100A

Ying Nian Wu

Discrete

Continuous

Process

STATS 100A: RANDOM VARIABLES

Ying Nian Wu

Department of Statistics University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

Random variables

100A

Discrete

Continuous

Process

Connection to events:

Randomly sample a person ω from a population Ω .

$$X(\omega)$$
: gender of ω , $\Omega \to \{0,1\}$.

$$Y(\omega)$$
: height of $\omega, \Omega \to \mathbb{R}^+$.

$$A = \{\omega : X(\omega) = 1\}. P(A) = P(X = 1).$$
 Discrete.

$$B = \{\omega : Y(\omega) > 6\}. P(B) = P(Y > 6).$$
 Continuous.

We shall study random variables more systematically.

 $\omega\in\Omega$ equally likely, but $X(\omega)$ and $Y(\omega)$ are not necessarily equally likely.

Discrete random variables

Roll a die

100A

Ying Nian Wu

Discrete

Continuou

Process

$$p(x) = P(X = x).$$

Capital letter: random variable Lower case: particular value, running variable

 $X \sim p(x).$

Probability distribution

100A

Ying Nian Wu

Discrete Continuou: Process

Randomly throw a point into [0, 1], which bin (1, 2, ..., 6) it falls into?

 $\omega \in \Omega = [0,1]$, equally likely.

 $X(\omega)$ is the bin that ω belongs to, not necessarily equally likely. Throw 1 million points, what is the proportion of points in each bin? Or how often the points fall into each bin?

Probability distribution

100A

Ying Nian Wı

Discrete

Continuous

Process

x	1	2	3	4	5	6
p(x)	0.1	0.2	0.1	0.2	0.1	0.3
	10%	20%	10%	20%	10%	30%

$$p(x) = P(X = x).$$

 $\begin{array}{l} p(x)\text{: how often } X=x.\\ p(x)\text{: probability mass function, probability distribution, law}\\ \sum_x p(x)=1.\\ P(X\in\{5,6\})=p(5)+p(6).\\ P(X\in[a,b])=\sum_{x\in[a,b]}p(x). \end{array}$

Expectation

100A

Ying Nian Wi

Biased die

 $\mathbf{p}(x)$

0.1

0.1

Discrete

Continuous

Process

0.2

4

0.2

0.1

 $average = \frac{(1 \times 0.1m + 2 \times 0.1m + 3 \times 0.2m + 4 \times 0.2m + 5 \times 0.1m + 6 \times 0.3m)}{1m}$

$$\mathbb{E}(X) = \sum_{x} x p(x).$$

6

0.3

Expectation

Biased die

Process

x	1	2	3	4	5	6
#	0.1m	0.1m	0.2m	0.2m	0.1m	0.3m
%	10%	10%	20%	20%	10%	30%

$$average = \frac{(1 \times 0.1m + 2 \times 0.1m + 3 \times 0.2m + 4 \times 0.2m + 5 \times 0.1m + 6 \times 0.3m)}{1m}$$

x	1	2	3	4	5	6	x
payoff	-\$30	-\$20	\$0	\$20	\$30	\$100	h(<i>x</i>)
	h(1)	h(2)	h(3)	h(4)	h(5)	h(6)	

 $longrun\ average = (-\$30) \times 0.1 + (-\$20) \times 0.1 + (\$0) \times 0.2 + (\$20) \times 0.2 + (\$30) \times 0.1 + (\$100) \times 0.3$

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$

Utility

100A

Ying Nian Wu

Discrete

Continuous

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$

Offer 1					
x	\$100				
p(<i>x</i>)	1				

$$E(X) = (\$100) \times 1 = \$100$$

Offer 2						
x	\$0	\$200				
p(<i>x</i>)	1/2	1/2				

$$E(X) = (\$0) \times \frac{1}{2} + (\$200) \times \frac{1}{2} = \$100$$

x: face value	\$0	\$100	\$200
h(x): perceived value	\$0	\$100	\$150

Offer 1:
$$\mathbb{E}[h(X)] = \$100 \times 1 = \$100.$$

Offer 2: $\mathbb{E}[h(X)] = \$0 \times \frac{1}{2} + \$150 \times \frac{1}{2} = \$75.$

Variance

Ving Nion W

Discrete Continuou

$$\mathbb{E}(X) = \sum_{x} xp(x) = \mu(=\$0 \times 1/2 + \$200 \times 1/2 = \$100)$$

$$Var(X) = \mathbb{E}[(X - \mu)^2] = \sum_x (x - \mu)^2 p(x) = \sigma^2$$

= (\\$0 - \\$100)^2 \times 1/2 + (\\$200 - \\$100)^2 \times 1/2
= \\$^210,000.

Long run average of squared deviation from the mean.

$$SD(X) = \sqrt{\operatorname{Var}(X)} = \sigma(=\$100).$$

Extent of variation from the mean.

Variance

100A

Ying Nian Wu

Discrete

Continuous

Process

x	1	2	3	4	5	6	x
payoff	-\$30	-\$20	\$0	\$20	\$30	\$100	h(<i>x</i>)
	h(1)	h(2)	h(3)	h(4)	h(5)	h(6)	

 $longrun\ average = (-\$30) \times 0.1 + (-\$20) \times 0.1 + (\$0) \times 0.2 + (\$20) \times 0.2 + (\$30) \times 0.1 + (\$100) \times 0.3$

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$
$$\operatorname{Var}[h(X)] = \mathbb{E}[(h(X) - \mathbb{E}(h(X)))^{2}].$$

Data

100A Ying Nian W

Discrete Continuou

Process

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mu)^2] = \sum_{x} (x - \mu)^2 p(x) = \sigma^2.$$

Long run average of squared deviation from the mean. Sampling $p(x) \rightarrow x_1, ..., x_i, ..., x_n$ (e.g., rolling a die \rightarrow 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \to \operatorname{Var}(X) = \sigma^{2}$$

Linear transformation

100A

Ying Nian Wu

Discrete

Continuous

Process

 $\mathbb{E}(Y) = \mathbb{E}(aX + b)$ $= \sum_{x} (ax + b)p(x)$ $= \sum_{x} axp(x) + \sum_{x} bp(x)$ $= a\sum_{x} xp(x) + b\sum_{x} p(x)$ $= a\mathbb{E}(X) + b.$

