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STATS 100A: RANDOM VARIABLES

Ying Nian Wu

Department of Statistics
University of California, Los Angeles

Some pictures are taken from the internet.
Credits belong to original authors.



100A

Ying Nian Wu

Discrete

Continuous

Process

2/113

Random variables

Connection to events:
Randomly sample a person ω from a population Ω.
X(ω): gender of ω, Ω→ {0, 1}.
Y (ω): height of ω, Ω→ R+.
A = {ω : X(ω) = 1}. P (A) = P (X = 1). Discrete.
B = {ω : Y (ω) > 6}. P (B) = P (Y > 6). Continuous.
We shall study random variables more systematically.
ω ∈ Ω equally likely, but X(ω) and Y (ω) are not necessarily
equally likely.
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Discrete random variables

Roll a die

p(x) = P (X = x).

Capital letter: random variable
Lower case: particular value, running variable

X ∼ p(x).
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Probability distribution

Biased die:

Randomly throw a point into [0, 1], which bin (1, 2, ..., 6) it
falls into?
ω ∈ Ω = [0, 1], equally likely.
X(ω) is the bin that ω belongs to, not necessarily equally likely.
Throw 1 million points, what is the proportion of points in each
bin? Or how often the points fall into each bin?
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Probability distribution

Biased die:

p(x) = P (X = x).

p(x): how often X = x.
p(x): probability mass function, probability distribution, law∑

x p(x) = 1.
P (X ∈ {5, 6}) = p(5) + p(6).
P (X ∈ [a, b]) =

∑
x∈[a,b] p(x).
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Expectation

Biased die

E(X) =
∑
x

xp(x).
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Expectation

Biased die

E(h(X)) =
∑
x

h(x)p(x).
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Utility

Utility, reward, value

E(h(X)) =
∑
x

h(x)p(x).

Offer 1: E[h(X)] = $100× 1 = $100.
Offer 2: E[h(X)] = $0× 1

2 + $150× 1
2 = $75.
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Variance

E(X) =
∑
x

xp(x) = µ(= $0× 1/2 + $200× 1/2 = $100)

Var(X) = E[(X − µ)2] =
∑
x

(x− µ)2p(x) = σ2

= ($0− $100)2 × 1/2 + ($200− $100)2 × 1/2

= $210, 000.

Long run average of squared deviation from the mean.

SD(X) =
√

Var(X) = σ(= $100).

Extent of variation from the mean.
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Variance

E(h(X)) =
∑
x

h(x)p(x).

Var[h(X)] = E[(h(X)− E(h(X)))2].
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Data

E(X) =
∑
x

xp(x) = µ.

Var(X) = E[(X − µ)2] =
∑
x

(x− µ)2p(x) = σ2.

Long run average of squared deviation from the mean.
Sampling p(x)→ x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

s2 =
1

n

n∑
i=1

(xi − x̄)2 → Var(X) = σ2
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Linear transformation

E(h(X)) =
∑
x

h(x)p(x).

Y = aX + b.

E(Y ) = E(aX + b)

=
∑
x

(ax+ b)p(x)

=
∑
x

axp(x) +
∑
x

bp(x)

= a
∑
x

xp(x) + b
∑
x

p(x)

= aE(X) + b.
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Data

Sampling p(x)→ x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

yi = axi + b.

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

ȳ =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.



100A

Ying Nian Wu

Discrete

Continuous

Process

14/113

Linear transformation

Var(h(X)) = E[(h(X)− E(h(X)))2].

Var(Y ) = E[(Y − E(Y ))2].

E(Y ) = aE(X) + b.

Var(aX + b) = E[((aX + b)− E(aX + b))2]

= E[(aX + b− (aE(X) + b))2]

= E[(a(X − E(X)))2]

= a2E[(X − E(X))2] = a2Var(X).
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Data

Sampling p(x)→ x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

yi = axi + b.

ȳ =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.

1

n

n∑
i=1

(yi− ȳ)2 =
1

n

n∑
i=1

(axi+b−(ax̄+b))2 =
1

n

n∑
i=1

a2(xi−x̄)2.
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Short-cut for variance

µ = E(X).

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E(X2)− 2µE(X) + µ2

= E(X2)− µ2 = E(X2)− [E(X)]2.

E[h(X) + g(X)] =
∑
x

[h(x) + g(x)]p(x)

=
∑
x

h(x)p(x) +
∑
x

g(x)p(x)

= E[h(X)] + E[g(X)].
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Transformation

h(x) = ax+ b.

E[h(X)] = E(aX + b) = aE(X) + b = h(E(X)).

