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Some pictures are taken from the internet.
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Population

Recall Example 2 in Part 1: Sample a random person from a
population of 100 people, 50 males and 50 females. 30 males
are taller than 6 ft, 10 females are taller than 6 ft.



100A

Ying Nian Wu

Distribution

Correlation

Limiting

3/71

Population proportion

Example 2: A male, B tall.

P (A) =
|A|
|Ω|

=
50

100
= 50%.

P (B) =
|B|
|Ω|

=
30 + 10

100
= 40%.

P (A ∩B) =
|A ∩B|
|Ω|

=
30

100
= 30%.

Probability = population proportion.
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Population proportion

Experiment → outcome → number
Example 2: A male, B tall.

P (A|B) =
|A ∩B|
|B|

=
30

40
= 75%.

Among tall people, what is the proportion of males?

P (B|A) =
|A ∩B|
|A|

=
30

50
= 60%.

Among males, what is the proportion of tall people?
Conditional probability = proportion within
sub-population.
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Joint distribution

Example 2: X ∈ { male (1), female (0)}, Y ∈ { tall (1), short
(0)}.

p(x, y) = P (X = x, Y = y).

p(1, 1) = .3, p(1, 0) = .2,

p(0, 1) = .1, p(0, 0) = .4.
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Marginal distribution

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

P (X = x) = pX(x) =
∑
y

p(x, y).

P (Y = y) = pY (y) =
∑
x

p(x, y).
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Conditional distribution

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

P (X = x|Y = y) = pX|Y (x|y) = p(x, y)/p(y).

P (Y = y|X = x) = pY |X(y|x) = p(x, y)/p(x).

Chain rule: p(x, y) = p(x)p(y|x) = p(y)p(x|y).
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Rule of total probability

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

p(y) =
∑
x

p(x, y) =
∑
x

p(x)p(y|x).
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Bayes rule

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

p(x|y) =
p(x, y)

p(y)
=

p(x)p(y|x)∑
x′ p(x′)p(y|x′)

.
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Independence

P (A|B) = P (A).

P (A ∩B) = P (A)P (B).

X ∈ { male, female}, Y ∈ { college, not}

p(y|x) = p(y).
p(x, y) = p(x)p(y|x) = p(x)p(y).
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Reasoning

Recall Example 6: Rare disease example
1% of population has a rare disease.
A random person goes through a test.
If the person has disease, 90% chance test positive.
If the person does not have disease, 90% chance test negative.
If tested positive, what is the chance he or she has disease?
P (D) = 1%.
P (+|D) = 90%, P (−|N) = 90%.
P (D|+) =?
X ∈ {D,N}. Y ∈ {+,−}.
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Reasoning

Example 6: Rare disease example

P (D|+) = 9
9+99 = 1

12 .

p(x|y) =
p(x, y)

p(y)
=

p(x)p(y|x)∑
x′ p(x′)p(y|x′)

.

p(x): prior belief. p(x|y): posterior belief.
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Discrete distribution

N : number of people in population.
N(x, y): number of people with eye color x and hair color y.
N(x) =

∑
yN(x, y): number of people with eye color x.

N(y) =
∑

xN(x, y): number of people with hair color y.
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Joint and marginal

p(x, y) =
N(x, y)

N
.

p(x) =
N(x)

N
=

∑
yN(x, y)

N
=
∑
y

p(x, y).

p(y) =
N(y)

N
=

∑
xN(x, y)

N
=
∑
x

p(x, y).
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Conditional

p(x|y) =
N(x, y)

N(y)
=
N(x, y)/N

N(y)/N
=
p(x, y)

p(y)
.

p(y|x) =
N(x, y)

N(x)
=
N(x, y)/N

N(x)/N
=
p(x, y)

p(x)
.
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Rules

Marginalization: p(y) =
∑

x p(x, y).
Conditioning: p(x|y) = p(x, y)/p(y).
Chain rule: p(x, y) = p(x)p(y|x).
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Expectation

E[h(X,Y )] =
∑
x,y

h(x, y)p(x, y).

Population average or long run average.

1

N

∑
x,y

h(x, y)N(x, y) =
∑
x,y

h(x, y)
N(x, y)

N

=
∑
x,y

h(x, y)p(x, y) = E[h(X,Y )].
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Expectation

E(X) =
∑
x,y

xp(x, y) =
∑
x

x
∑
y

p(x, y) =
∑
x

xp(x).

same for E[h(X)].