Data

100A

Ying Nian Wu

Discrete Continuou

Process

Sampling
$$p(x) \to x_1, ..., x_i, ..., x_n$$

(e.g., rolling a die \to 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

 $y_i = ax_i + b.$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \frac{1}{n} \sum_{i=1}^{n} x_i + b = a\bar{x} + b.$$

Linear transformation

100A

Ying Nian Wu

Discrete

Continuous

$$Var(h(X)) = \mathbb{E}[(h(X) - \mathbb{E}(h(X)))^2].$$
$$Var(Y) = \mathbb{E}[(Y - \mathbb{E}(Y))^2].$$
$$\mathbb{E}(Y) = a\mathbb{E}(X) + b.$$

$$\operatorname{Var}(aX+b) = \mathbb{E}[((aX+b) - \mathbb{E}(aX+b))^2]$$
$$= \mathbb{E}[(aX+b - (a\mathbb{E}(X)+b))^2]$$
$$= \mathbb{E}[(a(X - \mathbb{E}(X)))^2]$$
$$= a^2 \mathbb{E}[(X - \mathbb{E}(X))^2] = a^2 \operatorname{Var}(X).$$

Data

100A

Ying Nian Wu

Discrete Continuou

Statistics Reca

Sampling
$$p(x) \rightarrow x_1, ..., x_i, ..., x_n$$

(e.g., rolling a die \rightarrow 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$y_i = ax_i + b.$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \frac{1}{n} \sum_{i=1}^{n} x_i + b = a\bar{x} + b.$$

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\bar{y})^{2} = \frac{1}{n}\sum_{i=1}^{n}(ax_{i}+b-(a\bar{x}+b))^{2} = \frac{1}{n}\sum_{i=1}^{n}a^{2}(x_{i}-\bar{x})^{2}.$$

Discrete

Short-cut for variance

 $\mu = \mathbb{E}(X).$

$$Var(X) = \mathbb{E}[(X - \mu)^{2}]$$

= $\mathbb{E}[X^{2} - 2\mu X + \mu^{2}]$
= $\mathbb{E}(X^{2}) - 2\mu \mathbb{E}(X) + \mu^{2}$
= $\mathbb{E}(X^{2}) - \mu^{2} = \mathbb{E}(X^{2}) - [\mathbb{E}(X)]^{2}$.

$$\mathbb{E}[h(X) + g(X)] = \sum_{x} [h(x) + g(x)]p(x)$$
$$= \sum_{x} h(x)p(x) + \sum_{x} g(x)p(x)$$
$$= \mathbb{E}[h(X)] + \mathbb{E}[g(X)].$$

Transformation

Discrete

$$h(x) = ax + b.$$

$$\mathbb{E}[h(X)] = \mathbb{E}(aX + b) = a\mathbb{E}(X) + b = h(\mathbb{E}(X)).$$

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2.$$
$$h(x) = x^2.$$
$$\mathbb{E}[h(X)] = \mathbb{E}(X^2);$$
$$h(\mathbb{E}(X)) = [\mathbb{E}(X)]^2.$$

•

Convex function

100A

Ying Nian Wı

Discrete

Continuous

Process

$$g(x) \ge a_0 x + b_0; \ g(x_0) = a_0 x_0 + b_0.$$

Supporting line at x_0 touches g(x) at x_0 , but below g(x) at other places.

Jensen inequality

100A

Ying Nian Wu

Discrete

Continuous

$$\begin{split} x_0 &= \mathbb{E}(X). \\ g(x_0) &= a_0 x_0 + b_0 \text{ (supporting line at } x_0\text{)} \\ g(x) &\geq a_0 x + b_0. \\ \mathbb{E}(g(X)) &\geq \mathbb{E}(a_0 X + b_0) = a_0 \mathbb{E}(X) + b_0 = a_0 x_0 + b_0 = g(\mathbb{E}(X)). \end{split}$$

Entropy

100A

Ying Nian Wu

Discrete

Continuous

Coin flippings

100A

Ying Nian Wu

Discrete

Continuous

Coding

100A

Ying Nian Wu

Discrete

Continuous

Process

Prefix code

	a	b	С	d	
Pr	1/2	1/4	1/8	1/8	
code	1	00	011	010	

100101100010→abacbd

$$\mathbf{E}[l(X)] = \sum_{x} l(x) p(x) = 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 3 \times \frac{1}{8} = \frac{7}{4} \text{ bits}$$

Coding

100A

Ying Nian Wu

Discrete

Continuous

Process

Optimal code

	a	b	С	d	
Pr	1/2	1/4	1/8	1/8	
code	1	00	011	010	

100101100010→abacbd

Sequence of coin flipping A completely random sequence Cannot be further compressed

 $l(x) = -\log p(x)$

 $\mathbf{E}[l(X)] = H(p)$

e.g., two words I, probability

Bernoulli

100A

Ying Nian Wu

Discrete

Continuou

Flip a coin (probability of head is
$$p$$
)
 $Z \sim \text{Bernoulli}(p)$
 $Z \in \{0, 1\}, P(Z = 1) = p \text{ and } P(Z = 0) = 1 - p.$
 $\mathbb{E}(Z) = 0 \times (1 - p) + 1 \times p = p.$
 $\text{Var}(Z) = (0 - p)^2 \times (1 - p) + (1 - p)^2 \times p$
 $= p(1 - p)[p + (1 - p)] = p(1 - p).$
 $\mathbb{E}(Z^2) = p.$
 $\text{Var}(Z) = \mathbb{E}(Z^2) - \mathbb{E}(Z)^2 = p - p^2 = p(1 - p).$

Binomial

100A

Ying Nian Wu

Discrete Continuou

rocess

Flip a coin (probability of head is p) n times independently. X = number of heads.

 $X \sim \operatorname{Binomial}(n, p)$

$$P(X = k) = {\binom{n}{k}} p^k (1-p)^{n-k}.$$

 $\binom{n}{k}$ is the number of sequences with exactly k heads. $p^k(1-p)^{n-k}$ is the probability of each sequence with exactly k heads.

e.g., n = 3, $P(X = 2) = P(HHT) + P(HTH) + P(THH) = 3p^2(1 - p)$. p = 1/2, we have $P(X = k) = \binom{n}{k}/2^n$.