Var(X) = E(X2)− [E(X)]2.

h(x) = x2.

E[h(X)] = E(X2);

h(E(X)) = [E(X)]2.
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Convex function

Upper envelop and supporting lines

g(x) ≥ a0x+ b0; g(x0) = a0x0 + b0.

Supporting line at x0 touches g(x) at x0, but below g(x) at
other places.
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Jensen inequality

P (X = a) = P (X = b) = 1/2.
E(X) = (a+ b)/2, g(E(X)) = g((a+ b/2).
E(g(X)) = (g(a) + g(b))/2.
E(g(X)) ≥ g(E(X)).

x0 = E(X).
g(x0) = a0x0 + b0 (supporting line at x0)
g(x) ≥ a0x+ b0.
E(g(X)) ≥ E(a0X+b0) = a0E(X)+b0 = a0x0+b0 = g(E(X)).
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Entropy
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Coin flippings
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Coding
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Coding
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Bernoulli

Flip a coin (probability of head is p)
Z ∼ Bernoulli(p)
Z ∈ {0, 1}, P (Z = 1) = p and P (Z = 0) = 1− p.

E(Z) = 0× (1− p) + 1× p = p.

Var(Z) = (0− p)2 × (1− p) + (1− p)2 × p
= p(1− p)[p+ (1− p)] = p(1− p).

E(Z2) = p.

Var(Z) = E(Z2)− E(Z)2 = p− p2 = p(1− p).
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Binomial

Flip a coin (probability of head is p) n times independently.
X = number of heads.
X ∼ Binomial(n, p)

P (X = k) =

(
n

k

)
pk(1− p)n−k.

(
n
k

)
is the number of sequences with exactly k heads.

pk(1− p)n−k is the probability of each sequence with exactly k
heads.
e.g., n = 3,
P (X = 2) = P (HHT ) + P (HTH) + P (THH) = 3p2(1− p).
p = 1/2, we have P (X = k) =

(
n
k

)
/2n.
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Recall independence

Definition 1:
P (A|B) = P (A).

Definition 2:
P (A ∩B) = P (A)P (B).
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Binomial formula

(H + T )n =

n∑
k=0

(
n

k

)
HkTn−k.

n = 1, H + T .
n = 2, (H + T )(H + T ) = HH +HT + TH + TT .
n = 3, above ×(H + T ) =
HHH+HHT+HTH+HTT+THH+THT+TTH+TTT .
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Binomial

(p+ q)n =

n∑
k=0

(
n

k

)
pkqn−k.

Let a = p, b = q = 1− p. Randomly throw a point into unit
cube, equally likely setting.
Each rectangular piece corresponds to a particular sequence.
Each color corresponds to a particular number of heads.
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Binomial

Let a = p, b = q = 1− p.
n = 2, P (X = 2) = P (HH) = p2.
P (X = 0) = P (TT ) = (1− p)2.
P (X = 1) = P (HT ) + P (TH) = 2p(1− p).
n = 3, P (X = 3) = P (HHH) = p3.
P (X = 2) = P (HHT ) + P (HTH) + P (THH) = 3p2(1− p).
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Binomial and Bernoulli

X = Z1 + Z2 + ...+ Zn,

where Zi ∼ Bernoulli(p) independently.

E(X) =

n∑
i=1

E(Zi) = np.

Due to independence of Zi, i = 1, ..., n,

Var(X) =

n∑
i=1

Var(Zi) = np(1− p).
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Frequency

X/n is the frequency of heads.

E(X/n) = E(X)/n = p.

Var(X/n) = Var(X)/n2 = p(1− p)/n.

Var(X/n)→ 0 as n→∞.

X/n→ p, in probability

Law of large number
Probability = long run frequency
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Law of large number

long run frequency → probability
Flip a fair coin independently → 2n sequences, Ω.

Aε = {ω : X(ω)/n ∈ (1/2− ε, 1/2 + ε)},

the set of sequences whose frequencies of heads are close to
1/2.

P (X/n ∈ (1/2− ε, 1/2 + ε)) =
|Aε|
|Ω|
→ 1.

Almost all the sequences have frequencies of heads close to
1/2.

e.g., n = 1 million. Almost all the 21 million sequences have
frequencies of heads to be within [.49, .51].
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Law of large number

e.g., n = 1 million. Almost all the 21 million sequences have
frequencies of heads to be within [.49, .51].

