things

- (1) Intuition, visualization and motivation
- (2) Precise notation and formula

Accomplished

Most of the important concepts via intuitive examples

Next

Systematic and more in-depth treatments