Recall independence

100A

Ying Nian Wu

Discrete

Continuous

Process

Definition 1:

$$P(A|B) = P(A).$$

Definition 2:

$$P(A \cap B) = P(A)P(B).$$

Binomial formula

100A

Continuous

Process

$$\begin{split} n &= 1, \ H+T. \\ n &= 2, \ (H+T)(H+T) = HH + HT + TH + TT. \\ n &= 3, \ \text{above} \ \times (H+T) = \\ HHH + HHT + HTH + HTT + THH + THT + TTH + TTT. \end{split}$$

Binomial

Ying Nian Wu

Discrete

Continuous

Process

Let a = p, b = q = 1 - p. Randomly throw a point into unit cube, equally likely setting.

Each rectangular piece corresponds to a particular sequence. Each color corresponds to a particular number of heads.

Binomial

Discrete Continuou

Let
$$a = p, b = q = 1 - p.$$

 $n = 2, P(X = 2) = P(HH) = p^2.$
 $P(X = 0) = P(TT) = (1 - p)^2.$
 $P(X = 1) = P(HT) + P(TH) = 2p(1 - p).$
 $n = 3, P(X = 3) = P(HHH) = p^3.$
 $P(X = 2) = P(HHT) + P(HTH) + P(THH) = 3p^2(1 - p).$

Binomial and Bernoulli

100A

Ying Nian Wu

Discrete

Continuous

Process

where $Z_i \sim \text{Bernoulli}(p)$ independently.

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(Z_i) = np.$$

Due to independence of Z_i , i = 1, ..., n,

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(Z_i) = np(1-p).$$

Frequency

V

Ying Nian Wı

Discrete Continuou

X/n is the frequency of heads.

$$\mathbb{E}(X/n) = \mathbb{E}(X)/n = p.$$

$$\operatorname{Var}(X/n) = \operatorname{Var}(X)/n^2 = p(1-p)/n.$$

$$\operatorname{Var}(X/n) \to 0 \text{ as } n \to \infty.$$

$$X/n \to p, \text{ in probability}$$

Law of large number Probability = long run frequency

Law of large number

100A

Discrete Continuous

long run frequency \rightarrow probability Flip a fair coin independently $\rightarrow 2^n$ sequences, Ω .

$$A_{\epsilon} = \{\omega : X(\omega)/n \in (1/2 - \epsilon, 1/2 + \epsilon)\},\$$

the set of sequences whose frequencies of heads are close to 1/2.

$$P(X/n \in (1/2 - \epsilon, 1/2 + \epsilon)) = \frac{|A_{\epsilon}|}{|\Omega|} \to 1.$$

Almost all the sequences have frequencies of heads close to $1/2. \label{eq:loss}$

e.g., n = 1 million. Almost all the 2^1 million sequences have frequencies of heads to be within [.49, .51].

Law of large number

100A

Ying Nian Wu

Discrete

Continuous

Process

e.g., n = 1 million. Almost all the 2^1 million sequences have frequencies of heads to be within [.49, .51].

$$P(X/1m \in [.49, .51]) = P(X \in [.49m, .51m])$$
$$= \sum_{k=.49m}^{.51m} {\binom{1m}{k}}/{2^{1m}} \approx 1.$$

Binomial expectation

100A

Ying Nian Wu

Discrete

Continuous

$$\mathbb{E}(X) = \sum_{k=0}^{n} kP(X = k)$$

= $\sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$
= $\sum_{k=1}^{n} np \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$
= $\sum_{k'=0}^{n'} np \binom{n'}{k'} p^{k'} (1-p)^{n'-k'} = np.$
 $k' = k-1; n' = n-1.$

Binomial variance

100A

Ying Nian Wu

Discrete

Continuous

Process

35/113

Binomial variance

100A

Ying Nian Wi

Discrete

Continuous

$$\mathbb{E}(X) = np.$$

$$\mathbb{E}(X(X-1)) = \mathbb{E}(X^2) - \mathbb{E}(X) = n(n-1)p^2.$$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$
$$= n(n-1)p^2 + np - (np)^2$$
$$= np - np^2 = np(1-p).$$

Survey sampling

100A Ying Nian W

Discrete

Continuous

Process

A box with R red balls and B blue balls. ${\cal N}=R+B$ balls in total.

Randomly pick a ball. P(red) = R/N = p.

Randomly pick n balls sequentially (with replacement, put the picked ball back). Let X = number of red balls. The distribution of X:

 $X \sim \text{Binomial}(n, p = R/N).$

Survey sampling, poll.

Survey sampling

100A

Ying Nian Wu

Discrete Continuous Process
$$\begin{split} \Omega &= \text{all } N^n \text{ sequences, equally likely.} \\ X(\omega): \text{ number of red balls in sequence } \omega \in \Omega. \\ A_k &= \{\omega : X(\omega) = k\}, \text{ all sequences with } k \text{ read balls.} \\ \text{Choose } k \text{ blanks from } n \text{ blanks. For each chosen blank, fill in a red ball.} \end{split}$$

$$|A_k| = \binom{n}{k} R^k B^{n-k}.$$

Axiom 0:

$$P(A_k) = P(X = k) = \frac{|A_k|}{|\Omega|} = \binom{n}{k} p^k (1-p)^{n-k}.$$

 $\mathbb{E}(X) = \text{average of } X(\omega) \text{ over all } N^n \text{ sequences.}$ $\operatorname{Var}(X) = \text{variance of } X(\omega) \text{ over all } N^n \text{ sequences.}$

Law of large number

100A

Discrete

Continuous

Process

$$\begin{split} \Omega &= \text{all } N^n \text{ sequences, equally likely.} \\ X(\omega): \text{ number of red balls in sequence } \omega \in \Omega. \\ X(\omega)/n: \text{ frequency of red balls in sequence } \omega. \\ \mathbb{E}(X/n) &= p = R/N = \text{average of } X(\omega)/n \text{ over all the } N^n \text{ sequences in } \Omega. \\ \text{Var}(X/n) &= p(1-p)/n = \text{variance of } X(\omega)/n \text{ over all the } N^n \text{ sequences in } \Omega. \\ \text{Law of large number: Among all } N^n \text{ equally likely sequences, almost all of them have } X(\omega)/n \text{ close to } p. \end{split}$$

Monte Carlo

100A

Ying Nian Wu

Discrete

Process

Randomly throw n points into the unit square. Let m be the number of points falling below the curve.