P (X/1m ∈ [.49, .51]) = P (X ∈ [.49m, .51m])

=

.51m∑
k=.49m

(
1m

k

)
/21m ≈ 1.
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Binomial expectation

E(X) =

n∑
k=0

kP (X = k)

=

n∑
k=0

k
n!

k!(n− k)!
pk(1− p)n−k

=

n∑
k=1

np
(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

=

n′∑
k′=0

np

(
n′

k′

)
pk

′
(1− p)n′−k′ = np.

k′ = k − 1; n′ = n− 1.
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Binomial variance

E(X(X − 1)) =

n∑
k=0

k(k − 1)P (X = k)

=

n∑
k=0

k(k − 1)
n!

k!(n− k)!
pk(1− p)n−k

=

n∑
k=2

n(n− 1)p2 (n− 2)!

(k − 2)!(n− k)!
pk−2(1− p)n−k

=

n′∑
k′=0

n(n− 1)p2

(
n′

k′

)
pk

′
(1− p)n′−k′

= n(n− 1)p2.

k′ = k − 2; n′ = n− 2.
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Binomial variance

E(X) = np.

E(X(X − 1)) = E(X2)− E(X) = n(n− 1)p2.

Var(X) = E(X2)− E(X)2

= n(n− 1)p2 + np− (np)2

= np− np2 = np(1− p).
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Survey sampling

A box with R red balls and B blue balls. N = R+B balls in
total.
Randomly pick a ball. P (red) = R/N = p.
Randomly pick n balls sequentially (with replacement, put the
picked ball back). Let X = number of red balls.
The distribution of X:
X ∼ Binomial(n, p = R/N).
Survey sampling, poll.
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Survey sampling

Ω = all Nn sequences, equally likely.
X(ω): number of red balls in sequence ω ∈ Ω.
Ak = {ω : X(ω) = k}, all sequences with k read balls.
Choose k blanks from n blanks. For each chosen blank, fill in a
red ball. For each unchosen blank, fill in a blue ball.

|Ak| =
(
n

k

)
RkBn−k.

Axiom 0:

P (Ak) = P (X = k) =
|Ak|
|Ω|

=

(
n

k

)
pk(1− p)n−k.

E(X) = average of X(ω) over all Nn sequences.
Var(X) = variance of X(ω) over all Nn sequences.
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Law of large number

Ω = all Nn sequences, equally likely.
X(ω): number of red balls in sequence ω ∈ Ω.
X(ω)/n: frequency of red balls in sequence ω.
E(X/n) = p = R/N = average of X(ω)/n over all the Nn

sequences in Ω.
Var(X/n) = p(1− p)/n = variance of X(ω)/n over all the Nn

sequences in Ω.
Law of large number: Among all Nn equally likely sequences,
almost all of them have X(ω)/n close to p.
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Monte Carlo

Randomly throw n points into the unit square. Let m be the
number of points falling below the curve.

The distribution of m is:
m ∼ Binomial(n, p = π/4).
Ω = all possible sequences of points = [0, 1]2n.
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Geometric

T ∼ Geometric(p)
T is the number of flips to get the first head, if we flip a coin
independently and the probability of getting a head in each flip
is p.

P (T = k) = (1− p)k−1p.

e.g., T = 1, H
T = 2, TH.
T = 3, TTH.
T = 4, TTTH.
Waiting time.
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Geometric expectation

T ∼ Geometric(p)

E(T ) =

∞∑
k=1

kP (T = k)

=

∞∑
k=1

kqk−1p = p

∞∑
k=1

d

dq
qk

= p
d

dq

∞∑
k=1

qk = p
d

dq

(
1

1− q
− 1

)
= p

1

(1− q)2
=

1

p
.
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Geometric series

(1− a)(1 + a+ ...+ am) = 1 + a+ ...+ am

−(a+ a2 + ...+ am + am+1)

= 1− am+1.

1 + a+ ...+ am =
1− am+1

1− a
.

If |a| < 1,
am+1 → 0, as m→∞.
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Quantum bit

state vector = α|0〉+ β|1〉.
state vector rotates over time.
squared length = |α|2 + |β|2 = 1 under rotation.
observer: p(0) = |α|2, p(1) = |β|2.

Schrodinger cat: P(alive) = (1/
√

2)2 = 1/2.
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Recall discrete random variable

P (X = x) = p(x).

Probability histogram

area of bin x = p(x).
Randomly throw a point ω into the whole blue region Ω,
X(ω) = x if ω falls into bin x.
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Continuous random variable

Continuous (e.g., height).
Discretize x-axis into equally spaced bins (x, x+ ∆x), e.g., (6
ft, 6 ft 1 inch), precision = 1 inch.

P (X ∈ (x, x+ ∆x)) = f(x)∆x,

f(x): height of bin (x, x+ ∆x). f(x)∆x: area.
Randomly throw a point ω into the whole blue region Ω,
X(ω) = x if the point falls into bin (x, x+ ∆x).
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Probability density function

Let ∆x→ 0, continuous.

