STATS 100A: RANDOM VARIABLES

Ying Nian Wu

Department of Statistics
University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

Random variables

Connection to events:

Randomly sample a person ω from a population Ω.
$X(\omega)$: gender of $\omega, \Omega \rightarrow\{0,1\}$.
$Y(\omega)$: height of $\omega, \Omega \rightarrow \mathbb{R}^{+}$. $A=\{\omega: X(\omega)=1\} . P(A)=P(X=1)$. Discrete. $B=\{\omega: Y(\omega)>6\} . P(B)=P(Y>6)$. Continuous.
We shall study random variables more systematically. $\omega \in \Omega$ equally likely, but $X(\omega)$ and $Y(\omega)$ are not necessarily equally likely.

Ying Nian Wu

Discrete
Continuous
Process

Discrete random variables

Roll a die

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	$\mathbf{6}$
$\mathrm{p}(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$
p(x)=P(X=x)
$$

Capital letter: random variable
Lower case: particular value, running variable

$$
X \sim p(x)
$$

Probability distribution

Biased die:

Randomly throw a point into $[0,1]$, which bin $(1,2, \ldots, 6)$ it falls into?
$\omega \in \Omega=[0,1]$, equally likely.
$X(\omega)$ is the bin that ω belongs to, not necessarily equally likely. Throw 1 million points, what is the proportion of points in each bin? Or how often the points fall into each bin?

Probability distribution

Biased die:

x	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6
$\mathrm{p}(x)$	0.1	0.2	0.1	0.2	0.1	0.3
	10%	20%	10%	20%	10%	30%

$$
p(x)=P(X=x) .
$$

$p(x)$: how often $X=x$.
$p(x)$: probability mass function, probability distribution, law $\sum_{x} p(x)=1$.
$P(X \in\{5,6\})=p(5)+p(6)$.
$P(X \in[a, b])=\sum_{x \in[a, b]} p(x)$.

Expectation

Ying Nian Wu

Discrete
Continuous
Process

Biased die

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6
$\mathbf{p}(x)$	0.1	0.1	0.2	0.2	0.1	0.3

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\#$	0.1 m	0.1 m	0.2 m	0.2 m	0.1 m	0.3 m
$\%$	10%	10%	20%	20%	10%	30%

average $=\frac{(1 \times 0.1 m+2 \times 0.1 m+3 \times 0.2 m+4 \times 0.2 m+5 \times 0.1 m+6 \times 0.3 m)}{1 m}$

$$
\mathbb{E}(X)=\sum_{x} x p(x)
$$

Expectation

Biased die

Ying Nian Wu

Discrete
Continuous
Process

x	1	2	3	4	5	6
$p(x)$	0.1	0.1	0.2	0.2	0.1	0.3

x	1	2	3	4	5	6
$\#$	0.1 m	0.1 m	0.2 m	0.2 m	0.1 m	0.3 m
$\%$	10%	10%	20%	20%	10%	30%

$$
\text { average }=\frac{(1 \times 0.1 \mathrm{~m}+2 \times 0.1 \mathrm{~m}+3 \times 0.2 \mathrm{~m}+4 \times 0.2 \mathrm{~m}+5 \times 0.1 \mathrm{~m}+6 \times 0.3 \mathrm{~m})}{1 \mathrm{~m}}
$$

x	1	2	3	4	5	6	x
payoff	$-\$ 30$	$-\$ 20$	$\$ 0$	$\$ 20$	$\$ 30$	$\$ 100$	$h(x)$
	$h(1)$	$h(2)$	$h(3)$	$h(4)$	$h(5)$	$h(6)$	

longrun average $=(-\$ 30) \times 0.1+(-\$ 20) \times 0.1+(\$ 0) \times 0.2+(\$ 20) \times 0.2+(\$ 30) \times 0.1+(\$ 100) \times 0.3$

$$
\mathbb{E}(h(X))=\sum_{x} h(x) p(x)
$$

Utility

Utility, reward, value

Ying Nian Wu

Discrete
Continuous
Process

$$
\mathbb{E}(h(X))=\sum_{x} h(x) p(x)
$$

Offer $\mathbf{1}$	
\boldsymbol{x}	$\mathbf{\$ 1 0 0}$
$\mathbf{p}(\boldsymbol{x})$	1

Offer 2		
\boldsymbol{x}	$\boldsymbol{\$ 0}$	$\mathbf{\$ 2 0 0}$
$\mathbf{p}(\boldsymbol{x})$	$1 / 2$	$1 / 2$

$E(X)=(\$ 0) \times \frac{1}{2}+(\$ 200) \times \frac{1}{2}=\$ 100$

\boldsymbol{x} : face value	$\mathbf{\$ 0}$	$\mathbf{\$ 1 0 0}$	$\mathbf{\$ 2 0 0}$
$\mathbf{h}(\boldsymbol{x})$: perceived value	$\mathbf{\$ 0}$	$\mathbf{\$ 1 0 0}$	$\$ 150$

Offer $1: \mathbb{E}[h(X)]=\$ 100 \times 1=\$ 100$.
Offer 2: $\mathbb{E}[h(X)]=\$ 0 \times \frac{1}{2}+\$ 150 \times \frac{1}{2}=\$ 75$.

Variance

```
100A
```

$$
\begin{aligned}
& \mathbb{E}(X)=\sum_{x} x p(x)=\mu(=\$ 0 \times 1 / 2+\$ 200 \times 1 / 2=\$ 100) \\
& \begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} p(x)=\sigma^{2} \\
& =(\$ 0-\$ 100)^{2} \times 1 / 2+(\$ 200-\$ 100)^{2} \times 1 / 2 \\
& =\$^{2} 10,000
\end{aligned}
\end{aligned}
$$

Long run average of squared deviation from the mean.

$$
S D(X)=\sqrt{\operatorname{Var}(X)}=\sigma(=\$ 100)
$$

Extent of variation from the mean.

Variance

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	\boldsymbol{x}
payoff	$-\$ 30$	$-\$ 20$	$\$ 0$	$\$ 20$	$\$ 30$	$\$ 100$	$h(x)$
	$h(1)$	$h(2)$	$h(3)$	$h(4)$	$h(5)$	$h(6)$	

longrun average $=(-\$ 30) \times 0.1+(-\$ 20) \times 0.1+(\$ 0) \times 0.2+(\$ 20) \times 0.2+(\$ 30) \times 0.1+(\$ 100) \times 0.3$

$$
\begin{gathered}
\mathbb{E}(h(X))=\sum_{x} h(x) p(x) \\
\operatorname{Var}[h(X)]=\mathbb{E}\left[(h(X)-\mathbb{E}(h(X)))^{2}\right] .
\end{gathered}
$$

Ying Nian Wu

Discrete
Continuous
Process

Data

$$
\begin{gathered}
\mathbb{E}(h(X))=\sum_{x} h(x) p(x) . \\
Y=a X+b .
\end{gathered}
$$

$$
\begin{aligned}
\mathbb{E}(Y) & =\mathbb{E}(a X+b) \\
& =\sum_{x}(a x+b) p(x) \\
& =\sum_{x} a x p(x)+\sum_{x} b p(x) \\
& =a \sum_{x} x p(x)+b \sum_{x} p(x) \\
& =a \mathbb{E}(X)+b .
\end{aligned}
$$