The distribution of m is: $m \sim \text{Binomial}(n, p = \pi/4).$ $\Omega = \text{all possible sequences of points} = [0, 1]^{2n}.$

Geometric

100A

Discrete

continuo

Process

$T \sim \operatorname{Geometric}(p)$

T is the number of flips to get the first head, if we flip a coin independently and the probability of getting a head in each flip is p.

$$P(T = k) = (1 - p)^{k-1}p.$$

e.g., T = 1, HT = 2, TH. T = 3, TTH. T = 4, TTTH. Waiting time.

Geometric expectation

100A

Ying Nian Wu

$T \sim \operatorname{Geometric}(p)$

Discrete

$$\begin{split} \mathbb{E}(T) &= \sum_{k=1}^{\infty} k P(T=k) \\ &= \sum_{k=1}^{\infty} k q^{k-1} p = p \sum_{k=1}^{\infty} \frac{d}{dq} q^k \\ &= p \frac{d}{dq} \sum_{k=1}^{\infty} q^k = p \frac{d}{dq} \left(\frac{1}{1-q} - 1 \right) \\ &= p \frac{1}{(1-q)^2} = \frac{1}{p}. \end{split}$$

Geometric series

100A

Ying Nian Wi

Discrete

Continuous

Process

$$\begin{aligned} (1-a)(1+a+\ldots+a^m) &= 1+a+\ldots+a^m \\ &-(a+a^2+\ldots+a^m+a^{m+1}) \\ &= 1-a^{m+1}. \\ 1+a+\ldots+a^m &= \frac{1-a^{m+1}}{1-a}. \end{aligned}$$

If |a| < 1,

 $a^{m+1} \to 0, \ as \ m \to \infty.$

Quantum bit

Continuous

Process

state vector $= \alpha |0\rangle + \beta |1\rangle$. state vector rotates over time. squared length $= |\alpha|^2 + |\beta|^2 = 1$ under rotation. observer: $p(0) = |\alpha|^2$, $p(1) = |\beta|^2$.

$$\frac{1}{\sqrt{2}}\left| \frac{1}{\sqrt{2}} \right| + \frac{1}{\sqrt{2}} \right| = \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{2}} \right|$$

Schrodinger cat: P(alive) =
$$(1/\sqrt{2})^2 = 1/2$$

44/113

Recall discrete random variable

100A

Ying Nian Wu

Discrete

Continuous

Process

Statistics

$$P(X = x) = p(x).$$

Probability histogram

area of bin x = p(x). Randomly throw a point ω into the whole blue region Ω , $X(\omega) = x$ if ω falls into bin x.

Continuous random variable

100A Ying Nian W

Discrete

Continuous Process

Continuous (e.g., height). Discretize x-axis into equally spaced bins $(x, x + \Delta x)$, e.g., (6 ft, 6 ft 1 inch), precision = 1 inch.

$$P(X \in (x, x + \Delta x)) = f(x)\Delta x,$$

f(x): height of bin $(x, x + \Delta x)$. $f(x)\Delta x$: area. Randomly throw a point ω into the whole blue region Ω , $X(\omega) = x$ if the point falls into bin $(x, x + \Delta x)$.

Probability density function

100A

Ying Nian Wi

Discrete

Continuous Process Let $\Delta x \to 0$, continuous.

Randomly throw a point ω into the region Ω under curve f(x). Return $X(\omega) =$ horizontal coordinate of the point. Repeat n (e.g., 1000) times, frequency \rightarrow probability,

$$P(X \in (x, x + \Delta x)) = f(x)\Delta x.$$

How often $X \in (x, x + \Delta x)$.

Probability density function

100A

Ying Nian Wu

Discrete

Continuous Process

Let $\Delta x \to 0$, continuous.

$$P(X \in (a, b)) \approx \sum_{\text{bins}} f(x)\Delta x \to \int_{a}^{b} f(x)dx.$$

area under f(x) between a and b.

$$\int_{-\infty}^{\infty} f(x)dx = 1.$$

Scatterplot

100A

Ying Nian Wi

Discrete

Continuous Process Collapse the points onto x-axis.

Sample density or distribution of the n points. Sample density at x = number of points in $(x, x + \Delta x)/\Delta x$. Normalize the count m to frequency m/n, as $n \to \infty$, frequency \to probability,

$$f(x) = \frac{P(X \in (x, x + \Delta x))}{\Delta x}$$

Point cloud

100A

Ying Nian Wu

Discrete

Continuous

Electron orbits around nucleus: wrong conception Electron cloud, probability density function, f(x)Wave function $\psi(x)$, evolves over time. Observer: $f(x) = |\psi(x)|^2$.

Prob density = prob mass in the cell / volume of cell.

Point cloud

100A

Ying Nian Wi

Discrete

Continuous

Process

Electron cloud, heat map, prob density

Observer: $f(x) = |\psi(x)|^2$. Prob density = prob mass in the cell / volume of cell.

Sample

Discrete

Continuous Process

Sample density or distribution of the n points. Sample histogram (can fluctuate if do it again). Normalize the count to frequency \rightarrow probability,

$$f(x) = \frac{P(X \in (x, x + \Delta x))}{\Delta x}.$$

Population

100A Ying Nian V

Discrete

Continuous Process

Population density or distribution of the N (e.g., 300 million) points.

Population histogram (no fluctuation, always the same). Normalize the count to proportion,

$$f(x) = \frac{P(X \in (x, x + \Delta x))}{\Delta x}.$$

Population (300 million, fixed) \rightarrow sample (1000, fluctuate) Population \rightarrow sample (1 million, fluctuation diminishes)

Population

100A

Ying Nian Wi

Discrete

Continuous

Electron cloud, heat map, prob density

Population of ${\cal N}$ equally likely possibilities.

Mathematical idealization: $N \approx \infty$.

Prob density = prob mass in the cell / volume of cell. Observer: $f(x) = |\psi(x)|^2$.

Cumulative density function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx.$$

SAT score $x \rightarrow$ percentile F(x). Percentage of people below x.

dF(x) = F'(x)dx = f(x)dx56/113

Expectation

100A

Recall discrete

$$P(X=x) = p(x).$$

Discrete

Continuous

Process

area of bin x = p(x).

Probability histogram

$$\mathbb{E}(X) = \sum x P(X = x) = \sum x p(x).$$

$$\mathbb{E}[h(X)] = \sum h(x)P(X = x) = \sum h(x)p(x).$$

Long run average.