Randomly throw a point ω into the region Ω under curve f(x).
Return X(ω) = horizontal coordinate of the point.
Repeat n (e.g., 1000) times, frequency → probability,

P (X ∈ (x, x+ ∆x)) = f(x)∆x.

How often X ∈ (x, x+ ∆x).
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Probability density function

Let ∆x→ 0, continuous.

P (X ∈ (x, x+ ∆x)) = f(x)∆x.

P (X ∈ (a, b)) ≈
∑
bins

f(x)∆x→
∫ b

a
f(x)dx.

area under f(x) between a and b.∫ ∞
−∞

f(x)dx = 1.
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Scatterplot

Collapse the points onto x-axis.

Sample density or distribution of the n points.
Sample density at x = number of points in (x, x+ ∆x)/∆x.
Normalize the count m to frequency m/n, as n→∞,
frequency → probability,

f(x) =
P (X ∈ (x, x+ ∆x))

∆x
.
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Point cloud

Electron orbits around nucleus: wrong conception
Electron cloud, probability density function, f(x)
Wave function ψ(x), evolves over time.
Observer: f(x) = |ψ(x)|2.

Prob density = prob mass in the cell / volume of cell.
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Point cloud

Electron cloud, heat map, prob density

Observer: f(x) = |ψ(x)|2.
Prob density = prob mass in the cell / volume of cell.
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Sample

Sample density or distribution of the n points.
Sample histogram (can fluctuate if do it again).
Normalize the count to frequency → probability,

f(x) =
P (X ∈ (x, x+ ∆x))

∆x
.
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Population

Population density or distribution of the N (e.g., 300 million)
points.
Population histogram (no fluctuation, always the same).
Normalize the count to proportion,

f(x) =
P (X ∈ (x, x+ ∆x))

∆x
.

Population (300 million, fixed) → sample (1000, fluctuate)
Population → sample (1 million, fluctuation diminishes)
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Population

Electron cloud, heat map, prob density

Population of N equally likely possibilities.
Mathematical idealization: N ≈ ∞.
Prob density = prob mass in the cell / volume of cell.
Observer: f(x) = |ψ(x)|2.
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Cumulative density function

F (x) = P (X ≤ x) =

∫ x

−∞
f(x)dx.

SAT score x→ percentile F (x).
Percentage of people below x.
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Area and slope

Area:
F (x+ ∆x)− F (x) = f(x)∆x.

Slope:

F ′(x) =
F (x+ ∆x)− F (x)

∆x
= f(x).

Notation:

F ′(x) =
dF (x)

dx
=

d

dx
F (x) = f(x).

dF (x) = F ′(x)dx = f(x)dx
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Expectation

Recall discrete
P (X = x) = p(x).

Probability histogram

area of bin x = p(x).

E(X) =
∑

xP (X = x) =
∑

xp(x).

E[h(X)] =
∑

h(x)P (X = x) =
∑

h(x)p(x).

Long run average.
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Expectation

Continuous

P (X ∈ (x, x+ ∆x)) = f(x)∆x.

E(X) =
∑

xP (X ∈ (x, x+∆x)) =
∑

xf(x)∆x→
∫
xf(x)dx.

E[h(X)] =
∑

h(x)P (X ∈ (x, x+ ∆x))

=
∑

h(x)f(x)∆x→
∫
h(x)f(x)dx.

Long run average, center.
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Data

f(x)→ x1, ..., xi, ..., xn.
mx = number of points in (x, x+ ∆x).

x̄ =
1

n

n∑
i=1

xi =
1

n

∑
bins

xmx =
∑
bins

x
mx

n

→
∑

xP (X ∈ (x, x+ ∆x))

=
∑

xf(x)∆x→
∫
xf(x)dx = E(X).

Long run average. Same logic for E(h(X)).
Same logic for population average.
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Variance

Continuous

P (X ∈ (x, x+ ∆x)) = f(x)∆x.

E(X) =

∫
xf(x)dx = µ.

Var(X) = E[(X − µ)2] =

∫
(x− µ)2f(x)dx.

Var[h(X)] = E[(h(X)− E(h(X)))2].

Fluctuation, volatility, spread.
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Uniform

U ∼ Uniform[0, 1], i.e., the density of U is
f(u) = 1 for u ∈ [0, 1] (or f(u) = 1/(b− a) if u ∈ [a, b]),
f(u) = 0 otherwise.