Ying Nian Wu

Discrete
Sampling $p(x) \rightarrow x_{1}, \ldots, x_{i}, \ldots, x_{n}$
(e.g., rolling a die $\rightarrow 2,1,6,5,3,2,5,4,3, \ldots$)

$$
\begin{gathered}
y_{i}=a x_{i}+b . \\
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mathbb{E}(X)=\mu . \\
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(a x_{i}+b\right)=a \frac{1}{n} \sum_{i=1}^{n} x_{i}+b=a \bar{x}+b .
\end{gathered}
$$

Linear transformation

$$
\begin{gathered}
\operatorname{Var}(h(X))=\mathbb{E}\left[(h(X)-\mathbb{E}(h(X)))^{2}\right] . \\
\operatorname{Var}(Y)=\mathbb{E}\left[(Y-\mathbb{E}(Y))^{2}\right] . \\
\mathbb{E}(Y)=a \mathbb{E}(X)+b .
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Var}(a X+b) & =\mathbb{E}\left[((a X+b)-\mathbb{E}(a X+b))^{2}\right] \\
& =\mathbb{E}\left[(a X+b-(a \mathbb{E}(X)+b))^{2}\right] \\
& =\mathbb{E}\left[(a(X-\mathbb{E}(X)))^{2}\right] \\
& =a^{2} \mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=a^{2} \operatorname{Var}(X) .
\end{aligned}
$$

Ying Nian Wu

Discrete
Continuous
Process
Sampling $p(x) \rightarrow x_{1}, \ldots, x_{i}, \ldots, x_{n}$
(e.g., rolling a die $\rightarrow 2,1,6,5,3,2,5,4,3, \ldots$)

$$
\begin{gathered}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mathbb{E}(X)=\mu . \\
y_{i}=a x_{i}+b . \\
\bar{y}=\frac{1}{n} \sum_{i=1}^{n}\left(a x_{i}+b\right)=a \frac{1}{n} \sum_{i=1}^{n} x_{i}+b=a \bar{x}+b . \\
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(a x_{i}+b-(a \bar{x}+b)\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} a^{2}\left(x_{i}-\bar{x}\right)^{2} .
\end{gathered}
$$

Short-cut for variance

100A

Ying Nian Wu

$$
\mu=\mathbb{E}(X)
$$

Discrete
Continuous
Process

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mu)^{2}\right] \\
& =\mathbb{E}\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mu \mathbb{E}(X)+\mu^{2} \\
& =\mathbb{E}\left(X^{2}\right)-\mu^{2}=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[h(X)+g(X)] & =\sum_{x}[h(x)+g(x)] p(x) \\
& =\sum_{x} h(x) p(x)+\sum_{x} g(x) p(x) \\
& =\mathbb{E}[h(X)]+\mathbb{E}[g(X)]
\end{aligned}
$$

Transformation

Ying Nian Wu

$$
h(x)=a x+b .
$$

$$
\mathbb{E}[h(X)]=\mathbb{E}(a X+b)=a \mathbb{E}(X)+b=h(\mathbb{E}(X))
$$

$$
\begin{gathered}
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2} \\
h(x)=x^{2} \\
\mathbb{E}[h(X)]=\mathbb{E}\left(X^{2}\right) \\
h(\mathbb{E}(X))=[\mathbb{E}(X)]^{2}
\end{gathered}
$$

Convex function

100A

Ying Nian Wu

Discrete
Continuous

Process

Upper envelop and supporting lines

$$
g(x) \geq a_{0} x+b_{0} ; g\left(x_{0}\right)=a_{0} x_{0}+b_{0} .
$$

Supporting line at x_{0} touches $g(x)$ at x_{0}, but below $g(x)$ at other places.

Jensen inequality

$$
\begin{aligned}
& P(X=a)=P(X=b)=1 / 2 \\
& \mathbb{E}(X)=(a+b) / 2, g(\mathbb{E}(X))=g((a+b / 2) \\
& \mathbb{E}(g(X))=(g(a)+g(b)) / 2 \\
& \mathbb{E}(g(X)) \geq g(\mathbb{E}(X))
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}=\mathbb{E}(X) \\
& g\left(x_{0}\right)=a_{0} x_{0}+b_{0} \text { (supporting line at } x_{0} \text {) } \\
& g(x) \geq a_{0} x+b_{0} \\
& \mathbb{E}(g(X)) \geq \mathbb{E}\left(a_{0} X+b_{0}\right)=a_{0} \mathbb{E}(X)+b_{0}=a_{0} x_{0}+b_{0}=g(\mathbb{E}(X)) .
\end{aligned}
$$

Entropy

100A

Ying Nian Wu

Discrete
Continuous
Process

	a	b	c	d
Pr	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 8$
$\mathbf{f l i p s}$	H	$T T$	THH	$T H T$

Ying Nian Wu

Discrete
Continuous
Process

Coin flippings

Ying Nian Wu

Discrete
Continuous

Process

Coding

Prefix code

	a	b	c	d
Pr	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 8$
code	1	00	011	010

$100101100010 \rightarrow$ abacbd
$\mathbf{E}[l(X)]=\sum_{x} l(x) p(x)=1 \times \frac{1}{2}+2 \times \frac{1}{4}+3 \times \frac{1}{8}+3 \times \frac{1}{8}=\frac{7}{4}$ bits

Coding

Ying Nian Wu

Discrete
Continuous
Process

Optimal code

$$
\left.\begin{array}{c|cccc}
& a & b & c & d \\
\hline \operatorname{Pr} & 1 / 2 & 1 / 4 & 1 / 8 & 1 / 8
\end{array}\right] \begin{aligned}
& \text { code } \\
& \hline
\end{aligned}
$$

Bernoulli

```
100A
```


Ying Nian Wu

Discrete
Continuous
Process
Flip a coin (probability of head is p)
$Z \sim \operatorname{Bernoulli}(p)$
$Z \in\{0,1\}, P(Z=1)=p$ and $P(Z=0)=1-p$.

$$
\mathbb{E}(Z)=0 \times(1-p)+1 \times p=p
$$

$$
\begin{aligned}
\operatorname{Var}(Z) & =(0-p)^{2} \times(1-p)+(1-p)^{2} \times p \\
& =p(1-p)[p+(1-p)]=p(1-p)
\end{aligned}
$$

$$
\mathbb{E}\left(Z^{2}\right)=p
$$

$$
\operatorname{Var}(Z)=\mathbb{E}\left(Z^{2}\right)-\mathbb{E}(Z)^{2}=p-p^{2}=p(1-p)
$$

Binomial

Flip a coin (probability of head is p) n times independently. $X=$ number of heads.
$X \sim \operatorname{Binomial}(n, p)$

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

$\binom{n}{k}$ is the number of sequences with exactly k heads. $p^{k}(1-p)^{n-k}$ is the probability of each sequence with exactly k heads.
e.g., $n=3$,
$P(X=2)=P(H H T)+P(H T H)+P(T H H)=3 p^{2}(1-p)$.
$p=1 / 2$, we have $P(X=k)=\binom{n}{k} / 2^{n}$.

Recall independence

100A
Ying Nian Wu

Discrete
Continuous
Process

Definition 1:

$$
P(A \mid B)=P(A)
$$

Definition 2:

$$
P(A \cap B)=P(A) P(B)
$$

Binomial formula

100A

Ying Nian Wu
Discrete
Continuous
Process

Binomial

Let $a=p, b=q=1-p$. Randomly throw a point into unit cube, equally likely setting.
Each rectangular piece corresponds to a particular sequence. Each color corresponds to a particular number of heads.