Var(h(X,Y )) = E[(h(X,Y )− E[h(X,Y )])2].
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Two continuous random variables

X = height, Y = weight.

f(x, y) =
P (X ∈ (x, x+ ∆x), Y ∈ (y, y + ∆y))

∆x∆y
=
N(x, y)/N

∆x∆y
.

density = probability / size



100A

Ying Nian Wu

Distribution

Correlation

Limiting

20/71

Probability density function
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Marginal

density = prob / size

f(x) =
P (X ∈ (x, x+ ∆x))

∆x
=
N(x)/N

∆x

=

∑
yN(x, y)/N

∆x
=

∑
y f(x, y)∆x∆y

∆x
=

∫
f(x, y)dy.

f(y) =

∫
f(x, y)dx.
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Joint and marginal densities

Sample points under the surface, collapse on the plane.
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Conditional density

density = prob / size

f(y|x) =
P (Y ∈ (y, y + ∆y) | X ∈ (x, x+ ∆x))

∆y

=
N(x, y)/N(x)

∆y
=

N(x, y)/N

(N(x)/N)∆y

=
f(x, y)∆x∆y

f(x)∆x∆y
=
f(x, y)

f(x)
.

f(x|y) = f(x, y)/f(y).
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Conditional density
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Rules

Marginalization: f(y) =
∫
f(x, y)dx.

Normalization (conditioning): f(x|y) = f(x, y)/f(y).
Factorization (chain rule): f(x, y) = f(x)f(y|x).
f(y|x): prediction. f(x|y): inference.



100A

Ying Nian Wu

Distribution

Correlation

Limiting

26/71

Expectation

If (X,Y ) ∼ p(x, y), then

E(h(X,Y )) =
∑
x

∑
y

h(x, y)p(x, y).

If (X,Y ) ∼ f(x, y), then

E(h(X,Y )) =

∫ ∫
h(x, y)f(x, y)dxdy.

Var(h(X,Y )) = E[(h(X,Y )− E[h(X,Y )])2].
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Expectation

Population average or long run average of h(X,Y ).

1

n

n∑
i=1

h(Xi, Yi) =
1

n

∑
cells

h(x, y)nf(x, y)∆x∆y

→
∫ ∫

h(x, y)f(x, y)dxdy.
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Conditional expectation and variance

Recall E(Y ) =
∫
yf(y)dy.

h(x) = E[Y |X = x] =

∫
yf(y|x)dy.

Regression, prediction.

Var(Y |X = x) = E[(Y−h(X))2|X = x] =

∫
(y−h(x))2f(y|x)dy.



100A

Ying Nian Wu

Distribution

Correlation

Limiting

29/71

Bivariate Normal

X ∼ N(0, 1),

Y = ρX + ε; ε ∼ N(0, 1− ρ2), (|ρ| ≤ 1).

ε is independent of X. Given X = x, Y = ρx+ ε.
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Bivariate Normal

The distribution of points within a vertical slice at x.

E(Y |X = x) = E(ρx+ ε) = ρx.

Regression towards the mean (ρ < 1), e.g., son’s height given
father’s height.

Var(Y |X = x) = Var(ρx+ ε) = Var(ε) = 1− ρ2.

[Y |X = x] ∼ N(ρx, 1− ρ2).
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Bivariate Normal

f(x, y) = f(x)f(y|x)

=
1√
2π

exp

(
−x

2

2

)
1√

2π(1− ρ2)
exp

(
−(y − ρx)2

2(1− ρ2)

)
=

1

2π
√

1− ρ2
exp

[
− 1

2(1− ρ2)
(x2 + y2 − 2ρxy)

]
.

symmetric in (x, y)
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Covariance

Let µX = E(X), µY = E(Y ), we define the covariance

Cov(X,Y ) = E[(X − µX)(Y − µY )].

It is defined for both discrete and continuous random variables.
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Covariance

(Xi, Yi) ∼ f(x, y), i = 1, ..., n.

X̄ =
1

n

n∑
i=1

Xi; Ȳ =
1

n

n∑
i=1

Yi.

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).
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Covariance

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).

I, III: (Xi − X̄)(Yi − Ȳ ) > 0.
II, IV: (Xi − X̄)(Yi − Ȳ ) < 0.
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Covariance

Cov(X,Y ) = E[(X − µX)(Y − µY )]

= E[XY − µXY −XµY + µXµY ]

= E(XY )− µXE(Y )− µY E(X) + µXµY

= E(XY )− µXµY
= E(XY )− E(X)E(Y ).

Clearly, Cov(X,X) = Var(X) and Cov(Y, Y ) = Var(Y ).
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Linearity

Cov(aX + b, cY + d)

= E[(aX + b− E(aX + b))(cY + d− E(cY + d))]

= E[a(X − E(X))c(Y − E(Y ))] = acCov(X,Y ).