Expectation

Continuous

100A

Ying Nian Wi

Discrete

Continuous

Process

$$\mathbb{E}(X) = \sum x P(X \in (x, x + \Delta x)) = \sum x f(x) \Delta x \to \int x f(x) dx.$$

$$\mathbb{E}[h(X)] = \sum h(x)P(X \in (x, x + \Delta x))$$

=
$$\sum h(x)f(x)\Delta x \to \int h(x)f(x)dx.$$

Long run average, center.

58/113

Data

100A

Ying Nian Wu

Discrete

Continuous

Process

$$\begin{split} f(x) &\to x_1, ..., x_i, ..., x_n.\\ m_x &= \text{number of points in } (x, x + \Delta x). \end{split}$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{\text{bins}} x m_x = \sum_{\text{bins}} x \frac{m_x}{n}$$
$$\rightarrow \sum x P(X \in (x, x + \Delta x))$$
$$= \sum x f(x) \Delta x \rightarrow \int x f(x) dx = \mathbb{E}(X).$$

Long run average. Same logic for $\mathbb{E}(h(X))$. Same logic for population average.

Variance

Continuous

Ying Nian Wi

Discrete

Continuous

Process

$$\mathbb{E}(X) = \int x f(x) dx = \mu.$$

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mu)^2] = \int (x - \mu)^2 f(x) dx.$$

 $\operatorname{Var}[h(X)] = \mathbb{E}[(h(X) - \mathbb{E}(h(X)))^2].$

Fluctuation, volatility, spread.

Uniform

100A

Ying Nian Wu

Discrete

Continuous

Process

 $U \sim \text{Uniform}[0, 1]$, i.e., the density of U is f(u) = 1 for $u \in [0, 1]$ (or f(u) = 1/(b-a) if $u \in [a, b]$), f(u) = 0 otherwise.

$$\begin{split} P(U \in (u, u + \Delta u)) &= f(u)\Delta u = \Delta u. \\ \text{Imagine 1 million points distributed uniformly in [0, 1].} \\ \text{Number of points in } (u, u + \Delta u) \text{ is } \Delta u \text{ million.} \\ \text{e.g., Number of points in } (.3, .31) \text{ is } .01 \text{ million.} \end{split}$$

Uniform

100A

Ying Nian Wi

Discrete

Continuous

Process

$$F(u) = P(U \le u) = \begin{cases} 0 & 0 < u \\ u & 0 \le u \le 1 \\ 1 & u > 1 \end{cases}$$

F(u): proportion of points below u.

$$\mathbb{E}(U) = \int_0^1 uf(u)du = \frac{1}{2}.$$
$$\mathbb{E}(U^2) = \int_0^1 u^2 f(u)du = \frac{1}{3}.$$
$$\operatorname{Var}(U) = \mathbb{E}(U^2) - (\mathbb{E}(U))^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Pseudo-random number generator

100A

Ying Nian Wu

Discrete

Continuous

Process

Linear congruential method

Start from an integer X_0 , and iterate

$$X_{t+1} = aX_t + b \mod M.$$

Output $U_t = X_t/M$. e.g., $a = 7^5$, b = 0, and $M = 2^{31} - 1$. mod: divide and take the remainder, e.g., $7 = 2 \mod 5$. e.g., a = 7, b = 1, M = 5, $X_0 = 1$, then $X_1 = 1 \times 7 + 1 \mod 5 = 3$. $X_2 = 3 \times 7 + 1 \mod 5 = 2$.

Exponential

Exponential

$$= -e^{-\lambda t}|_{0}^{t} = 1 - e^{-\lambda t}.$$

F(t): proportion of points below tHalf-life: $F(t_{half}) = P(T \le t_{half}) = 1/2$. 1 million particles, by half life, half million will have decayed.

Exponential expectation

100A

Ying Nian Wi

Discrete

Continuous

Integral by parts

Ying Nian \

Discrete

Continuous

Δv	$u \Delta v$	$\Delta u \Delta v$
v	uv	<i>υ</i> Δ <i>u</i>
	и	Δu

$$\frac{d}{dx}u(x)v(x) = u'(x)v(x) + u(x)v'(x).$$

$$duv = udv + vdu.$$

$$\int [u'(x)v(x) + u(x)v'(x)]dx = u(x)v(x).$$

$$fu(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx.$$

$$\int udv = uv - \int vdu.$$

Integral by parts

100A

Discrete

Continuous

Normal or Gaussian

100A

Ying Nian Wi

Discrete

Continuous

Process

Let $Z \sim {\rm N}(0,1),$ i.e., the density of Z is

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

$$\int_{-2}^{2} f(z)dz = 95\%.$$

Normal expectation

100A

Ying Nian Wi

Discrete

Continuous

Process

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

$$\mathbb{E}(Z) = \int_{-\infty}^{\infty} z \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$
$$= -\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \Big|_{-\infty}^{\infty}$$
$$= 0.$$

The density is symmetric around 0.

Normal variance

100A

Ying Nian Wu

Discrete

Continuous

Process

Let $Z\sim {\rm N}(0,1),$ i.e., the density of Z is $f(z)=\frac{1}{\sqrt{2\pi}}e^{-z^2/2}.$

$$\begin{split} \mathbb{E}(Z^2) &= \int_{-\infty}^{\infty} z^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-z) de^{-\frac{z^2}{2}} \\ &= \frac{1}{\sqrt{2\pi}} (-ze^{-\frac{z^2}{2}} |_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} d(-z)) \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 1. \\ &\operatorname{Var}(Z) = \mathbb{E}(Z^2) - (\mathbb{E}(Z))^2 = 1. \end{split}$$

71/113

Variance

For $X \sim f(x)$, let $\mu = \mathbb{E}(X)$.