Binomial

100A

Ying Nian Wu

Discrete
Continuous
Process

$$
\begin{aligned}
& \text { Let } a=p, b=q=1-p \\
& n=2, P(X=2)=P(H H)=p^{2} \\
& P(X=0)=P(T T)=(1-p)^{2} \\
& P(X=1)=P(H T)+P(T H)=2 p(1-p) \\
& n=3, P(X=3)=P(H H H)=p^{3} \\
& P(X=2)=P(H H T)+P(H T H)+P(T H H)=3 p^{2}(1-p)
\end{aligned}
$$

Binomial and Bernoulli

100A

Ying Nian Wu

Discrete

$$
X=Z_{1}+Z_{2}+\ldots+Z_{n},
$$

where $Z_{i} \sim \operatorname{Bernoulli}(p)$ independently.

$$
\mathbb{E}(X)=\sum_{i=1}^{n} \mathbb{E}\left(Z_{i}\right)=n p
$$

Due to independence of $Z_{i}, i=1, \ldots, n$,

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(Z_{i}\right)=n p(1-p)
$$

Frequency

100A

Ying Nian Wu

Discrete
X / n is the frequency of heads.

$$
\begin{gathered}
\mathbb{E}(X / n)=\mathbb{E}(X) / n=p \\
\operatorname{Var}(X / n)=\operatorname{Var}(X) / n^{2}=p(1-p) / n
\end{gathered}
$$

$\operatorname{Var}(X / n) \rightarrow 0$ as $n \rightarrow \infty$.

$$
X / n \rightarrow p, \text { in probability }
$$

Law of large number
Probability = long run frequency

Law of large number

long run frequency \rightarrow probability
Flip a fair coin independently $\rightarrow 2^{n}$ sequences, Ω.

$$
A_{\epsilon}=\{\omega: X(\omega) / n \in(1 / 2-\epsilon, 1 / 2+\epsilon)\},
$$

the set of sequences whose frequencies of heads are close to $1 / 2$.

$$
P(X / n \in(1 / 2-\epsilon, 1 / 2+\epsilon))=\frac{\left|A_{\epsilon}\right|}{|\Omega|} \rightarrow 1
$$

Almost all the sequences have frequencies of heads close to $1 / 2$.
e.g., $n=1$ million. Almost all the $2^{1 \text { million }}$ sequences have frequencies of heads to be within [.49, .51].

Law of large number

e.g., $n=1$ million. Almost all the 2^{1} million sequences have frequencies of heads to be within [.49, .51].

$$
\begin{aligned}
P(X / 1 m \in[.49, .51]) & =P(X \in[.49 m, .51 m]) \\
& =\sum_{k=.49 m}^{.51 m}\binom{1 m}{k} / 2^{1 m} \approx 1
\end{aligned}
$$

Binomial expectation

100A

Ying Nian Wu

Discrete
Continuous
Process

$$
\begin{aligned}
& \mathbb{E}(X)= \sum_{k=0}^{n} k P(X=k) \\
&= \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
&= \sum_{k=1}^{n} n p \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k} \\
&= \sum_{k^{\prime}=0}^{n^{\prime}} n p\binom{n^{\prime}}{k^{\prime}} p^{k^{\prime}}(1-p)^{n^{\prime}-k^{\prime}}=n p \\
& \quad k^{\prime}=k-1 ; n^{\prime}=n-1
\end{aligned}
$$

Binomial variance

```
100A
```


Ying Nian Wu

Discrete
Continuous
Process

$$
\begin{aligned}
\mathbb{E}(X(X-1)) & =\sum_{k=0}^{n} k(k-1) P(X=k) \\
& =\sum_{k=0}^{n} k(k-1) \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\sum_{k=2}^{n} n(n-1) p^{2} \frac{(n-2)!}{(k-2)!(n-k)!} p^{k-2}(1-p)^{n-k} \\
& =\sum_{k^{\prime}=0}^{n^{\prime}} n(n-1) p^{2}\binom{n^{\prime}}{k^{\prime}} p^{k^{\prime}}(1-p)^{n^{\prime}-k^{\prime}} \\
& =n(n-1) p^{2} .
\end{aligned}
$$

$$
k^{\prime}=k-2 ; n^{\prime}=n-2
$$

Binomial variance

100A

Ying Nian Wu

Discrete
Continuous

$$
\begin{gathered}
\mathbb{E}(X)=n p \\
\mathbb{E}(X(X-1))=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)=n(n-1) p^{2} \\
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2} \\
=n(n-1) p^{2}+n p-(n p)^{2} \\
=n p-n p^{2}=n p(1-p)
\end{gathered}
$$

Process

Survey sampling

A box with R red balls and B blue balls. $N=R+B$ balls in total.
Randomly pick a ball. $P($ red $)=R / N=p$.
Randomly pick n balls sequentially (with replacement, put the picked ball back). Let $X=$ number of red balls.
The distribution of X :
$X \sim \operatorname{Binomial}(n, p=R / N)$.
Survey sampling, poll.

Survey sampling

$\Omega=$ all N^{n} sequences, equally likely.
$X(\omega)$: number of red balls in sequence $\omega \in \Omega$.
$A_{k}=\{\omega: X(\omega)=k\}$, all sequences with k read balls.
Choose k blanks from n blanks. For each chosen blank, fill in a red ball. For each unchosen blank, fill in a blue ball.

$$
\left|A_{k}\right|=\binom{n}{k} R^{k} B^{n-k}
$$

Axiom 0:

$$
P\left(A_{k}\right)=P(X=k)=\frac{\left|A_{k}\right|}{|\Omega|}=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

$\mathbb{E}(X)=$ average of $X(\omega)$ over all N^{n} sequences. $\operatorname{Var}(X)=$ variance of $X(\omega)$ over all N^{n} sequences.

Law of large number

$\Omega=$ all N^{n} sequences, equally likely.
$X(\omega)$: number of red balls in sequence $\omega \in \Omega$.
$X(\omega) / n$: frequency of red balls in sequence ω.
$\mathbb{E}(X / n)=p=R / N=$ average of $X(\omega) / n$ over all the N^{n} sequences in Ω.
$\operatorname{Var}(X / n)=p(1-p) / n=$ variance of $X(\omega) / n$ over all the N^{n} sequences in Ω.
Law of large number: Among all N^{n} equally likely sequences, almost all of them have $X(\omega) / n$ close to p.

Monte Carlo

Randomly throw n points into the unit square. Let m be the number of points falling below the curve.

The distribution of m is:
$m \sim \operatorname{Binomial}(n, p=\pi / 4)$.
$\Omega=$ all possible sequences of points $=[0,1]^{2 n}$.

Geometric

$T \sim \operatorname{Geometric}(p)$
T is the number of flips to get the first head, if we flip a coin independently and the probability of getting a head in each flip is p.

$$
P(T=k)=(1-p)^{k-1} p
$$

e.g., $T=1, H$
$T=2, T H$.
$T=3, T T H$.
$T=4, T T T H$.
Waiting time.

