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Random variables

Connection to events:
Randomly sample a person w from a population €.

X (w): gender of w, 2 — {0,1}.

Y (w): height of w, @ — R™.

A={w: X(w)=1}. P(A) = P(X =1). Discrete.
B={w:Y(w) > 6}. P(B)=P(Y > 6). Continuous.

We shall study random variables more systematically.

w € Q equally likely, but X (w) and Y (w) are not necessarily
equally likely.



Discrete random variables

Roll a die
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Discrete

p(x) = P(X =z).

Capital letter: random variable
Lower case: particular value, running variable

X ~ p(x).



Probability distribution
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Discrete Biased d ie:

P1 P2 P3 P4 Ps  Ps

Randomly throw a point into [0, 1], which bin (1, 2, ..., 6) it
falls into?

w € Q= [0,1], equally likely.

X (w) is the bin that w belongs to, not necessarily equally likely.
Throw 1 million points, what is the proportion of points in each
bin? Or how often the points fall into each bin?



Probability distribution

Biased die:
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Discrete

p(z): how often X = z.
p(x): probability mass function, probability distribution, law
2o p(x) =
P(X € {5, 6}) p(5) + p(6).
P(X € [a,b]) =3 ey P(@).




Expectation

Biased die

Kl o 0.1 0.2 0.2 0.1 03

Discrete

0.1m 0.1m 0.2m 0.2m 0.1m 0.3m

n 10% 10% 20% 20% 10% 30%

(1x0.1m + 2x0.1m + 3x0.2m + 4x0.2m + 5x0.1m + 6x0.3m)
im

= ap(x)

average =



Expectation

Biased die
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Discrete

0.1m 0.1m 0.2m 0.2m 0.1m 0.3m

n 10% 10% 20% 20% 10% 30%

(1x0.1m + 2x0.1m + 3x0.2m + 4x0.2m + 5x0.1m + 6x0.3m)

average =

im
—_—““—n—
-$30 -$20 $20 $30 $100 h(x)

- h(1) h(2) h(s) h(4) h(5) h(6)

longrun average = (-$30)%0.1 + (-520) X0.1 + ($0)x0.2 + ($20)x0.2 + ($30)x0.1 + ($100)x0.3

E(h(X)) =) h(=



Discrete

x $100 $200
p(x) 1 plx) 1/2 1/2
E(X) = ($100)x1 = $100 EX) = ($0)><% + ($200)x % =$100
h(x): perceived value S0 $100 $150

Offer 1: E[h(X)] = $100 x 1 = $100.
Offer 2: E[h(X)] = $0 x % + $150 x 1 = $75.



Variance

Discrete j{:;zp = $0 x 1/2 + $200 x 1/2 = $100)

Var(X) = E[(X — p)’] = Y (z — p)’p(z) = o>

= ($0 — $100)% x 1/2 + ($200 — $100)* x 1/2
= $210,000.

Long run average of squared deviation from the mean.
SD(X) = 4/Var(X) = o(= $100).

Extent of variation from the mean.



Discrete

Variance

-$30 -$20 ] $20 $30 $100 h(x)
- h1) k2 k3 h4)  h(5) k6

longrun average = (-$30)x0.1 + (-$20) 0.1 + ($0)x0.2 + ($20)x0.2 + ($30)x0.1 + ($100)x0.3

= h@)p(x)

Var[h(X)] = E[(h(X) — E(h(X)))?].



Discrete

E(X) =Y xp(x) = p.

Var(X) = E[(X = 19*) = Y (@ - p)?ple) = o,

T

Long run average of squared deviation from the mean.
Sampling p(x) = T1,..., iy ..., T
(e.g., rolling adie -+ 2,1,6,5,3,2,5,4,3,..)




Linear transformation

Discrete




Discrete Samphng p(f,U) — xl,...,xi,...,xn
(e.g., rolling a die —+ 2,1,6,5,3,2,5,4,3,..)