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

u

y

P (U ∈ (u, u+ ∆u)) = f(u)∆u = ∆u.
Imagine 1 million points distributed uniformly in [0, 1].
Number of points in (u, u+ ∆u) is ∆u million.
e.g., Number of points in (.3, .31) is .01 million.
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Uniform

F (u) = P (U ≤ u) =


0 0 < u
u 0 ≤ u ≤ 1
1 u > 1

F (u): proportion of points below u.

E(U) =

∫ 1

0
uf(u)du =

1

2
.

E(U2) =

∫ 1

0
u2f(u)du =

1

3
.

Var(U) = E(U2)− (E(U))2 =
1

3
− 1

4
=

1

12
.
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Pseudo-random number generator

Linear congruential method
Start from an integer X0, and iterate

Xt+1 = aXt + b mod M.

Output Ut = Xt/M . e.g., a = 75, b = 0, and M = 231 − 1.
mod: divide and take the remainder, e.g., 7 = 2 mod 5.
e.g., a = 7, b = 1, M = 5, X0 = 1, then
X1 = 1× 7 + 1 mod 5 = 3.
X2 = 3× 7 + 1 mod 5 = 2.
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Exponential

0 1 2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

t

y

T ∼ Exponential(λ),
f(t) = λe−λt for t ≥ 0,
f(t) = 0 for t < 0.
P (T ∈ (t, t+ ∆t)) = λe−λt∆t.
Imagine 1 million particles, mark the times when they decay.
1 million points on real line. Their distribution is exponential.
Number of points in (t, t+ ∆t) is λe−λt∆t million.
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Exponential

0 1 2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

t

y

F (t) =

∫ t

0
f(t)dt =

∫ t

0
λe−λtdt

= −e−λt|t0 = 1− e−λt.

F (t): proportion of points below t
Half-life: F (thalf) = P (T ≤ thalf) = 1/2.
1 million particles, by half life, half million will have decayed.
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Exponential expectation

E(T ) =

∫ ∞
0

tλe−λtdt

= −
∫ ∞

0
tde−λt

= −(te−λt|∞0 −
∫ ∞

0
e−λtdt)

= −(0− 0 +
1

λ
e−λt|∞0 ) =

1

λ
.
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Integral by parts

d

dx
u(x)v(x) = u′(x)v(x) + u(x)v′(x).

duv = udv + vdu.∫
[u′(x)v(x) + u(x)v′(x)]dx = u(x)v(x).∫

u(x)v′(x)dx = u(x)v(x)−
∫
v(x)u′(x)dx.∫

udv = uv −
∫
vdu.
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Integral by parts

∫
udv = uv −

∫
vdu.∫

u(x)v′(x)dx = u(x)v(x)−
∫
v(x)u′(x)dx.

du(x)

dx
=

d

dx
u(x) = u′(x); du(x) = u′(x)dx.
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Normal or Gaussian

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z

2/2.

∫ 2

−2
f(z)dz = 95%.
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Normal expectation

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z

2/2.

E(Z) =

∫ ∞
−∞

z
1√
2π
e−

z2

2 dz

= − 1√
2π
e−

z2

2 |∞−∞
= 0.

The density is symmetric around 0.
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Normal variance

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z

2/2.

E(Z2) =

∫ ∞
−∞

z2 1√
2π
e−

z2

2 dz

=
1√
2π

∫ ∞
−∞

(−z)de−
z2

2

=
1√
2π

(−ze−
z2

2 |∞−∞ −
∫ ∞
−∞

e−
z2

2 d(−z))

=

∫ ∞
−∞

1√
2π
e−

z2

2 dz = 1.

Var(Z) = E(Z2)− (E(Z))2 = 1.
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Variance

For X ∼ f(x), let µ = E(X).

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E(X2)− 2µE(X) + µ2

= E(X2)− (E(X))2.

E[r(X) + s(X)] =

∫
[r(x) + s(x)]f(x)dx

=

∫
r(x)f(x)dx+

∫
s(x)f(x)dx

= E[r(X)] + E[s(X)].
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Linear transformation

For X ∼ f(x). Let Y = aX + b.

E(Y ) = E(aX + b) =

∫
(ax+ b)f(x)dx

= a

∫
xf(x)dx+ b

∫
f(x)dx

= aE(X) + b.

Var(Y ) = Var(aX + b) = E[((aX + b)− E(aX + b))2]

= E[(aX + b− (aE(X) + b))2]

= E[a2(X − E(X))2]

= a2E[(X − E(X))2] = a2Var(X).
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Data

Sampling f(x)→ x1, ..., xi, ..., xn
(e.g., random number generator → .22, .31, .92, .45, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

s2 =
1

n

n∑
i=1

(xi − x̄)2 → Var(X) = σ2
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Data

Sampling f(x)→ x1, ..., xi, ..., xn
(e.g., random number generator → .22, .31, .92, .45, ...)

yi = axi + b.