Geometric expectation

$$
T \sim \operatorname{Geometric}(p)
$$

$$
\begin{aligned}
\mathbb{E}(T) & =\sum_{k=1}^{\infty} k P(T=k) \\
& =\sum_{k=1}^{\infty} k q^{k-1} p=p \sum_{k=1}^{\infty} \frac{d}{d q} q^{k} \\
& =p \frac{d}{d q} \sum_{k=1}^{\infty} q^{k}=p \frac{d}{d q}\left(\frac{1}{1-q}-1\right) \\
& =p \frac{1}{(1-q)^{2}}=\frac{1}{p} .
\end{aligned}
$$

Geometric series

Ying Nian Wu

Discrete
Continuous
Process

$$
\begin{aligned}
&(1-a)\left(1+a+\ldots+a^{m}\right)= 1+a+\ldots+a^{m} \\
&-\left(a+a^{2}+\ldots+a^{m}+a^{m+1}\right) \\
&= 1-a^{m+1} \\
& 1+a+\ldots+a^{m}=\frac{1-a^{m+1}}{1-a} .
\end{aligned}
$$

If $|a|<1$,

$$
a^{m+1} \rightarrow 0, \text { as } m \rightarrow \infty
$$

Quantum bit

state vector $=\alpha|0\rangle+\beta|1\rangle$.
state vector rotates over time.
squared length $=|\alpha|^{2}+|\beta|^{2}=1$ under rotation.
observer: $p(0)=|\alpha|^{2}, p(1)=|\beta|^{2}$.

$$
\frac{1}{\sqrt{2}}\left|y+\frac{1}{\sqrt{2}}\right| \Rightarrow \Rightarrow
$$

Schrodinger cat: $\mathrm{P}($ alive $)=(1 / \sqrt{2})^{2}=1 / 2$.

Recall discrete random variable

Continuous
Process

$$
P(X=x)=p(x)
$$

Probability histogram

area of bin $x=p(x)$.
Randomly throw a point ω into the whole blue region Ω, $X(\omega)=x$ if ω falls into bin x.

Continuous random variable

Continuous (e.g., height).
Discretize x-axis into equally spaced bins $(x, x+\Delta x)$, e.g., (6 $\mathrm{ft}, 6 \mathrm{ft} 1$ inch), precision $=1$ inch.

$$
P(X \in(x, x+\Delta x))=f(x) \Delta x
$$

$f(x)$: height of bin $(x, x+\Delta x) . f(x) \Delta x$: area.
Randomly throw a point ω into the whole blue region Ω, $X(\omega)=x$ if the point falls into bin $(x, x+\Delta x)$.

Probability density function

Let $\Delta x \rightarrow 0$, continuous.

Randomly throw a point ω into the region Ω under curve $f(x)$.
Return $X(\omega)=$ horizontal coordinate of the point.
Repeat n (e.g., 1000) times, frequency \rightarrow probability,

$$
P(X \in(x, x+\Delta x))=f(x) \Delta x .
$$

How often $X \in(x, x+\Delta x)$.

Probability density function

Let $\Delta x \rightarrow 0$, continuous.

$$
\begin{gathered}
P(X \in(x, x+\Delta x))=f(x) \Delta x . \\
P(X \in(a, b)) \approx \sum_{\text {bins }} f(x) \Delta x \rightarrow \int_{a}^{b} f(x) d x .
\end{gathered}
$$

area under $f(x)$ between a and b.

$$
\int_{-\infty}^{\infty} f(x) d x=1 .
$$

Scatterplot

Collapse the points onto x-axis.

Sample density or distribution of the n points.
Sample density at $x=$ number of points in $(x, x+\Delta x) / \Delta x$. Normalize the count m to frequency m / n, as $n \rightarrow \infty$, frequency \rightarrow probability,

$$
f(x)=\frac{P(X \in(x, x+\Delta x))}{\Delta x}
$$

Point cloud

Electron orbits around nucleus: wrong conception Electron cloud, probability density function, $f(x)$
Wave function $\psi(x)$, evolves over time.
Observer: $f(x)=|\psi(x)|^{2}$.

Prob density $=$ prob mass in the cell / volume of cell.

Point cloud

Discrete
Continuous
Process

Electron cloud, heat map, prob density

Observer: $f(x)=|\psi(x)|^{2}$.
Prob density $=$ prob mass in the cell / volume of cell.

Sample

Sample density or distribution of the n points. Sample histogram (can fluctuate if do it again). Normalize the count to frequency \rightarrow probability,

$$
f(x)=\frac{P(X \in(x, x+\Delta x))}{\Delta x}
$$

Population

Population density or distribution of the N (e.g., 300 million) points.
Population histogram (no fluctuation, always the same). Normalize the count to proportion,

$$
f(x)=\frac{P(X \in(x, x+\Delta x))}{\Delta x}
$$

Population (300 million, fixed) \rightarrow sample (1000, fluctuate) Population \rightarrow sample (1 million, fluctuation diminishes)

Population

Discrete
Continuous

Electron cloud, heat map, prob density

Population of N equally likely possibilities.
Mathematical idealization: $N \approx \infty$.
Prob density $=$ prob mass in the cell / volume of cell.
Observer: $f(x)=|\psi(x)|^{2}$.

Cumulative density function

100A

Ying Nian Wu
Discrete
Continuous
Process

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x
$$

SAT score $x \rightarrow$ percentile $F(x)$.
Percentage of people below x.

Area and slope

Area:

$$
F(x+\Delta x)-F(x)=f(x) \Delta x
$$

Slope:

$$
F^{\prime}(x)=\frac{F(x+\Delta x)-F(x)}{\Delta x}=f(x) .
$$

Notation:

$$
\begin{gathered}
F^{\prime}(x)=\frac{d F(x)}{d x}=\frac{d}{d x} F(x)=f(x) \\
d F(x)=F^{\prime}(x) d x=f(x) d x
\end{gathered}
$$

Expectation

Recall discrete

$$
P(X=x)=p(x)
$$

Probability histogram

area of bin $x=p(x)$.

$$
\begin{gathered}
\mathbb{E}(X)=\sum x P(X=x)=\sum x p(x) \\
\mathbb{E}[h(X)]=\sum h(x) P(X=x)=\sum h(x) p(x) .
\end{gathered}
$$

Long run average.

Expectation

Continuous

$$
P(X \in(x, x+\Delta x))=f(x) \Delta x .
$$

$$
\begin{aligned}
\mathbb{E}(X)=\sum x P(X & \in(x, x+\Delta x))=\sum x f(x) \Delta x \rightarrow \int x f(x) d x . \\
\mathbb{E}[h(X)] & =\sum h(x) P(X \in(x, x+\Delta x)) \\
& =\sum h(x) f(x) \Delta x \rightarrow \int h(x) f(x) d x .
\end{aligned}
$$

Long run average, center.

Data

$f(x) \rightarrow x_{1}, \ldots, x_{i}, \ldots, x_{n}$.
$m_{x}=$ number of points in $(x, x+\Delta x)$.

$$
\begin{aligned}
\bar{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{n} \sum_{\text {bins }} x m_{x}=\sum_{\text {bins }} x \frac{m_{x}}{n} \\
& \rightarrow \sum x P(X \in(x, x+\Delta x)) \\
& =\sum x f(x) \Delta x \rightarrow \int x f(x) d x=\mathbb{E}(X)
\end{aligned}
$$

Long run average. Same logic for $\mathbb{E}(h(X))$. Same logic for population average.