100A

Ying Nian Wu

Discrete

Continuous

$$\mathbb{E}[r(X) + s(X)] = \int [r(x) + s(x)]f(x)dx$$

= $\int r(x)f(x)dx + \int s(x)f(x)dx$
= $\mathbb{E}[r(X)] + \mathbb{E}[s(X)].$

Linear transformation

Continuous

For
$$X \sim f(x)$$
. Let $Y = aX + b$.

$$\mathbb{E}(Y) = \mathbb{E}(aX + b) = \int (ax + b)f(x)dx$$

$$= a \int xf(x)dx + b \int f(x)dx$$

$$= a\mathbb{E}(X) + b.$$

=

$$\operatorname{Var}(Y) = \operatorname{Var}(aX + b) = \mathbb{E}[((aX + b) - \mathbb{E}(aX + b))^2]$$
$$= \mathbb{E}[(aX + b - (a\mathbb{E}(X) + b))^2]$$
$$= \mathbb{E}[a^2(X - \mathbb{E}(X))^2]$$
$$= a^2\mathbb{E}[(X - \mathbb{E}(X))^2] = a^2\operatorname{Var}(X).$$

Data

Ying Nian W

Discrete

Continuous Process

Sampling $f(x) \rightarrow x_1, ..., x_i, ..., x_n$ (e.g., random number generator $\rightarrow .22$, .31, .92, .45, ...)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \to \operatorname{Var}(X) = \sigma^{2}$$

Data

100A

Ying Nian Wu

Discrete

Continuous

$$y_i = ax_i + b.$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \frac{1}{n} \sum_{i=1}^{n} x_i + b = a\bar{x} + b.$$

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\bar{y})^2 = \frac{1}{n}\sum_{i=1}^{n}(ax_i+b-(a\bar{x}+b))^2 = \frac{1}{n}\sum_{i=1}^{n}a^2(x_i-\bar{x})^2.$$

Change of density under linear transformation

100A

Ying Nian Wi

Discrete

Continuous

Process

Change of variable
$$X \sim f(x), Y = aX + b \ (a > 0). \ Y \sim g(y).$$

$$P(X \in (x, x + \Delta x)) = P(Y \in (y, y + \Delta y))$$
$$f(x)\Delta x = g(y)\Delta y.$$
$$g(y) = f(x)\frac{\Delta x}{\Delta y} = f((y - b)/a))/a.$$

Space warping, stretching or squeezing.

Normal or Gaussian

100A

Ying Nian Wu

Discrete

Continuous

Process

Let
$$Z \sim N(0, 1)$$
, i.e., the density of Z is

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}.$$
Let $X = \mu + \sigma Z$. $Z = (X - \mu)/\sigma$. Then

 $\mathbb{E}(X) = \mathbb{E}(\mu + \sigma Z) = \mu + \sigma \mathbb{E}(Z) = \mu.$ $\operatorname{Var}(X) = \operatorname{Var}(\mu + \sigma Z) = \sigma^2 \operatorname{Var}(Z) = \sigma^2.$ $f(z)\Delta z = g(x)\Delta x.$

$$g(x) = f(z)\frac{\Delta z}{\Delta x}$$

= $f((x-\mu)/\sigma)/\sigma$
= $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$

77/113

.

Normal or Gaussian

100A

Ying Nian Wu

Discrete

Continuous

Process

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

(we now use f(x) to denote the density of X.)

 $P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(-2 \le Z \le 2) = 95\%.$

78/113

Non-linear transformation

100A

Ying Nian Wu

Discrete

Continuous

Process

$$X \sim f(x), Y = r(X)$$
, monotone. $Y \sim g(y)$

yy = r(x)x $y = r(x), x = r^{-1}(y).$ $P(X \in (x, x + \Delta x)) = P(Y \in (y, y + \Delta y)).$ $f(x)\Delta x = q(y)\Delta y.$ $\Delta y / \Delta x = r'(x).$

Locally linear, space warping.

Space warping

Squeezing or stretching the bins \rightarrow changes the density and histogram.

100A

Non-linear transformation

$X \sim f(x), Y = r(X)$, monotone. $Y \sim g(y)$.

 \tilde{y}

 $y = r(x), \ x = r^{-1}(y).$

g(y)

Order preserving mapping:

$$P(X \le x) = P(Y \le y).$$

$$F(x) = G(y).$$

Inversion method

Ying Nian Wi

Discrete

Continuous Process

$$\begin{split} &U \sim \mathrm{Unif}[0,1]. \\ &P(U \leq u) = P(X \leq x). \\ &u = F(x), \ x = F^{-1}(u). \\ &\text{Population: } \{x_1, x_2, ..., x_N\} \text{ (ordered)}. \\ &\text{Sample } i \sim \mathrm{Uniform}\{1, 2, ..., N\}, \text{ return } x_i. \\ &P(X \leq x_i) = i/N = F(x_i). \\ &U = i/N \sim \mathrm{Uniform}[0,1], \ x_i = F^{-1}(U). \end{split}$$

 $U \sim \text{Unif}[0,1]$. $X = F^{-1}(U)$. Then f(x) = F'(x) is the pdf of X.

$$P(U \in (u, u + \Delta u)) = P(X \in (x, x + \Delta x)).$$
$$\Delta u = f(x)\Delta x.$$
$$f(x) = \frac{\Delta u}{\Delta x} = F'(x).$$

Inversion method

100A

Ying Nian Wi

Discrete

Continuous

Process

Suppose we want to generate $X \sim \text{Exponential}(1)$. $F(x) = 1 - e^{-x}$. F(x) = u, i.e., $1 - e^{-x} = u$, $e^{-x} = 1 - u$. $x = -\log(1 - u)$. Generate $U \sim \text{Unif}[0, 1]$. Return $X = -\log(1 - U)$.

Process

100A

Ying Nian Wi

Discrete

Continuous Process

$$\begin{split} X &\sim \mathrm{N}(0,1), \ f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right). \\ Y &\sim \mathrm{N}(0,1), \ f(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right). \\ X \ \text{and} \ Y \ \text{are independent.} \end{split}$$

$$P(X \in (x, x + \Delta x), Y \in (y, y + \Delta y))$$

= $P(X \in (x, x + \Delta x)) \times P(Y \in (y, y + \Delta y)).$
 $f(x, y)\Delta x\Delta y = f(x)\Delta x \times f(y)\Delta y.$
 $f(x, y) = \frac{1}{2\pi} \exp\left(-\frac{x^2 + y^2}{2}\right).$

Discrete

Continuous Process

 $x = r \cos \theta$, $y = r \sin \theta$. Area of ring $R \in (r, r + \Delta r)) = 2\pi r \Delta r$. Count proportion of points in the ring = density × area.

$$P(R \in (r, r + \Delta r)) = \frac{1}{2\pi} \exp\left(-\frac{r^2}{2}\right) 2\pi r \Delta r$$
$$= \exp\left(-\frac{r^2}{2}\right) r \Delta r = \exp\left(-\frac{r^2}{2}\right) d\frac{r^2}{2}.$$

87/113

Discrete

Continuous Process

 $x = r \cos \theta$, $y = r \sin \theta$. Let $t = r^2/2$. $\Delta t = r \Delta r$.

$$P(T \in (t, t + \Delta t)) = P(R \in (r, r + \Delta r)).$$

$$f(t)\Delta t = \exp\left(-\frac{r^2}{2}\right)r\Delta r = \exp(-t)\Delta t.$$

 $T \sim \text{Exponential}(1).$

Non-linear transformation

100A

Ying Nian Wi

Discrete

Continuous

 $X \sim f(x), Y = r(X). Y \sim g(y).$

X consists of iid Gaussian N(0, 1) noises.

r is learned from training examples by neural network (deep learning).