1 & 1o 1
y:n;yz‘znz;(ami—l—b):anz;xi‘i‘b:ax‘i‘b-
i= 1= =



Linear transformation




S0t Sampling p(x) = X1, ...y Tjy oovy Ty,
R (e.g., rolling a die —+ 2,1,6,5,3,2,5,4,3, ..)

i=1
Yi = ax; +b
1 — 1 —
g:EZ(ax,—i-b —aﬁZ$1+b_ax+b
=1 =1
1 — 1 —
EZ(yz—y EZ az;+b—(az+b))? Za



Short-cut for variance




Transformation

h(z) = ax +b.
E[h(X)] =E(aX 4+ b) = aE(X) + b= h(E(X)).

Var(X) = E(X?) — [E(X)]*.



Convex function

MENE  Upper envelop and supporting lines

Discrete

g(x) > apzx + bo; g(xo) = aoxo + bo.

Supporting line at zy touches g(z) at xg, but below g(z) at
other places.



Jensen inequality

P P(X =b) =1/2.
E(X) = (a+0)/2, g(E(X)) = g((a +b/2).
v E(9(X)) = (9(a) + g(b))/2.
E(g9(X)) > g(E(X)).
Tro = ]E(X)
g(xo) = apzo + by (supporting line at z)
(l’) o + bo.

> q
E(g9(X)) > E(agX+bo) = aoE(X)+by = apzo+by = g(E(X)).




Discrete

a b c d

Pr

/2 1/4 1/8 1/8

flips

H 1T THH THT




Coin flippings

Discrete Q a b c d
Pr 1/2 1/4 1/8 1/8
~logp 1 2 3 3

1 1 1 7

1
H(X)=—x1+—x24+—x3+—x3=—1fli
%2 2 4 8 8 4 e

a b c d

Pr

1/2 1/4 1/8 1/8

flips

H Tr THH THT



Prefix code

Discrete

a b i d
Pr | 1/2 1/4 1/8 1/8
code | 1 00 011 010

100101100010->abacbd

E[l(X)]:Z[(x)p(x)=lx%+2xi+3x%+3xé=%hits



Optimal code

a b o d
Pr |1/2 1/4 1/8 1/8

code| I 00 Ol1 010

Discrete

100101100010->abacbd

Sequence of coin flipping
A completely random sequence
Cannot be further compressed

l(x) = —log p(x)
E[l(X)]1=H(p)

e.g., two words I, probability



Bernoulli

Flip a coin (probability of head is p)
Discrete Z ~ Bernoulli(p)
Z€{0,1}, P(Z=1)=pand P(Z=0)=1—p.

E(Z)=0x(1—p)+1xp=p.

Var(Z) = (0-p)?*x(1—p)+(1-p)*xp
= p(1—-p)lp+ 1A —-p]=p(l-p).
E(Z?) =

Var(Z) = E(Z%) —E(Z)* = p - p* = p(1 - p).



Binomial

100A
B Flip a coin (probability of head is p) n times independently.

Discrete X - number Of headS
X ~ Binomial(n, p)

P(X =) = (”)p’fu .

k

(Z) is the number of sequences with exactly £ heads.
p*(1 — p)"~* is the probability of each sequence with exactly k

heads.
e.g.,n=23,
P(X =2)=P(HHT)+ P(HTH)+ P(THH) = 3p2(1 —p).

p=1/2, we have P(X =k) = (Z)/Qn




Recall independence

Ying Nian W Definition 1:

Discrete P(A’B) - P(A)
Definition 2:
P(ANB) = P(A)P(B).
0
M F
e | o | w
B ! AnB

No college
degree

50 50 A



Binomial formula

Discrete

P P P SN P P P P
H T H T H T H T H T H T H T H T
LN N N N NN NN
HHHH HHHT HHTH HHTT HTHH HTHT HTTH HTTT THHH THHT THTH THTT TTHH TTHT TTTH TTTT

H+T)" = n>HkT”_k.

Ty =3 (;

n=1 H+T.

n=2 (H+T)H+T)=HH+HT +TH +TT.

n =3, above x(H +T) =
HHH+HHT+HTH+HTT+THH+THT+TTH+TTT.



Binomial

Ying Nian Wu

Discrete

Let a =p, b =q¢=1— p. Randomly throw a point into unit
cube, equally likely setting.

Each rectangular piece corresponds to a particular sequence.
Each color corresponds to a particular number of heads.




Binomial

Discrete




Binomial and Bernoulli

Discrete X — Zl + Z2 + + Z’I’L7
where Z; ~ Bernoulli(p) independently.