Variance

Continuous

$$
P(X \in(x, x+\Delta x))=f(x) \Delta x .
$$

$$
\begin{gathered}
\mathbb{E}(X)=\int x f(x) d x=\mu \\
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\int(x-\mu)^{2} f(x) d x \\
\operatorname{Var}[h(X)]=\mathbb{E}\left[(h(X)-\mathbb{E}(h(X)))^{2}\right]
\end{gathered}
$$

Fluctuation, volatility, spread.
$U \sim \operatorname{Uniform}[0,1]$, i.e., the density of U is
$f(u)=1$ for $u \in[0,1]$ (or $f(u)=1 /(b-a)$ if $u \in[a, b])$, $f(u)=0$ otherwise.

Discrete

Continuous Process

Uniform

Imagine 1 million points distributed uniformly in [0, 1].
Number of points in $(u, u+\Delta u)$ is Δu million.
e.g., Number of points in $(.3, .31)$ is .01 million.

Ying Nian Wu

Discrete
Continuous
Process

$$
F(u)=P(U \leq u)= \begin{cases}0 & 0<u \\ u & 0 \leq u \leq 1 \\ 1 & u>1\end{cases}
$$

$F(u)$: proportion of points below u.

$$
\begin{gathered}
\mathbb{E}(U)=\int_{0}^{1} u f(u) d u=\frac{1}{2} \\
\mathbb{E}\left(U^{2}\right)=\int_{0}^{1} u^{2} f(u) d u=\frac{1}{3} \\
\operatorname{Var}(U)=\mathbb{E}\left(U^{2}\right)-(\mathbb{E}(U))^{2}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12} .
\end{gathered}
$$

Pseudo-random number generator

Linear congruential method

Start from an integer X_{0}, and iterate

$$
X_{t+1}=a X_{t}+b \bmod M
$$

Output $U_{t}=X_{t} / M$. e.g., $a=7^{5}, b=0$, and $M=2^{31}-1$. mod: divide and take the remainder, e.g., $7=2 \bmod 5$.
e.g., $a=7, b=1, M=5, X_{0}=1$, then
$X_{1}=1 \times 7+1 \bmod 5=3$.
$X_{2}=3 \times 7+1 \bmod 5=2$.

Exponential

$T \sim \operatorname{Exponential}(\lambda)$, $f(t)=\lambda e^{-\lambda t}$ for $t \geq 0$, $f(t)=0$ for $t<0$. $P(T \in(t, t+\Delta t))=\lambda e^{-\lambda t} \Delta t$.
Imagine 1 million particles, mark the times when they decay. 1 million points on real line. Their distribution is exponential. Number of points in $(t, t+\Delta t)$ is $\lambda e^{-\lambda t} \Delta t$ million.

Exponential

$$
\begin{aligned}
F(t) & =\int_{0}^{t} f(t) d t=\int_{0}^{t} \lambda e^{-\lambda t} d t \\
& =-\left.e^{-\lambda t}\right|_{0} ^{t}=1-e^{-\lambda t} .
\end{aligned}
$$

$F(t)$: proportion of points below t
Half-life: $F\left(t_{\text {half }}\right)=P\left(T \leq t_{\text {half }}\right)=1 / 2$.
1 million particles, by half life, half million will have decayed.

Exponential expectation

Ying Nian Wu

Discrete

Continuous
Process

$$
\begin{aligned}
\mathbb{E}(T) & =\int_{0}^{\infty} t \lambda e^{-\lambda t} d t \\
& =-\int_{0}^{\infty} t d e^{-\lambda t} \\
& =-\left(\left.t e^{-\lambda t}\right|_{0} ^{\infty}-\int_{0}^{\infty} e^{-\lambda t} d t\right) \\
& =-\left(0-0+\left.\frac{1}{\lambda} e^{-\lambda t}\right|_{0} ^{\infty}\right)=\frac{1}{\lambda}
\end{aligned}
$$

Integral by parts

$$
\begin{gathered}
\frac{d}{d x} u(x) v(x)=u^{\prime}(x) v(x)+u(x) v^{\prime}(x) \\
d u v=u d v+v d u \\
\int\left[u^{\prime}(x) v(x)+u(x) v^{\prime}(x)\right] d x=u(x) v(x) \\
\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int v(x) u^{\prime}(x) d x . \\
\int u d v=u v-\int v d u
\end{gathered}
$$

Integral by parts

Ying Nian Wu

Discrete

Continuous

Process

$$
\int u d v=u v-\int v d u .
$$

$$
\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int v(x) u^{\prime}(x) d x .
$$

$$
\frac{d u(x)}{d x}=\frac{d}{d x} u(x)=u^{\prime}(x) ; d u(x)=u^{\prime}(x) d x .
$$

Normal or Gaussian

Let $Z \sim \mathrm{~N}(0,1)$, i.e., the density of Z is

Discrete

Continuous
Process

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

$$
\int_{-2}^{2} f(z) d z=95 \%
$$

Normal expectation

100A

Ying Nian Wu

Let $Z \sim \mathrm{~N}(0,1)$, i.e., the density of Z is

Discrete

Continuous
Process

$$
\begin{gathered}
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \\
\mathbb{E}(Z)=\int_{-\infty}^{\infty} z \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
=-\left.\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}\right|_{-\infty} ^{\infty} \\
=0
\end{gathered}
$$

The density is symmetric around 0 .

Normal variance

100A
Ying Nian Wu

Discrete
Continuous
Process

Let $Z \sim \mathrm{~N}(0,1)$, i.e., the density of Z is

$$
\begin{gathered}
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \\
\mathbb{E}\left(Z^{2}\right)=\int_{-\infty}^{\infty} z^{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(-z) d e^{-\frac{z^{2}}{2}} \\
=\frac{1}{\sqrt{2 \pi}}\left(-\left.z e^{-\frac{z^{2}}{2}}\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2}} d(-z)\right) \\
=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z=1 \\
\operatorname{Var}(Z)=\mathbb{E}\left(Z^{2}\right)-(\mathbb{E}(Z))^{2}=1
\end{gathered}
$$

Variance

For $X \sim f(x)$, let $\mu=\mathbb{E}(X)$.

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mu)^{2}\right] \\
& =\mathbb{E}\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mu \mathbb{E}(X)+\mu^{2} \\
& =\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[r(X)+s(X)] & =\int[r(x)+s(x)] f(x) d x \\
& =\int r(x) f(x) d x+\int s(x) f(x) d x \\
& =\mathbb{E}[r(X)]+\mathbb{E}[s(X)]
\end{aligned}
$$

Linear transformation

For $X \sim f(x)$. Let $Y=a X+b$.

$$
\begin{aligned}
\mathbb{E}(Y)=\mathbb{E}(a X+b) & =\int(a x+b) f(x) d x \\
& =a \int x f(x) d x+b \int f(x) d x \\
& =a \mathbb{E}(X)+b
\end{aligned}
$$

$$
\operatorname{Var}(Y)=\operatorname{Var}(a X+b)=\mathbb{E}\left[((a X+b)-\mathbb{E}(a X+b))^{2}\right]
$$

$$
=\mathbb{E}\left[(a X+b-(a \mathbb{E}(X)+b))^{2}\right]
$$

$$
=\mathbb{E}\left[a^{2}(X-\mathbb{E}(X))^{2}\right]
$$

$$
=a^{2} \mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=a^{2} \operatorname{Var}(X)
$$