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

ȳ =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.

1

n

n∑
i=1

(yi− ȳ)2 =
1

n

n∑
i=1

(axi+b−(ax̄+b))2 =
1

n

n∑
i=1

a2(xi−x̄)2.
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Change of density under linear transformation

Change of variable
X ∼ f(x), Y = aX + b (a > 0). Y ∼ g(y).

y = ax+ b, x = (y − b)/a.

P (X ∈ (x, x+ ∆x)) = P (Y ∈ (y, y + ∆y)).

f(x)∆x = g(y)∆y.

g(y) = f(x)
∆x

∆y
= f((y − b)/a))/a.

Space warping, stretching or squeezing.
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Normal or Gaussian

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z

2/2.

Let X = µ+ σZ. Z = (X − µ)/σ. Then

E(X) = E(µ+ σZ) = µ+ σE(Z) = µ.

Var(X) = Var(µ+ σZ) = σ2Var(Z) = σ2.

f(z)∆z = g(x)∆x.

g(x) = f(z)
∆z

∆x
= f((x− µ)/σ)/σ

=
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
.
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Normal or Gaussian

Let Z ∼ N(0, 1). Let X = µ+ σZ. Z = (X − µ)/σ.
X ∼ N(µ, σ2),

f(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
.

(we now use f(x) to denote the density of X.)

P (µ− 2σ ≤ X ≤ µ+ 2σ) = P (−2 ≤ Z ≤ 2) = 95%.
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Non-linear transformation

X ∼ f(x), Y = r(X), monotone. Y ∼ g(y).

y = r(x), x = r−1(y).

P (X ∈ (x, x+ ∆x)) = P (Y ∈ (y, y + ∆y)).

f(x)∆x = g(y)∆y.

∆y/∆x = r′(x).

Locally linear, space warping.



100A

Ying Nian Wu

Discrete

Continuous

Process

80/113

Space warping

Squeezing or stretching the bins → changes the density and
histogram.
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Non-linear transformation

X ∼ f(x), Y = r(X), monotone. Y ∼ g(y).

y = r(x), x = r−1(y).

Order preserving mapping:

P (X ≤ x) = P (Y ≤ y).

F (x) = G(y).
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Inversion method

U ∼ Unif[0, 1].
P (U ≤ u) = P (X ≤ x).
u = F (x), x = F−1(u).
Population: {x1, x2, ..., xN} (ordered).
Sample i ∼ Uniform{1, 2, ..., N}, return xi.
P (X ≤ xi) = i/N = F (xi).
U = i/N ∼ Uniform[0, 1], xi = F−1(U).
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Inversion method

U ∼ Unif[0, 1]. X = F−1(U). Then f(x) = F ′(x) is the pdf
of X.

P (U ∈ (u, u+ ∆u)) = P (X ∈ (x, x+ ∆x)).

∆u = f(x)∆x.

f(x) =
∆u

∆x
= F ′(x).
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Inversion method

Suppose we want to generate X ∼ Exponential(1).
F (x) = 1− e−x.
F (x) = u, i.e., 1− e−x = u, e−x = 1− u. x = − log(1− u).
Generate U ∼ Unif[0, 1]. Return X = − log(1− U).
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Polar method
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Polar method

X ∼ N(0, 1), f(x) = 1√
2π

exp
(
−x2

2

)
.

Y ∼ N(0, 1), f(y) = 1√
2π

exp
(
−y2

2

)
.

X and Y are independent.

P (X ∈ (x, x+ ∆x), Y ∈ (y, y + ∆y))

= P (X ∈ (x, x+ ∆x))× P (Y ∈ (y, y + ∆y)).

f(x, y)∆x∆y = f(x)∆x× f(y)∆y.

f(x, y) =
1

2π
exp

(
−x

2 + y2

2

)
.
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Polar method

x = r cos θ, y = r sin θ.
Area of ring R ∈ (r, r + ∆r)) = 2πr∆r.
Count proportion of points in the ring = density × area.

P (R ∈ (r, r + ∆r)) =
1

2π
exp

(
−r

2

2

)
2πr∆r

= exp

(
−r

2

2

)
r∆r = exp

(
−r

2

2

)
d
r2

2
.
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Polar method

x = r cos θ, y = r sin θ.
Let t = r2/2. ∆t = r∆r.