E(X) =) E(Z)=np.

=1

Due to independence of Z;, i =1,...,n,

Var(X) = Var(Z;) = np(1 — p).
=1



Frequency

Discrete X/n is the frequency of heads.
E(X/n) =E(X)/n=p.

Var(X/n) = Var(X)/n? = p(1 — p)/n.

Var(X/n) — 0 as n — oc.
X/n — p, in probability

Law of large number
Probability = long run frequency



Law of large number

100A

Ying Nian Wu

long run frequency — probability
Discrete Flip a fair coin independently — 2™ sequences, §2.

Ac={w: X(w)/ne(1/2—¢1/2+¢€)},

the set of sequences whose frequencies of heads are close to
1/2.
A

P(X/ne(1/2—¢1/2+¢€)) = Q — 1.
Almost all the sequences have frequencies of heads close to
1/2.
e.g., n = 1 million. Almost all the 91 million sequences have
frequencies of heads to be within [.49, .51].




Law of large number

Discrete

e.g., n = 1 million. Almost all the 91 million sequences have
frequencies of heads to be within [.49, .51].

P(X/1m € [49,.51]) = P(X € [49m, .51m])
.51m

-y <1Z‘)/21mz1.

k=.49m



Discrete




Discrete




Binomial variance

Discrete

E(X) = np.

E(X(X —1)) = E(X?) —E(X) = n(n — 1)p*

Var(X) = E(X?) - E(X)?
n(n —1)p* + np — (np)”

= np — np*> = np(1 — p).



Survey sampling

100A
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Discrete

A box with R red balls and B blue balls. N = R + B balls in
total.

Randomly pick a ball. P(red) = R/N = p.

Randomly pick n balls sequentially (with replacement, put the
picked ball back). Let X = number of red balls.

The distribution of X:

X ~ Binomial(n,p = R/N).

Survey sampling, poll.




Survey sampling

100A

Q = all N™ sequences, equally likely.
X (w): number of red balls in sequence w € €.

Diserete A ={w: X(w) = k}, all sequences with k read balls.

Choose k blanks from n blanks. For each chosen blank, fill in a
red ball. For each unchosen blank, fill in a blue ball.

|Ay| = (”) RFBF,

Ying Nian Wu

k

Axiom 0:

A n _
P(ay) = POx = k) = ol = (M) gy
9 \k
E(X) = average of X (w) over all N™ sequences.
Var(X) = variance of X (w) over all N™ sequences.



Law of large number

Ying Nian Wu

Discrete

Q = all N™ sequences, equally likely.
X (w): number of red balls in sequence w € €.

X (w)/n: frequency of red balls in sequence w.

E(X/n) =p= R/N = average of X(w)/n over all the N"
sequences in 2.

Var(X/n) = p(1 — p)/n = variance of X (w)/n over all the N"
sequences in 2.

Law of large number: Among all N™ equally likely sequences,
almost all of them have X (w)/n close to p.



Monte Carlo

Randomly throw n points into the unit square. Let m be the
number of points falling below the curve.

Discrete

The distribution of m is:
m ~ Binomial(n,p = w/4).
Q) = all possible sequences of points = [0, 1]*".



Geometric

Discrete T ~ Geometric(p)
T is the number of flips to get the first head, if we flip a coin
independently and the probability of getting a head in each flip
is p.

P(T =k) = (1-p)*'p.
1, H
H.
,TTH.
T=4,TITH.
Waiting time.

|
N
NS

e
Il
W o




Geometric expectation

T ~ Geometric(p)

Discrete

E(T) = Y kP(T=k)
k=1
= ikq’“_lp:piiqk
k=1 k:ldq
- d (1
_ el kE_ ~ (_-
= P2 Pdq (1—q )
k=1
B S
(1-9? p



Geometric series

Discrete

14+a+..+a™

—(a+ad*+ ...+ a™ +am)
= 1— a’m-{—l'

1— m+1
l1+a+..+a" = a
1—a
If la] < 1,
a™ =0, as m — .



Quantum bit

[1)

10+ A1)

ﬁ’
B | e} Al
/A

Discrete

state vector = «|0) + 3|1).

state vector rotates over time.

squared length = |a|? + |8|? = 1 under rotation.
observer: p(0) = |a|?, p(1) = |B]?.