Data

100A

Ying Nian Wu

Discrete
Continuous
Process

Sampling $f(x) \rightarrow x_{1}, \ldots, x_{i}, \ldots, x_{n}$
(e.g., random number generator $\rightarrow .22, .31, .92, .45, \ldots$)

$$
\begin{gathered}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mathbb{E}(X)=\mu \\
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \rightarrow \operatorname{Var}(X)=\sigma^{2}
\end{gathered}
$$

Ying Nian Wu
Discrete
Continuous
Process
Sampling $f(x) \rightarrow x_{1}, \ldots, x_{i}, \ldots, x_{n}$
(e.g., random number generator $\rightarrow .22, .31, .92, .45, \ldots$)

$$
\begin{gathered}
y_{i}=a x_{i}+b \\
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mathbb{E}(X)=\mu
\end{gathered}
$$

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(a x_{i}+b\right)=a \frac{1}{n} \sum_{i=1}^{n} x_{i}+b=a \bar{x}+b
$$

$$
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(a x_{i}+b-(a \bar{x}+b)\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} a^{2}\left(x_{i}-\bar{x}\right)^{2}
$$

Change of density under linear transformation

Change of variable

$$
X \sim f(x), Y=a X+b(a>0) . Y \sim g(y)
$$

$$
\begin{gathered}
y=a x+b \\
y=a x+b, x=(y-b) / a . \\
P(X \in(x, x+\Delta x))=P(Y \in(y, y+\Delta y)) . \\
f(x) \Delta x=g(y) \Delta y . \\
\left.g(y)=f(x) \frac{\Delta x}{\Delta y}=f((y-b) / a)\right) / a .
\end{gathered}
$$

Space warping, stretching or squeezing.

Normal or Gaussian

Let $Z \sim \mathrm{~N}(0,1)$, i.e., the density of Z is

Ying Nian Wu

Discrete
Continuous
Process

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

Let $X=\mu+\sigma Z . Z=(X-\mu) / \sigma$. Then

$$
\begin{gathered}
\mathbb{E}(X)=\mathbb{E}(\mu+\sigma Z)=\mu+\sigma \mathbb{E}(Z)=\mu \\
\operatorname{Var}(X)=\operatorname{Var}(\mu+\sigma Z)=\sigma^{2} \operatorname{Var}(Z)=\sigma^{2} \\
f(z) \Delta z=g(x) \Delta x
\end{gathered}
$$

$$
g(x)=f(z) \frac{\Delta z}{\Delta x}
$$

$$
=f((x-\mu) / \sigma) / \sigma
$$

$$
=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Normal or Gaussian

Let $Z \sim \mathrm{~N}(0,1)$. Let $X=\mu+\sigma Z . Z=(X-\mu) / \sigma$. $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$,

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

(we now use $f(x)$ to denote the density of X.)

$$
P(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=P(-2 \leq Z \leq 2)=95 \%
$$

Non-linear transformation

$X \sim f(x), Y=r(X)$, monotone. $Y \sim g(y)$.

$$
\begin{gathered}
y=r(x), x=r^{-1}(y) . \\
P(X \in(x, x+\Delta x))=P(Y \in(y, y+\Delta y)) . \\
f(x) \Delta x=g(y) \Delta y . \\
\Delta y / \Delta x=r^{\prime}(x) .
\end{gathered}
$$

Locally linear, space warping.

Space warping

Squeezing or stretching the bins \rightarrow changes the density and histogram.

Non-linear transformation

$X \sim f(x), Y=r(X)$, monotone. $Y \sim g(y)$.

$$
y=r(x), x=r^{-1}(y)
$$

Order preserving mapping:

$$
\begin{aligned}
P(X \leq x) & =P(Y \leq y) \\
F(x) & =G(y)
\end{aligned}
$$

Inversion method

100A

Ying Nian Wu

Discrete
Continuous

Process

$U \sim \operatorname{Unif}[0,1]$.
$P(U \leq u)=P(X \leq x)$.
$u=F(x), x=F^{-1}(u)$.
Population: $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ (ordered).
Sample $i \sim$ Uniform $\{1,2, \ldots, N\}$, return x_{i}.
$P\left(X \leq x_{i}\right)=i / N=F\left(x_{i}\right)$.
$U=i / N \sim$ Uniform $[0,1], x_{i}=F^{-1}(U)$.

Inversion method

100A
Ying Nian Wu

Discrete
Continuous
Process

$U \sim \operatorname{Unif}[0,1] . X=F^{-1}(U)$. Then $f(x)=F^{\prime}(x)$ is the pdf of X.

$$
\begin{gathered}
P(U \in(u, u+\Delta u))=P(X \in(x, x+\Delta x)) \\
\Delta u=f(x) \Delta x \\
f(x)=\frac{\Delta u}{\Delta x}=F^{\prime}(x)
\end{gathered}
$$

Inversion method

100A

Ying Nian Wu

Discrete

Continuous

Process

Suppose we want to generate $X \sim \operatorname{Exponential(1).~}$
$F(x)=1-e^{-x}$.
$F(x)=u$, i.e., $1-e^{-x}=u, e^{-x}=1-u . x=-\log (1-u)$. Generate $U \sim \operatorname{Unif}[0,1]$. Return $X=-\log (1-U)$.

Polar method

Ying Nian Wu

Discrete
Continuous
Process

Box-Muller Transformation

Polar method

Ying Nian Wu

Discrete
Continuous
Process
$X \sim \mathrm{~N}(0,1), f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)$.
$Y \sim \mathrm{~N}(0,1), f(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right)$.
X and Y are independent.

$$
\begin{gathered}
P(X \in(x, x+\Delta x), Y \in(y, y+\Delta y)) \\
=\quad P(X \in(x, x+\Delta x)) \times P(Y \in(y, y+\Delta y)) . \\
f(x, y) \Delta x \Delta y=f(x) \Delta x \times f(y) \Delta y . \\
f(x, y)=\frac{1}{2 \pi} \exp \left(-\frac{x^{2}+y^{2}}{2}\right) .
\end{gathered}
$$

Polar method

$x=r \cos \theta, y=r \sin \theta$.
Area of ring $R \in(r, r+\Delta r))=2 \pi r \Delta r$.
Count proportion of points in the ring $=$ density \times area.

$$
\begin{aligned}
P(R \in(r, r+\Delta r)) & =\frac{1}{2 \pi} \exp \left(-\frac{r^{2}}{2}\right) 2 \pi r \Delta r \\
& =\exp \left(-\frac{r^{2}}{2}\right) r \Delta r=\exp \left(-\frac{r^{2}}{2}\right) d \frac{r^{2}}{2}
\end{aligned}
$$

Polar method

100A

Ying Nian Wu

Discrete
Continuous
Process

$x=r \cos \theta, y=r \sin \theta$.
Let $t=r^{2} / 2 . \Delta t=r \Delta r$.

$$
\begin{aligned}
& P(T \in(t, t+\Delta t))=P(R \in(r, r+\Delta r)) \\
& \quad f(t) \Delta t=\exp \left(-\frac{r^{2}}{2}\right) r \Delta r=\exp (-t) \Delta t
\end{aligned}
$$

$$
T \sim \operatorname{Exponential}(1)
$$

Polar method

Ying Nian Wu

Discrete
Continuous
Process

Non-linear transformation

100A

$X \sim f(x), Y=r(X) . Y \sim g(y)$.
X consists of iid Gaussian $\mathrm{N}(0,1)$ noises.
r is learned from training examples by neural network (deep learning).