Stochastic processes

100A

Ying Nian Wu

Discrete

Continuous

Process

$$\begin{split} T &: \text{ time until decay.} \\ T &\sim \text{Exponential}(\lambda). \\ P(T \in (t, t + \Delta t)) = f(t)\Delta t = \lambda e^{-\lambda t}\Delta t. \end{split}$$

Continuous time process

Ying Nian Wi

Discrete

Continuous

Process

Making a movie

Divide the time into small intervals of length Δt (e.g., 1/24 second, or 1/100 second).

Show a picture at 0, Δt , $2\Delta t$, ... Give an illusion of continuous time process as $\Delta t \rightarrow 0$.

Continuous time process

Bank account

100A Ying Nian W

Discrete

Continuous

Process

time

Continuous time process

100A

Bank account

Discrete

Continuous

Process

Poisson process

Ying Nian Wi

Discrete

Continuous

Process

Flip a coin within each interval. $p = \lambda \Delta t$ (e.g., $\Delta t = 1$ hour. $\lambda =$ once every 10 year. $\lambda \Delta t = 1/3650 \times 1/24$). Geometric waiting time

$$P(T \in (t, t + \Delta t)) = (1 - \lambda \Delta t)^{t/\Delta t} \lambda \Delta t$$

$$\doteq \left(e^{-\lambda \Delta t} \right)^{t/\Delta t} \lambda \Delta t = e^{-\lambda t} \lambda \Delta t.$$

Exponential distribution

100A

Ying Nian Wu

Discrete

Continuou

Process

Flip a coin within each interval. $p = \lambda \Delta t$ (e.g., $\Delta t = .001$ second. $\lambda =$ once every minute. $\lambda \Delta t = 1/60 \times .001$). Exponential waiting time

$$\frac{P(T \in (t, t + \Delta t))}{\Delta t} = \lambda e^{-\lambda t}.$$

 $P(T > t) = (1 - \lambda \Delta t)^{t/\Delta t} \doteq (e^{-\lambda \Delta t})^{t/\Delta t} = e^{-\lambda t}.$

Exponential = geometric

1 million particles decay in different period. Each small period is a bin.

Geometric waiting time

We can write $T = \tilde{T}\Delta t$, where $\tilde{T} \sim \text{Geometric}(p = \lambda \Delta t)$. Then

$$\mathbb{E}(T) = \mathbb{E}(\tilde{T})\Delta t = \frac{1}{p}\Delta t = \frac{1}{\lambda\Delta t}\Delta t = 1/\lambda.$$

100A

Process

Poisson distribution

Flip a coin within each interval. Let X be the number of heads within [0, t], then $X \sim \text{Binomial}(n = t/\Delta t, p = \lambda \Delta t)$.

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \to \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$\begin{split} \mathbb{E}(X) &= np = (t/\Delta t)(\lambda \Delta t) = \lambda t. \\ \lambda &= \mathbb{E}(X)/t, \text{ rate or intensity.} \end{split}$$

Poisson distribution

100A

Ying Nian Wu

Discrete

Continuous

Process

Diffusion or Brownian motion

100A

Ying Nian Wi

Discrete

Continuous

Process

Dust particle in water

Recall random walk

Number of heads $Y \sim \operatorname{Binomial}(n, 1/2)$, then random walk ends up at X,

$$X = Y - (n - Y) = 2Y - n.$$

$$X = \epsilon_1 + \epsilon_2 + \dots + \epsilon_n.$$

 $\epsilon_k = 1$ or -1 with probability 1/2 each.

Discretize time and space

100A Ying Nian W

Discrete

Continuous

Process

(1) Time: Divide [0, t] into n intervals, $\Delta t = t/n$ (time unit). (2) Space: Within each small time interval, move forward or backward by Δx (space unit). $P(\epsilon_i = 1) = P(\epsilon_i = -1) = 1/2$. ϵ_i are independent.

$$X = \sum_{i=1}^{n} \epsilon_i \Delta x = (Y - (n - Y))\Delta x = (2Y - n)\Delta x.$$

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(\epsilon_i) \Delta x = \mathbb{E}(2Y - n) \Delta x = 0.$$

Diffusion or Brownian motion

100A

Ying Nian Wu

Discrete

Continuous

ľ

Process

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(\epsilon_{i}) \Delta x^{2} = n \Delta x^{2} = \frac{t}{\Delta t} \Delta x^{2}.$$
$$\operatorname{Var}(X) = \operatorname{Var}((2Y - n)\Delta x) = 4\operatorname{Var}(Y)\Delta x^{2} = n\Delta x^{2}.$$
$$\Delta x^{2}/\Delta t = \sigma^{2}; \ \Delta x = \sigma\sqrt{\Delta t}; \ \operatorname{Var}(X) = \sigma^{2}t.$$
$$\operatorname{velocity} = \Delta x/\Delta t = \sigma/\sqrt{\Delta t} \to \infty.$$

Einstein, σ related to the size of molecules.

Diffusion or Brownian motion

Discrete

Continuous

Process

X = B(t). Nowhere differentiable.

 σ : volatility of stock price, basis for option pricing. A drop of milk (millions of particles) diffuses in coffee.

100A

Ying Nian Wu

Discrete

Continuous

Process

Central limit theorem $P(\epsilon_i = 1) = P(\epsilon_i = -1) = 1/2$. ϵ_i are independent.

$$X = \sum_{i=1}^{n} \epsilon_i \Delta x = (2Y - n)\Delta x \sim \mathcal{N}(0, \sigma^2 t),$$

 $\text{ as }n\rightarrow 0.$

Sum of independent random variables \sim Normal distribution.