A8+ )

Schrodinger cat: P(alive) = (1/v/2)% = 1/2.



Recall discrete random variable

Continuous

Probability histogram

P(x)
0.10
0.15
035
0.40

oW W =

area of bin z = p(x).

Randomly throw a point w into the whole blue region §2,
X(w) =z if w falls into bin z.



Continuous random variable

Continuous

Continuous (e.g., height).
Discretize z-axis into equally spaced bins (z,x + Az), e.g., (6
ft, 6 ft 1 inch), precision = 1 inch.

P(X € (z,z+ Ax)) = f(z)Ax,

f(z): height of bin (z,x + Az). f(z)Ax: area.
Randomly throw a point w into the whole blue region §2,
X (w) = x if the point falls into bin (z,z + Ax).




Let Az — 0, continuous.

L

Randomly throw a point w into the region Q under curve f(x).
Return X (w) = horizontal coordinate of the point.
Repeat n (e.g., 1000) times, frequency — probability,

Continuous

P(X € (z,z+ Ax)) = f(z)Ax.

How often X € (z,x + Ax).



Probability density function

Let Az — 0, continuous.

Continuous III

P(X € (z,z+ Ax)) = f(z)Ax.

EE

b
P(X € (a,b)) = Z f(x)Az —>/ f(x)dx.
bins “

area under f(z) between a and b.

/_Zf(m)dx _1



Scatterplot

Collapse the points onto x-axis.

Continuous

Sample density or distribution of the n points.

Sample density at x = number of points in (z,z + Ax)/Ax.
Normalize the count m to frequency m/n, as n — oo,
frequency — probability,

faoy— P (Z,;; + Az))




Point cloud

Electron orbits around nucleus: wrong conception
Electron cloud, probability density function, f(z)
Wave function (), evolves over time.

Observer: f(z) = [1(x)|?.

Continuous

of cell.




100A
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Continuous

Observer: f(z) = |[v(z)[%

Prob density = prob mass in the cell / volume of cell.



Continuous

Sample density or distribution of the n points.
Sample histogram (can fluctuate if do it again).
Normalize the count to frequency — probability,

f) = P(X € (Zf—i_Ax))'




Population

ian W
Continuous llllll
o moll¥ @

Population density or distribution of the N (e.g., 300 million)
points.

Population histogram (no fluctuation, always the same).
Normalize the count to proportion,

P(X € (z,z + Ax))

fla) = e

Population (300 million, fixed) — sample (1000, fluctuate)
Population — sample (1 million, fluctuation diminishes)
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Continuous

Population of N equally likely possibilities.
Mathematical idealization: N = co.
Prob density = prob mass in the cell / volume of cell.

Observer: f(z) = |1(x)|?.



Cumulative density function

Continuous

Cumulative Probabilly

Fz)=P(X <z)= / f(z)dx.

—0o0

SAT score x — percentile F'(x).
Percentage of people below z.



Area and slope

Continuous

Area:

Slope:

) F(x—I—AAx;—F(x) .
Notation:

Fa)= D e iy



Continuous

Recall discrete

Probability histogram

PR )

area of bin z = p(z).

E(X) =) aP(X =x)=> ap(z).
E[h(X)] =Y h(z)P(X =) =) h(z)p(x).

Long run average.

P(x)
0.10
015
035
0.40




Expectation

Continuous

P(X € (z,z+ Ax)) = f(z)Ax.

Continuous

E(X) = ZJJP(X € (z,xz+Ax)) = Zl’f(l’)A:E — /mf(a:)d:n

ER(X)] = Y h(z)P(X € (2,2 + Ax))

= S h(@) fx)Ar / h(z) f(2)dz

Long run average, center.



Continuous

f(x) = 21,y @iy oy Ty
mg = number of points in (z,z + Ax).

n
1 1 My
—Emi:—g Tmy, = r—
n n n
1=

bins bins

= Y aP(X € (z,2 + Az))

= fo(x)Ax—)/xf(m)d:v:E(X)

S]]
Il

Long run average. Same logic for E(h(X)).
Same logic for population average.



Variance

Continuous

P(X € (z,z+ Ax)) = f(z)Ax.

*

E(X) = /wf(w)dw = .