Stochastic processes

Particle decay

Discrete

Continuous
Process
T : time until decay.
$T \sim \operatorname{Exponential}(\lambda)$.

$$
P(T \in(t, t+\Delta t))=f(t) \Delta t=\lambda e^{-\lambda t} \Delta t
$$

Continuous time process

Making a movie

Divide the time into small intervals of length Δt (e.g., $1 / 24$ second, or $1 / 100$ second).

Show a picture at $0, \Delta t, 2 \Delta t, \ldots$
Give an illusion of continuous time process as $\Delta t \rightarrow 0$.

Continuous time process

Bank account

Divide $[0, t]$ into n small intervals, $\Delta t=t / n$. Interest rate $=r$.
Time 0: $\$ 1$.
Time $\Delta t: \$(1+r \Delta t)$.
Time $2 \Delta t$: $\$(1+r \Delta t)^{2}$.
Time $3 \Delta t$: $\$(1+r \Delta t)^{3}$.
Time $t=n \Delta t: \$(1+r \Delta t)^{n}$.

$$
\left(1+r \frac{t}{n}\right)^{n} \rightarrow e^{r t}
$$

as $n \rightarrow \infty$ or $\Delta t \rightarrow 0$.

Continuous time process

Bank account

Divide $[0, t]$ into n small intervals, $\Delta t=t / n$. Interest rate $=r$.

$$
\begin{gathered}
\left(1+\frac{1}{n}\right)^{n} \rightarrow e \\
1+\frac{1}{n} \doteq e^{1 / n} \\
1+\Delta x \doteq e^{\Delta x} \\
\left(1+r \frac{t}{n}\right)^{n} \rightarrow e^{r t} \\
(1+r \Delta t)^{t / \Delta t} \doteq\left(e^{r \Delta t}\right)^{t / \Delta t}=e^{r t}
\end{gathered}
$$

Poisson process

Process
Flip a coin within each interval.
$p=\lambda \Delta t$ (e.g., $\Delta t=1$ hour. $\lambda=$ once every 10 year.
$\lambda \Delta t=1 / 3650 \times 1 / 24)$.
Geometric waiting time

$$
\begin{aligned}
P(T \in(t, t+\Delta t)) & =(1-\lambda \Delta t)^{t / \Delta t} \lambda \Delta t \\
& \doteq\left(e^{-\lambda \Delta t}\right)^{t / \Delta t} \lambda \Delta t=e^{-\lambda t} \lambda \Delta t
\end{aligned}
$$

Exponential distribution

Discrete
Continuous
Process

Flip a coin within each interval.
$p=\lambda \Delta t$ (e.g., $\Delta t=.001$ second. $\lambda=$ once every minute.
$\lambda \Delta t=1 / 60 \times .001)$.

Exponential waiting time

$$
\begin{gathered}
\frac{P(T \in(t, t+\Delta t))}{\Delta t}=\lambda e^{-\lambda t} \\
P(T>t)=(1-\lambda \Delta t)^{t / \Delta t} \doteq\left(e^{-\lambda \Delta t}\right)^{t / \Delta t}=e^{-\lambda t}
\end{gathered}
$$

Exponential = geometric

1 million particles decay in different period. Each small period is a bin.
Geometric waiting time We can write $T=\tilde{T} \Delta t$, where $\tilde{T} \sim \operatorname{Geometric}(p=\lambda \Delta t)$. Then

$$
\mathbb{E}(T)=\mathbb{E}(\tilde{T}) \Delta t=\frac{1}{p} \Delta t=\frac{1}{\lambda \Delta t} \Delta t=1 / \lambda
$$

Poisson distribution

Process
Flip a coin within each interval.
Let X be the number of heads within $[0, t]$, then $X \sim \operatorname{Binomial}(n=t / \Delta t, p=\lambda \Delta t)$.

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \rightarrow \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}
$$

$\mathbb{E}(X)=n p=(t / \Delta t)(\lambda \Delta t)=\lambda t$. $\lambda=\mathbb{E}(X) / t$, rate or intensity.

Poisson distribution

100A

Ying Nian Wu

Discrete
Continuous
Process

$$
\begin{aligned}
P(X=k) & =\frac{n(n-1) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} \\
& =\frac{t / \Delta t(t / \Delta t-1) \ldots(t / \Delta t-k+1)}{k!} \\
& \times(\lambda \Delta t)^{k}(1-\lambda \Delta t)^{t / \Delta t-k} \\
& =\frac{t(t-\Delta t)(t-2 \Delta t) \ldots(t-(k-1) \Delta t)}{k!} \\
& \times \lambda^{k}(1-\lambda \Delta t)^{t / \Delta t}(1-\lambda \Delta t)^{-k} \\
& \rightarrow \frac{t^{k}}{k!} \lambda^{k}\left(e^{-\lambda \Delta t}\right)^{t / \Delta t}=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} .
\end{aligned}
$$

Diffusion or Brownian motion

100A

Ying Nian Wu
Discrete
Continuous
Process
Dust particle in water

Recall random walk

Either go forward or backward by flipping a fair coin.

Number of heads $Y \sim \operatorname{Binomial}(n, 1 / 2)$, then random walk ends up at X,

$$
\begin{gathered}
X=Y-(n-Y)=2 Y-n \\
X=\epsilon_{1}+\epsilon_{2}+\ldots+\epsilon_{n}
\end{gathered}
$$

$\epsilon_{k}=1$ or -1 with probability $1 / 2$ each.

Ying Nian Wu
Discrete
Continuous
Process

Discretize time and space

(1) Time: Divide $[0, t]$ into n intervals, $\Delta t=t / n$ (time unit).
(2) Space: Within each small time interval, move forward or backward by Δx (space unit).
$P\left(\epsilon_{i}=1\right)=P\left(\epsilon_{i}=-1\right)=1 / 2 . \epsilon_{i}$ are independent.

$$
\begin{gathered}
X=\sum_{i=1}^{n} \epsilon_{i} \Delta x=(Y-(n-Y)) \Delta x=(2 Y-n) \Delta x \\
\mathbb{E}(X)=\sum_{i=1}^{n} \mathbb{E}\left(\epsilon_{i}\right) \Delta x=\mathbb{E}(2 Y-n) \Delta x=0
\end{gathered}
$$

Diffusion or Brownian motion

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(\epsilon_{i}\right) \Delta x^{2}=n \Delta x^{2}=\frac{t}{\Delta t} \Delta x^{2} .
$$

$$
\operatorname{Var}(X)=\operatorname{Var}((2 Y-n) \Delta x)=4 \operatorname{Var}(Y) \Delta x^{2}=n \Delta x^{2} .
$$

$$
\Delta x^{2} / \Delta t=\sigma^{2} ; \Delta x=\sigma \sqrt{\Delta t} ; \operatorname{Var}(X)=\sigma^{2} t
$$

$$
\text { velocity }=\Delta x / \Delta t=\sigma / \sqrt{\Delta t} \rightarrow \infty
$$

Einstein, σ related to the size of molecules.