P (T ∈ (t, t+ ∆t)) = P (R ∈ (r, r + ∆r)).

f(t)∆t = exp

(
−r

2

2

)
r∆r = exp(−t)∆t.

T ∼ Exponential(1).
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Polar method

T = − log(1− U1).
R =

√
2T .

θ = 2πU2.
X = R cos θ, Y = R sin θ.
(U1, U2)→ (X,Y ).
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Non-linear transformation

X ∼ f(x), Y = r(X). Y ∼ g(y).
X consists of iid Gaussian N(0, 1) noises.
r is learned from training examples by neural network (deep
learning).



100A

Ying Nian Wu

Discrete

Continuous

Process

91/113

Stochastic processes

Particle decay

T : time until decay.
T ∼ Exponential(λ).
P (T ∈ (t, t+ ∆t)) = f(t)∆t = λe−λt∆t.
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Continuous time process

Making a movie
Divide the time into small intervals of length ∆t (e.g., 1/24
second, or 1/100 second).

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Show a picture at 0, ∆t, 2∆t, ...
Give an illusion of continuous time process as ∆t→ 0.



100A

Ying Nian Wu

Discrete

Continuous

Process

93/113

Continuous time process

Bank account

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Divide [0, t] into n small intervals, ∆t = t/n.
Interest rate = r.
Time 0: $1.
Time ∆t: $(1 + r∆t).
Time 2∆t: $(1 + r∆t)2.
Time 3∆t: $(1 + r∆t)3.
...
Time t = n∆t: $(1 + r∆t)n.(

1 + r
t

n

)n
→ ert,

as n→∞ or ∆t→ 0.
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Continuous time process

Bank account

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Divide [0, t] into n small intervals, ∆t = t/n.
Interest rate = r. (

1 +
1

n

)n
→ e.

1 +
1

n

.
= e1/n.

1 + ∆x
.
= e∆x.(

1 + r
t

n

)n
→ ert.

(1 + r∆t)t/∆t
.
=
(
er∆t

)t/∆t
= ert.
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Poisson process

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
p = λ∆t (e.g., ∆t = 1 hour. λ = once every 10 year.
λ∆t = 1/3650× 1/24).
Geometric waiting time

P (T ∈ (t, t+ ∆t)) = (1− λ∆t)t/∆tλ∆t

.
=

(
e−λ∆t

)t/∆t
λ∆t = e−λtλ∆t.
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Exponential distribution

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
p = λ∆t (e.g., ∆t = .001 second. λ = once every minute.
λ∆t = 1/60× .001).
Exponential waiting time

P (T ∈ (t, t+ ∆t))

∆t
= λe−λt.

P (T > t) = (1− λ∆t)t/∆t
.
= (e−λ∆t)t/∆t = e−λt.
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Exponential = geometric

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 
1 million particles decay in different period. Each small period
is a bin.
Geometric waiting time
We can write T = T̃∆t, where T̃ ∼ Geometric(p = λ∆t).
Then

E(T ) = E(T̃ )∆t =
1

p
∆t =

1

λ∆t
∆t = 1/λ.



100A

Ying Nian Wu

Discrete

Continuous

Process

98/113

Poisson distribution

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
Let X be the number of heads within [0, t], then
X ∼ Binomial(n = t/∆t, p = λ∆t).

P (X = k) =

(
n

k

)
pk(1− p)n−k → (λt)k

k!
e−λt.

E(X) = np = (t/∆t)(λ∆t) = λt.
λ = E(X)/t, rate or intensity.
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Poisson distribution

P (X = k) =
n(n− 1)...(n− k + 1)

k!
pk(1− p)n−k

=
t/∆t(t/∆t− 1)...(t/∆t− k + 1)

k!

× (λ∆t)k(1− λ∆t)t/∆t−k

=
t(t−∆t)(t− 2∆t)...(t− (k − 1)∆t)

k!

× λk(1− λ∆t)t/∆t(1− λ∆t)−k

→ tk

k!
λk(e−λ∆t)t/∆t =

(λt)k

k!
e−λt.
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Diffusion or Brownian motion

Dust particle in water
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Recall random walk

Either go forward or backward by flipping a fair coin.

Number of heads Y ∼ Binomial(n, 1/2), then random walk
ends up at X,

X = Y − (n− Y ) = 2Y − n.

X = ε1 + ε2 + ...+ εn.

εk = 1 or −1 with probability 1/2 each.
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Discretize time and space

(1) Time: Divide [0, t] into n intervals, ∆t = t/n (time unit).
(2) Space: Within each small time interval, move forward or
backward by ∆x (space unit).
P (εi = 1) = P (εi = −1) = 1/2. εi are independent.