Continuous

Var(X) =E[(X - 0] = [ (2 = 0 f ().

Var[h(X)] = E[(h(X) — E(h(X)))?].

Fluctuation, volatility, spread.



Uniform

100A

U ~ Uniform|0, 1], i.e., the density of U is
f(u) =1 for u € [0,1] (or f(u) =1/(b—a) if u € [a,b]),
f(u) = 0 otherwise.

Ying Nian Wu

Continuous

f(x) 1
F(x)

o a b X 0 a b X

PU € (u,u+ Au)) = f(u)Au = Au.

Imagine 1 million points distributed uniformly in [0, 1].
Number of points in (u,u + Au) is Au million.

e.g., Number of points in (.3,.31) is .01 million.



Uniform

o F(u)=PU <u) =

1 u>1

F(u): proportion of points below w.

1
E(U) :/O uf(uu =

1
E(U2) :/O W2 f (u)du = %

Var(U) = E(U?) — (E(U))* =



Pseudo-random number generator

Linear congruential method
Start from an integer Xy, and iterate

Continuous

XtJrl = G,Xt + b mod M.

Output U; = X;/M. eg., a="T7°b=0,and M = 23! — 1,
mod: divide and take the remainder, e.g., 7 = 2 mod 5.
eg.,a=7,b=1 M =5, Xy=1, then

X1 =1x74+1mod5 =3.

Xo=3x7+1mod5=2.



Exponential

Hitogram ofthe Exponantial itrbution

Continuous

T ~ Exponential()\),
f(t) = Xe A for t >0,

f(t) =0 for t <O0.

P(T € (t,t + At)) = de MAL

Imagine 1 million particles, mark the times when they decay.
1 million points on real line. Their distribution is exponential.
Number of points in (t,t + At) is Ae At million.



Exponential

Continuous

F(t)

/0 t f(t)dt = /O t Ae Mt

— _e—>\t|6 -1— e—)\t.

F(t): proportion of points below ¢
Half-life: F(tha]f) = P(T < thalf) = 1/2.
1 million particles, by half life, half million will have decayed.



Continuous




Integral by parts
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Continuous

u Au
%u(:{:)v(x) =/ (z)v(x) + u(z)v'(z).
duv = udv + vdu.

/[u'(w)v(w) +u(z)v (z)]dz = u(x)v(z).



Integral by parts

Continuous




Continuous

; /\
L 050 ofcata
o l l
T R
N -3-2-10 1 2 3 o ol .—-

99.7% of dat

2
/ f(2)dz = 95%.
—2



Normal expectation

Let Z ~ N(0,1), i.e., the density of Z is

ontinuous 1
Conti f(Z) — €_z2/2.

V2r

o0 1 22
E(Z) :/ z e zdz




Continuous

o 1 22
E(Z2):/ z2m6_7dz

= \/12? /_O;(—z)de_z22
_ \/12?(_26222|°°OO — /Z eféd(—z))

* 1 22
= / ——e 2dz=1.
—oo V2T

Var(Z) = E(Z%) — (E(Z))? = 1.




Variance

For X ~ f(x), let p =E(X).

Var(X) = E[(X —p)’]
= ]E[X2—2pX+u]
= E(X?) = 2uE(X) 4 42
= E(X?) - (E(X))%

E[r(X) +s(X)] = [[r(x)+s()]f(2)de

r(:c)f(x)d:n+/s(x)f(x)d:v
[r(X)] + E[s(X)].

Il
——

I
&=



Linear transformation

For X ~ f(x). Let Y = aX +b.

E(Y)=E(aX +b) = /(am +b)f(x)dx

= a/xf(a;)dx—i—b/f(a:)dx

= aE(X) +0b.

Var(Y) = Var(aX +b) = E[((aX +b) — E(aX +b))?]
E[(aX + b — (aE(X) +b))?]
Ela*(X - E(X))?

= ’E[(X — ]E(X))Q] = a*Var(X).



Continuous

I Y I O B N |
-3-2-10 1 2 3 -”.'II".—-

Sampling f(x) = ©1,..., i, ..., Tn
(e.g., random number generator — .22, .31, .92, .45, ...