Covariance depends on units (meter/foot, kilogram/pound).

Cov(X + Y,Z) = E[(X + Y − E(X + Y ))(Z − E(Z))]

= E[(X − E(X) + Y − E(Y ))(Z − E(Z))]

= E[(X − E(X))(Z − E(Z))] + E[(Y − E(Y ))(Z − E(Z))]

= Cov(X,Z) + Cov(Y,Z).
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Correlation

Standardize: X → (X − µX)/σX , Y → (Y − µY )/σY .

Cov

(
X − µX
σX

,
Y − µY
σY

)
=

Cov(X,Y )√
Var(X)

√
Var(Y )

= Corr(X,Y ).
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Correlation

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
.

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).

Var(X)
.
=

1

n

n∑
i=1

(Xi − X̄)2; Var(Y )
.
=

1

n

n∑
i=1

(Yi − Ȳ )2.

Corr(X,Y )
.
=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
.
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Correlation

Centralize: X̃i = Xi − X̄; Ỹi = Yi − Ȳ .

Corr(X,Y )
.
=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

=

∑n
i=1 X̃iỸi√∑n

i=1 X̃
2
i

√∑n
i=1 Ỹ

2
i

.
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Correlation

Centralize: X̃i = Xi − X̄; Ỹi = Yi − Ȳ .

Corr(X,Y ) =

∑n
i=1 X̃iỸi√∑n

i=1 X̃
2
i

√∑n
i=1 Ỹ

2
i

=
〈X,Y〉
|X||Y|

= cos θ.
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Correlation and regression

Strength of linear relationship:

‖e‖2

‖Y‖2
=

∑
i e

2
i∑

i(Yi − Ȳ )2
= sin2 θ = 1− cos2 θ = 1− ρ2.
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Correlation and regression

Regression line:
Ŷ − Ȳ = β1(X − X̄).

Ŷ = β1X + (Ȳ − β1X̄) = β1X + β0.
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Correlation and regression
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Correlation and regression
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Correlation and regression
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Correlation and regression
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Independence

P (A ∩B) = P (A)P (B).
p(x, y) = pX(x)pY (y); p(y|x) = pY (y).
f(x, y) = fX(x)fY (y); f(y|x) = fY (y).

Cov(X,Y ) = E[(X − µX)(Y − µY )]

=
∑
x

∑
y

(x− µX)(y − µY )p(x, y)

=
∑
x

∑
y

(x− µX)(y − µY )pX(x)pY (y)

=
∑
x

(x− µX)pX(x)
∑
y

(y − µY )pY (y)

=

(∑
x

xpX(x)− µX

)(∑
y

ypY (y)− µY

)
= 0.
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Conditional independence

Shared cause: [siblings | parent]

p(x, y|z) = p(x|z)p(y|z)
f(x, y|z) = f(x|z)f(y|z)
Markov: [future | present, past], [child | parent, grandparent]

p(y|x, z) = p(y|z)
f(y|x, z) = f(y|z)
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Correlation
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Correlation

Let X be a uniform distribution over [−1, 1]. Let Y = X2.
Then X and Y are not independent.
However, E(XY ) = E(X3) = 0, and E(X) = 0. Thus
Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0.
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Bivariate normal

X ∼ N(0, 1),

Y = ρX + ε; ε ∼ N(0, 1− ρ2),

E(Y ) = E(ρX + ε) = 0.

ε and X are independent.

Var(Y ) = Var(ρX + ε) = ρ2Var(X) + Var(ε) = 1.

Cov(X,Y ) = E(XY ) = E[X(ρX+ε)] = ρE(X2)+E(Xε) = ρ.

E(Xε) = E(X)E(ε) = 0.
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Variance of sum

E(X + Y ) =
∑

x

∑
y(x+ y)p(x, y) =∑

x

∑
y xp(x, y) +

∑
x

∑
y yp(x, y) = E(X) + E(Y ).

Var(X + Y ) = E[((X + Y )− µX+Y )2]

= E[((X − µX) + (Y − µY ))2]

= E[(X − µX)2 + (Y − µY )2 + 2(X − µX)(Y − µY )]

= E[(X − µX)2] + E[(Y − µY )2] + 2E[(X − µX)(Y − µY )]

= Var(X) + Var(Y ) + 2Cov(X,Y ).

If X and Y are independent, then Cov(X,Y ) = 0, and

Var(X + Y ) = Var(X) + Var(Y ).
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Variance of sum
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Variance of sum
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Average of iid

X1, X2, ..., Xn ∼ f(x) independently.
independent and identically distributed, iid

x̄, n = 1 x̄, n = 2 x̄, large n

x1\x2 small large

small small medium

large medium large

Variance becomes smaller, distribution becomes smoother.
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Average of iid

x1\x2 small large

small small medium

large medium large
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Average of iid
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Sum and average of iid

Xi ∼ f(x), i = 1, ..., n, iid: independent and identically
distributed.