X =

n∑
i=1

εi∆x = (Y − (n− Y ))∆x = (2Y − n)∆x.

E(X) =

n∑
i=1

E(εi)∆x = E(2Y − n)∆x = 0.
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Diffusion or Brownian motion

Var(X) =

n∑
i=1

Var(εi)∆x
2 = n∆x2 =

t

∆t
∆x2.

Var(X) = Var((2Y − n)∆x) = 4Var(Y )∆x2 = n∆x2.

∆x2/∆t = σ2; ∆x = σ
√

∆t; Var(X) = σ2t.

velocity = ∆x/∆t = σ/
√

∆t→∞.

Einstein, σ related to the size of molecules.
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Diffusion or Brownian motion

X = B(t).
Nowhere differentiable.
σ: volatility of stock price, basis for option pricing.
A drop of milk (millions of particles) diffuses in coffee.
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Normal approximation

Central limit theorem
P (εi = 1) = P (εi = −1) = 1/2. εi are independent.

X =

n∑
i=1

εi∆x = (2Y − n)∆x ∼ N(0, σ2t),

as n→ 0.
Sum of independent random variables ∼ Normal
distribution.
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Normal approximation

X ∼ Binomial(n, 1/2). µ = E(X) = n/2,
σ2 = Var(X) = n/4, σ = SD(X) =

√
n/2.

Let

Z =
X − µ
σ

=
X − n/2√

n/2
,

then E(Z) = 0, Var(Z) = 1, no matter what n is.
Z takes discrete values, with spacing ∆z = 1/σ = 2/

√
n.

P (Z ∈ (a, b)) =
∑

z∈(a,b)

p(z)
.
=
∑

z∈(a,b)

f(z)∆z →
∫ b

a
f(z)dz,

where f(z) = 1√
2π
e−z

2/2 is the density of N(0, 1).

p(z)/∆z → f(z).
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Proof

Step 1:

p(0)
.
=

1√
2π

∆z.

Step 2:
p(z)

p(0)

.
= e−z

2/2.

X = µ+ Zσ = n/2 + Z
√
n/2.

p(0) = P (X = n/2).

p(z)

p(0)
=
P (X = n/2 + z

√
n/2)

P (X = n/2)
=
P (X = n/2 + d)

P (X = n/2)
.
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Proof

P (X = k) =

(
n
k

)
2n

=
n!

k!(n− k)!2n
,

For big n,
n! ∼

√
2πnnne−n,

P (X = n/2) ∼ n!

(n/2)!22n

∼
√

2πnnne−n

(
√

2π(n/2)(n/2)n/2)22n

∼ 1√
2π

2√
n
.
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Proof

Let k = µ+ zσ = n/2 + z
√
n/2 = n/2 + d.

P (X = n/2 + d)

P (X = n/2)
=

(
n

n/2+d

)(
n
n/2

)
=

n!/[(n/2 + d)!(n/2− d)!]

n!/[(n/2)!(n/2)!]

=
(n/2)!(n/2)!

(n/2 + d)!(n/2− d)!

=
(n/2)(n/2− 1)...(n/2− (d− 1))

(n/2 + 1)(n/2 + 2)...(n/2 + d)

=
1(1− 2/n)(1− 2× 2/n)...(1− (d− 1)× 2/n)

(1 + 2/n)(1 + 2× 2/n)...(1 + d× 2/n)

=
(1− δ)(1− 2δ)...(1− (d− 1)δ)

(1 + δ)(1 + 2δ)...(1 + dδ)



100A

Ying Nian Wu

Discrete

Continuous

Process

110/113

Proof

→ e−δe−2δ...e−(d−1)δ

eδe2δ...edδ

=
e−(1+2+...+(d−1))δ

e(1+2+...+d)δ

=
e−d(d−1)δ/2

ed(d+1)δ/2

= e−[d(d−1)/2+d(d+1)/2]δ = e−d
2δ

= e−(z
√
n/2)2(2/n) = e−

z2

2 ,

where δ = 2/n, and d = z
√
n/2.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., n = 100, p = 1/2. X ∼ N(50, 25).
P (X ∈ [50− 2× 5, 50 + 2× 5]) = P (X ∈ [40, 60]) = 95%.

Recall
∑60

k=40

(
100
k

)
/2100 → integral.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., Polling n = 100, p = .2. X/n ∼ N(.2, .042).
P (X/n ∈ [.2− 2× .04, .2 + 2× .04]) = P (X/n ∈ [.12, .28]) =
95%.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., Monte Carlo n = 10000, p = π/4.
4m/n ∼ N(π, π(4− π)/10000).
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