1 n
r = — i E(X)=pu.
z n;:lx% (X)) =n



Continuous

Sampling f(x) = 1, ..., Zi, ..., T
(e.g., random number generator — .22, .31, .92, 45, ..)



Change of density under linear transformation

Change of variable
X~ f(x),Y=aX+b(a>0).Y ~g(y).
Y Y y=ar+b

Continuous

y=ar+b, z=(y—b)/a.
P(X € (z,z + Az)) = P(Y € (y,y + Ay)).

f(z)Az = g(y)A

o(y) = f(a ﬂ — F((y— b)/a))/a.

Space warping, stretching or squeezing.



Normal or Gaussian

Let Z ~ N(0,1), i.e., the density of Z is

£(z) = e,

Continuous

Let X =pu+0Z. Z=(X—p)/o. Then
E(X)=E(p+0c2)=pn+oE(Z) = p.
Var(X) = Var(u 4 0Z) = 0°Var(Z) = o2
f(2)Az = g(x)Ax.

gx) = flz)




Normal or Gaussian

Let Z ~N(0,1). Let X =p+o0Z. Z= (X —p)/o.
X ~N(p,0%),

1 (z — p)?
Continuous f(l') - \/W exp [_W :

(we now use f(z) to denote the density of X.)

00 01 02 03 04

-30 -20 ~-lo lo 20 30

"
68.2%
95.4%

99.7%




Non-linear transformation

r(X), monotone. Y ~ g(y).

Y y=r(z)

Continuous

y=r(x), t=1""(y).
P(X € (z,2+ Az)) = P(Y € (y,y + Ay)).
f(z)Az = g(y)Ay.
Ay/Az =1'(z).

Locally linear, space warping.



Space warping

Continuous

Squeezing or stretching the bins — changes the density and
histogram.




Continuous

y=r(z), z=r"t(y).
Order preserving mapping:
P(X <z)=P(Y <vy).



Inversion method

* 000 0ee@e0e O

Continuous

U ~ Unif[0, 1].

PU <u)=P(X <uz).

u=F(z), z=F (u).

Population: {z1,z2,...,xn} (ordered).
Sample i ~ Uniform{1,2,..., N}, return z;.
U = i/N ~ Uniform[0, 1], z; = F~Y(U).




Continuous

rx+ Az x.:F_l(u)

U ~ Unif[0,1]. X = F~Y(U). Then f(x) = F'(x) is the pdf
of X.

PU € (u,u+ Au)) = P(X € (z,z + Ax)).

Au = f(z)Az.

f) = S = F(x).



Inversion method

Continuous

Suppose we want to generate X ~ Exponential(1).
Flz)=1—-e"".
Fz)=u,ie,1—e=ue*=1—u x=—log(l—u).
Generate U ~ Unif[0, 1]. Return X = —log(1 —U).

xT



Box-Muller Transformation
90 4

Uniform random numbers

Continuous




X ~N(0,1), f(z)

ontinuous ~ = L _y
con Y ~ N, 1), fly) = A=exp (-4).
X and Y are independent.

P(X € (z,z+ Ax),Y € (y,y + Ay))
= P(X € (x,x+ Ax)) x P(Y € (y,y + Ay)).

o)Ay = [(x) A0 x f) Ay
2 2
fa) = e (-5 ).

2



Polar method

Ying Nian Wu

Continuous

. 105 180° 165,

»®
3

e E
992 Loz S8

xr=rcosf, y=rsinf.

Area of ring R € (r,r + Ar)) = 2nrAr.

Count proportion of points in the ring = density x area.
1

2
P(Re (r,r+Ar)) = o €XP (—2) 2rr Ar

2 2 2
= exp (—2) rAr = exp (_7”2) d%.



Polar method

Continuous e

xr=rcosf, y=rsinf.
Let t = r2/2. At =rAr.

P(T € (t,t+ At)) = P(R € (r,r + Ar)).

f(t)At = exp <—7§) rAr = exp(—t)At.

T ~ Exponential(1).



Polar method

Box-Muller Transformation
Uniform random numbers
%l 3 FE

Continuous

240 - 300

T = —log(l —Uy).
R=+2T.

0 = 2nUs5.

X =RcosO,Y = Rsin®.
(U]_,UQ) — (X,Y).