Diffusion or Brownian motion

$X=B(t)$.
Nowhere differentiable.
σ : volatility of stock price, basis for option pricing. A drop of milk (millions of particles) diffuses in coffee.

Normal approximation

Central limit theorem
$P\left(\epsilon_{i}=1\right)=P\left(\epsilon_{i}=-1\right)=1 / 2 . \epsilon_{i}$ are independent.

$$
X=\sum_{i=1}^{n} \epsilon_{i} \Delta x=(2 Y-n) \Delta x \sim \mathrm{~N}\left(0, \sigma^{2} t\right),
$$

as $n \rightarrow 0$.
Sum of independent random variables \sim Normal distribution.

Normal approximation

$X \sim \operatorname{Binomial}(n, 1 / 2) . \mu=\mathbb{E}(X)=n / 2$,
$\sigma^{2}=\operatorname{Var}(X)=n / 4, \sigma=S D(X)=\sqrt{n} / 2$.
Let

$$
Z=\frac{X-\mu}{\sigma}=\frac{X-n / 2}{\sqrt{n} / 2}
$$

then $\mathbb{E}(Z)=0, \operatorname{Var}(Z)=1$, no matter what n is.
Z takes discrete values, with spacing $\Delta z=1 / \sigma=2 / \sqrt{n}$.

$$
P(Z \in(a, b))=\sum_{z \in(a, b)} p(z) \doteq \sum_{z \in(a, b)} f(z) \Delta z \rightarrow \int_{a}^{b} f(z) d z
$$

where $f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}$ is the density of $\mathrm{N}(0,1)$.

$$
p(z) / \Delta z \rightarrow f(z)
$$

Proof

100A

Ying Nian Wu

Step 1:

$$
p(0) \doteq \frac{1}{\sqrt{2 \pi}} \Delta z
$$

Step 2:

$$
\begin{gathered}
\frac{p(z)}{p(0)} \doteq e^{-z^{2} / 2} \\
X=\mu+Z \sigma=n / 2+Z \sqrt{n} / 2 \\
p(0)=P(X=n / 2) \\
\frac{p(z)}{p(0)}=\frac{P(X=n / 2+z \sqrt{n} / 2)}{P(X=n / 2)}=\frac{P(X=n / 2+d)}{P(X=n / 2)} .
\end{gathered}
$$

Proof

100A

Ying Nian Wu

Discrete
Continuous
Process

$$
P(X=k)=\frac{\binom{n}{k}}{2^{n}}=\frac{n!}{k!(n-k)!2^{n}}
$$

For big n,

$$
\begin{aligned}
n! & \sim \sqrt{2 \pi n} n^{n} e^{-n} \\
P(X=n / 2) & \sim \frac{n!}{(n / 2)!^{2} 2^{n}} \\
& \sim \frac{\sqrt{2 \pi n} n^{n} e^{-n}}{\left(\sqrt{2 \pi(n / 2)}(n / 2)^{n / 2}\right)^{2} 2^{n}} \\
& \sim \frac{1}{\sqrt{2 \pi}} \frac{2}{\sqrt{n}}
\end{aligned}
$$

Proof

$$
\text { Let } k=\mu+z \sigma=n / 2+z \sqrt{n} / 2=n / 2+d \text {. }
$$

$$
\begin{aligned}
& \frac{P(X=n / 2+d)}{P(X=n / 2)}=\frac{\binom{n}{n / 2+d}}{\binom{n}{n / 2}} \\
= & \frac{n!/[(n / 2+d)!(n / 2-d)!]}{n!/[(n / 2)!(n / 2)!]} \\
= & \frac{(n / 2)!(n / 2)!}{(n / 2+d)!(n / 2-d)!} \\
= & \frac{(n / 2)(n / 2-1) \ldots(n / 2-(d-1))}{(n / 2+1)(n / 2+2) \ldots(n / 2+d)} \\
= & \frac{1(1-2 / n)(1-2 \times 2 / n) \ldots(1-(d-1) \times 2 / n)}{(1+2 / n)(1+2 \times 2 / n) \ldots(1+d \times 2 / n)} \\
= & \frac{(1-\delta)(1-2 \delta) \ldots(1-(d-1) \delta)}{(1+\delta)(1+2 \delta) \ldots(1+d \delta)}
\end{aligned}
$$

Proof

100A

Ying Nian Wu

Discrete
Continuous
Process

$$
\begin{aligned}
& \rightarrow \frac{e^{-\delta} e^{-2 \delta} \ldots e^{-(d-1) \delta}}{e^{\delta} e^{2 \delta} \ldots e^{d \delta}} \\
& =\frac{e^{-(1+2+\ldots+(d-1)) \delta}}{e^{(1+2+\ldots+d) \delta}} \\
& =\frac{e^{-d(d-1) \delta / 2}}{e^{d(d+1) \delta / 2}} \\
& =e^{-[d(d-1) / 2+d(d+1) / 2] \delta}=e^{-d^{2} \delta} \\
& =e^{-(z \sqrt{n} / 2)^{2}(2 / n)}=e^{-\frac{z^{2}}{2}}
\end{aligned}
$$

where $\delta=2 / n$, and $d=z \sqrt{n} / 2$.

Normal approximation

Let $X \sim \operatorname{Binomial}(n, p)$, sum of independent Bernoulli.
$\mathbb{E}(X)=n p, \operatorname{Var}(X)=n p(1-p)$.
$\mathbb{E}(X / n)=p, \operatorname{Var}(X / n)=p(1-p) / n$.
Approximately,
$X \sim \mathrm{~N}(n p, n p(1-p))$.
$X / n \sim \mathrm{~N}(p, p(1-p) / n)$.
e.g., $n=100, p=1 / 2 . \quad X \sim \mathrm{~N}(50,25)$.
$P(X \in[50-2 \times 5,50+2 \times 5])=P(X \in[40,60])=95 \%$.

Recall $\sum_{k=40}^{60}\binom{100}{k} / 2^{100} \rightarrow$ integral.

Normal approximation

Let $X \sim \operatorname{Binomial}(n, p)$, sum of independent Bernoulli.
$\mathbb{E}(X)=n p, \operatorname{Var}(X)=n p(1-p)$.
$\mathbb{E}(X / n)=p, \operatorname{Var}(X / n)=p(1-p) / n$.
Approximately,
$X \sim \mathrm{~N}(n p, n p(1-p))$.
$X / n \sim \mathrm{~N}(p, p(1-p) / n)$.
e.g., Polling $n=100, p=.2 . ~ X / n \sim \mathrm{~N}\left(.2, .04^{2}\right)$.
$P(X / n \in[.2-2 \times .04, .2+2 \times .04])=P(X / n \in[.12, .28])=$ 95%.

Normal approximation

```
100A
```

Let $X \sim \operatorname{Binomial}(n, p)$, sum of independent Bernoulli.
$\mathbb{E}(X)=n p, \operatorname{Var}(X)=n p(1-p)$.
$\mathbb{E}(X / n)=p, \operatorname{Var}(X / n)=p(1-p) / n$.
Approximately,
$X \sim \mathrm{~N}(n p, n p(1-p))$.
$X / n \sim \mathrm{~N}(p, p(1-p) / n)$.
e.g., Monte Carlo $n=10000, p=\pi / 4$.
$4 m / n \sim \mathrm{~N}(\pi, \pi(4-\pi) / 10000)$.