100A

Ying Nian Wı

Discrete

Continuous

Process

$$X \sim \text{Binomial}(n, 1/2). \ \mu = \mathbb{E}(X) = n/2,$$

$$\sigma^2 = \text{Var}(X) = n/4, \ \sigma = SD(X) = \sqrt{n}/2.$$

Let

$$Z = \frac{X - \mu}{\sigma} = \frac{X - n/2}{\sqrt{n}/2},$$

then $\mathbb{E}(Z) = 0$, Var(Z) = 1, no matter what n is. Z takes discrete values, with spacing $\Delta z = 1/\sigma = 2/\sqrt{n}$.

$$P(Z \in (a,b)) = \sum_{z \in (a,b)} p(z) \doteq \sum_{z \in (a,b)} f(z)\Delta z \to \int_a^b f(z)dz,$$

where $f(z)=\frac{1}{\sqrt{2\pi}}e^{-z^2/2}$ is the density of ${\rm N}(0,1).$

$$p(z)/\Delta z \to f(z).$$

100A

Ying Nian Wi

Discrete

Continuous

Process

Step 1:

$$p(0) \doteq \frac{1}{\sqrt{2\pi}} \Delta z.$$

Step 2:

$$\frac{p(z)}{p(0)} \doteq e^{-z^2/2}.$$

 $X = \mu + Z\sigma = n/2 + Z\sqrt{n}/2.$

$$p(0) = P(X = n/2).$$
$$\frac{p(z)}{p(0)} = \frac{P(X = n/2 + z\sqrt{n}/2)}{P(X = n/2)} = \frac{P(X = n/2 + d)}{P(X = n/2)}.$$

100A

Ying Nian Wi

Discrete

Continuous

Process

$$n! \sim \sqrt{2\pi n} n^n e^{-n},$$

$$P(X = n/2) \sim \frac{n!}{(n/2)!^2 2^n} \\ \sim \frac{\sqrt{2\pi n} n^n e^{-n}}{(\sqrt{2\pi (n/2)} (n/2)^{n/2})^2 2^n} \\ \sim \frac{1}{\sqrt{2\pi}} \frac{2}{\sqrt{n}}.$$

Let

Ying Nian

Discrete

Continuous

Process

$$\begin{split} k &= \mu + z\sigma = n/2 + z\sqrt{n}/2 = n/2 + d. \\ &\qquad \qquad \frac{P(X = n/2 + d)}{P(X = n/2)} = \frac{\binom{n}{n/2 + d}}{\binom{n}{n/2}} \\ &= \frac{n!/[(n/2 + d)!(n/2 - d)!]}{n!/[(n/2)!(n/2)!]} \\ &= \frac{(n/2)!(n/2)!}{(n/2 + d)!(n/2 - d)!} \\ &= \frac{(n/2)(n/2 - 1)...(n/2 - (d - 1)))}{(n/2 + 1)(n/2 + 2)...(n/2 + d)} \\ &= \frac{1(1 - 2/n)(1 - 2 \times 2/n)...(1 - (d - 1) \times 2/n)}{(1 + 2/n)(1 + 2 \times 2/n)...(1 + d \times 2/n)} \\ &= \frac{(1 - \delta)(1 - 2\delta)...(1 - (d - 1)\delta)}{(1 + \delta)(1 + 2\delta)...(1 + d\delta)} \end{split}$$

$$\begin{array}{lll} & \rightarrow & \frac{e^{-\delta}e^{-2\delta}...e^{-(d-1)\delta}}{e^{\delta}e^{2\delta}...e^{d\delta}} \\ = & \frac{e^{-(1+2+...+(d-1))\delta}}{e^{(1+2+...+d)\delta}} \\ = & \frac{e^{-d(d-1)\delta/2}}{e^{d(d+1)\delta/2}} \\ = & e^{-[d(d-1)/2+d(d+1)/2]\delta} = e^{-d^2\delta} \\ = & e^{-(z\sqrt{n}/2)^2(2/n)} = e^{-\frac{z^2}{2}}, \end{array}$$

where $\delta = 2/n$, and $d = z\sqrt{n}/2$.

1 /

100A

Ying Nian Wu

Discrete

Continuous

Process

Let
$$X \sim \text{Binomial}(n, p)$$
, sum of independent Bernoulli.
 $\mathbb{E}(X) = np$, $\text{Var}(X) = np(1-p)$.
 $\mathbb{E}(X/n) = p$, $\text{Var}(X/n) = p(1-p)/n$.
Approximately,
 $X \sim \text{N}(np, np(1-p))$.
 $X/n \sim \text{N}(p, p(1-p)/n)$.
e.g., $n = 100$, $p = 1/2$. $X \sim \text{N}(50, 25)$.
 $P(X \in [50 - 2 \times 5, 50 + 2 \times 5]) = P(X \in [40, 60]) = 95\%$.

Recall $\sum_{k=40}^{60} {\binom{100}{k}}/{2^{100}} \rightarrow \text{integral}.$

....

100A

Ying Nian Wu

Discrete

Continuous

Process

Let
$$X \sim \text{Binomial}(n, p)$$
, sum of independent Bernoulli.
 $\mathbb{E}(X) = np$, $\text{Var}(X) = np(1-p)$.
 $\mathbb{E}(X/n) = p$, $\text{Var}(X/n) = p(1-p)/n$.
Approximately,
 $X \sim \text{N}(np, np(1-p))$.
 $X/n \sim \text{N}(p, p(1-p)/n)$.
e.g., Polling $n = 100, p = .2$. $X/n \sim \text{N}(.2, .04^2)$.
 $P(X/n \in [.2 - 2 \times .04, .2 + 2 \times .04]) = P(X/n \in [.12, .28]) = 95\%$.

100A

Ying Nian Wu

Discrete

Continuous

Process

Let $X \sim \text{Binomial}(n, p)$, sum of independent Bernoulli. $\mathbb{E}(X) = np$, Var(X) = np(1-p). $\mathbb{E}(X/n) = p$, Var(X/n) = p(1-p)/n. Approximately, $X \sim \text{N}(np, np(1-p))$. $X/n \sim \text{N}(p, p(1-p)/n)$. e.g., Monte Carlo n = 10000, $p = \pi/4$. $4m/n \sim \text{N}(\pi, \pi(4-\pi)/10000)$.