Non-linear transformation

Ying Nian Wu

X~ f2), Y =r(X). Y ~g(y).
X consists of iid Gaussian N(0, 1) noises.

Conimums 7 is learned from training examples by neural network (deep
learning).




Stochastic processes

Particle decay

Process

B
>®
0.5 K
1 |

@S TR
(% %
-
.

03};: o |

T time until decay.
T ~ Exponential(A).
P(T € (t,t + At)) = f(t)At = de MAL.



Continuous time process

Making a movie
Process Divide the time into small intervals of length At (e.g., 1/24
second, or 1/100 second).

LLldol 11 1ol L1110l

time

Show a picture at 0, At, 2A¢, ...
Give an illusion of continuous time process as At — 0.



Process

Continuous time process

Bank account
LLpltol L LlolbL]loll

time

Divide [0,t] into n small intervals, At = t/n.
Interest rate = r.

Time 0: $1.

Time At: $(1 +rAt).

Time 2At: $(1 +rAt)2.

Time 3At: $(1 + rAt)3.

Time t = nAt: $(1 + rAt)™.

t n
(1 + 7’) — e,
n

asn — oo or At — 0.




Continuous time process

Bank account

Llllol L1l 1] ]of]

time

Divide [0,t] into n small intervals, At = t/n.
Interest rate = 7.

Process

1—}—1_61/”.
n
14+ Ag = 2

(14 rADYAL = (erAt)t/At — ot



Poisson process

Llllol L1 lol 1] 1ol

time

Process

Flip a coin within each interval.

p = AAt (e.g., At =1 hour. A = once every 10 year.
AAL = 1/3650 x 1/24).

Geometric waiting time

P(T € (t,t+ At)) = (1 —MAD)YAAAL
t/At
= <e*)‘m) / AL = e MAAL.



Exponential distribution

I ] I I e/ I e |

time

Flip a coin within each interval.

p = AAt (e.g., At = .001 second. A\ = once every minute.
Process AAt =1/60 x .001).

Exponential waiting time

P(T € (t,t+ At))
At

P(T > 1) = (1 — AAY)/AL = (e AMI/AL = =M,

= e M




Exponential = geometric

Histogam of tha Exporential Distrintion

Process

0 o I ! I I [
time

1 million particles decay in different period. Each small period
is a bin.
Geometric waiting time

We can write T' = T'At, where T' ~ Geometric(p = AAt).
Then 1

A =1/

E(T) = E(T)At = ;At =



Poisson distribution

1 C I ! Y I e

time

Process

Flip a coin within each interval.
Let X be the number of heads within [0, ], then
X ~ Binomial(n = t/At,p = AAt).

P(X =k)= <Z>pk(1 —p)" = (k! e

E(X) =np = (t/At)(AAL) = At
A = E(X)/t, rate or intensity.




Poisson distribution

_ _ n(n—1)...]€(!n—k—|—1)pk(1_p)n_k
t/ ALt/ AL —1)..(t/ At — k + 1)
k!
X (AADF(1 = NA)H/AE
t(t — At)(t — 2AL)...(t — (k — 1)At)
k!
) AR = AAD)YAH 1 — AAL) TR
tr —AAt\t/ AL Ak t
H)\k:(e )\A)/A :(k?e )\‘

Process




Diffusion or Brownian motion

Process

Ending point

Starting point



Process

Number of heads Y ~ Binomial(n, 1/2), then random walk
ends up at X,

X=Y-n-Y)=2Y —n.

X=€1+e+..+e,.
€ = 1 or —1 with probability 1/2 each.



Discretize time and space

100A

Ying Nian Wu LLIt I Bttt

0 At=t/n t

Process

(1) Time: Divide [0,t] into n intervals, At = t/n (time unit).
(2) Space: Within each small time interval, move forward or
backward by Az (space unit).

P(e; =1) = P(¢; = —1) = 1/2. ¢; are independent.

X = Zn: eAr=(Y —(n—Y))Az = (2Y — n)Ax.
i=1



Diffusion or Brownian motion

LI Attt

At=t/n 1t

Process

Var(X) = Z:Va]r(ei)Aac2 =nAz? = éAazQ.
i=1

Var(X) = Var((2Y — n)Az) = 4Var(Y)Az? = nAz?
Az?/At = 0% Az = oV At; Var(X) = o’t.
velocity = Az /At = o /V At — oo.