S =

n∑
i=1

Xi. X̄ =
S

n
.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

E(S) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) = nµ.

Var(S) = Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) = nσ2.

E(X̄) =
E(S)

n
= µ.

Var(X̄) =
Var(S)

n2
=
nσ2

n2
=
σ2

n
.
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Law of large number

E(X̄) =
E(S)

n
= µ.

Var(X̄) =
Var(S)

n2
=
nσ2

n2
=
σ2

n
→ 0.

X̄ → µ, in probability.

P (|X̄ − µ| < ε)→ 1, ∀ε > 0.

Average → expectation.
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Law of large number

Special case:

X =

n∑
i=1

Zi, Zi ∼ Bernoulli(p) iid.

E(X) = np; Var(X) = np(1− p).

E(X/n) = p; Var(X/n) = p(1− p)/n→ 0.

X/n→ p, in probability.

Frequency → probability.
X/n is average of Zi. Probability is expectation of Zi.
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Law of large number

Special case:

Keep flipping a fair coin, frequency → 1/2.
Intuition: most of 2n sequences have frequencies close to
1/2.
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Law of large number

Special case: Xi ∼ Uniform[0, 1], iid, i = 1, ..., n.

X̄ =

∑n
i=1Xi

n
→ E(Xi) = 1/2.

P (|X̄ − 1/2| < ε)→ 1, ∀ε > 0.

Intuition: (X1, ..., Xi, ..., Xn) is a random point in Ω = [0, 1]n,
n-dimensional unit cube.
A = {(x1, ..., xi, ..., xn) : |x̄− 1/2| < ε} is the central diagonal
piece.
P (A) is the volume of A. P (A)→ 1.
No matter how small ε is, the volume of the central diagonal
piece is almost the same as the volume of the whole
n-dimensional unit cube Ω.
Most of the points in Ω belong to A. Concentration of
measure.
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Law of large number

.
x̄, n = 1 x̄, n = 2 x̄, n = 3
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Statistical physics

Most of the points in Ω belong to A. Concentration of
measure.
Suppose (x1, ..., xi, ..., xn) describes a physical system, e.g.,
n = 1023 molecules.
It evolves deterministically over time, by traversing with Ω.
Ergodic: it traverses every point in Ω with equal number of
visits in the long run.
At any random moment, (xi, ..., xi, ..., xn) ∼ Unif(Ω).
Then most likely it will be in A, with fixed statistical properties
(e.g., temperature, pressure, magnetism).
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Central limit theorem

X =
n∑

i=1

εi, εi ∼ Bernoulli(1/2) iid.

X ∼ Binomial(n, 1/2). µ = E(X) = n/2; σ2 = Var(X) = n/4.

P

(
Z =

X − n/2√
n/2

= z

)
.
=

1√
2π

exp

(
−z

2

2

)
2√
n

= f(z)∆z.
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Central limit theorem

Repeat and plot histogram

S =

n∑
i=1

Xi.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

S ∼ N(nµ, nσ2).
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Central limit theorem

6n equally likely sequences → 6n equally likely sums →
histogram.
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Central limit theorem

S =
n∑

i=1

Xi. X̄ = S/n.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

S ∼ N(nµ, nσ2). X̄ ∼ N(µ, σ2/n).
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Central limit theorem

Universal, regardless of the distribution of each Xi.

S ∼ N(nµ, nσ2). X̄ ∼ N(µ, σ2/n).

Z =
S − nµ√

nσ
=
X̄ − µ
σ/
√
n
∼ N(0, 1).
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Probability models

Markov chain: Part 1.
Bayes network, graphical model: Part 1.
Poisson process: Part 2.
Brownian motion: Part 2.

Xt+∆t = Xt + σ
√

∆tεt,

where E(εt) = 0, Var(εt) = 1, and εt are iid.
Stochastic differential equation, diffusion

Xt+∆t = Xt + µ∆t+ σ
√

∆tεt,

dXt = µdt+ σdBt.

Imagine 1 million particles moving.
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Take home message

As long as you can count (and average)
(1) Population of equally likely possibilities
Probability = population proportion
(2) Large sample of repetitions
Frequency (sample proportion) ≈ probability
(a) Probability: population proportion, long run frequency
(b) Expectation: population average, long run average
(c) Conditional: sub-population, when something happens
Continuous: discretize, infinitesimal analysis
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