Einstein, o related to the size of molecules.



Diffusion or Brownian motion

Process

X = B(t).
Nowhere differentiable.

o: volatility of stock price, basis for option pricing.

A drop of milk (millions of particles) diffuses in coffee.



Normal approximation

Central limit theorem
P(e; =1) = P(e; = —1) = 1/2. ¢; are independent.

Process

X =) Az =(2Y —n)Azx ~ N(0,0°t),
=1

asn — 0.
Sum of independent random variables ~ Normal
distribution.



X ~ Binomial(n,1/2). p=E(X) =n/2,
02 = Var(X) =n/4, 0 = SD(X) = \/n/2.
Let

7 X—p X-—-n/2
Process o nj2’

then E(Z) =0, Var(Z) = 1, no matter what n is.
Z takes discrete values, with spacing Az =1/0 =2/y/n.

b
P(Ze@h)= 3 pa)= 3 28 [ e

z€(a,b) z€(a,d)

where f(z) = \/%6_2/2 is the density of N(0,1).

p(2)/Az = [(2).



Process Step 2:

X =pu+Zo=n/2+ Z\/n/2.
p(0) = P(X =n/2).

p(z)  P(X =n/2+4+2yn/2) P(X =n/2+d)

p(0) P(X =n/2) P(X =n/2)




Process

For big n,

P(X

=n/2)

~

nl ~V2rnn"e™ ",

n!
(n/2)122n
2mnn"e

(\/ 2 (n/2)(n/2)"2)%2"
\/—_

—-n

ﬂlw



ssssss

Let k=p+z0=n/2+42yn/2=n/2+d.

PX =n/2+d) (ira)

P(X=n/2) — (1)

n/2
_ nl/[(n/2+d)!(n/2 - d)]]
n!/[(n/2)(n/2)!]
(n/2)!(n/2)!

(n/2+d)!(n/2 —d)!
(n/2)(n/2 —1)...(n/2 — (d — 1))
(n/2+1)(n/2+2)...(n/2 +d)
1(1-2/n)(1—-2x2/n)...(1—(d—1) x 2/n)
(14+2/n)(1+2x2/n)...(1+dx2/n)
(1=0)(1—24)...(1 —(d—1)9)
(14 6)(1+24)...(1 + do)




e 0e=20 = (d=1)d
ede20  edd
o~ (14+2+..+(d—1))8
2+ +d)s
o—d(d—1)3/2

_)

Process

ed(d+1)5/2
e ld(d=1)/2+d(d+1)/2]6 _ ,—d?s
2

o (V22 2/m) _

)

where § = 2/n, and d = z/n/2.



Normal approximation

Let X ~ Binomial(n,p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1 — p).

E(X/n) = p, Var(X/n) = p(1 - p)/n.

Approximately,

Process X ~ N(np’ np(]_ — p))

X/n ~N(p,p(1 - p)/n).

eg, n=100, p=1/2. X ~ N(50,25).

P(X €[50 — 2 x 5,50 + 2 x 5]) = P(X € [40,60]) = 95%.

z3 2 -1 0 1 2 3

Recall 220:40 (120) /2190 — integral.



Normal approximation

Let X ~ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1 —p).

E(X/n) = p, Var(X/n) = p(1 - p)/n.

Approximately,

Process X ~ N(nP, np(l _ p))

X/n ~N(p,p(1 —p)/n).

e.g., Polling n =100, p = .2. X/n ~ N(.2,.04%).
P(X/nel2—-2x%x.04,242x.04]) = P(X/n € [.12,.28]) =
95%.

| 2,1 2,1%
o g3 1360l 0%
3 <20 -l u 1o 20 3o

68.2%
95.4%
90.7%

Z: 3 2 -1 0o 1 2 3



Normal approximation

Let X ~ Binomial(n,p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1 — p).
E(X/n) = p, Var(X/n) = p(1 - p)/n.
Approximately,

X ~ N(np,np(1 - p)).

X/n ~N(p,p(1 - p)/n).

e.g., Monte Carlo n = 10000, p = /4.
4m/n ~ N(m, (4 — 7)/10000).

Process

95.4%

99.7%
z-3 2 -1 0 1 2 3
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