100A

Ying Nian Wi

Distribution Correlation

Limiting

STATS 100A: Two or More Random Variables

Ying Nian Wu

Department of Statistics University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

Population

100A Ying Nian Wi

Distribution Correlation Limiting **Recall Example 2 in Part 1**: Sample a random person from a population of 100 people, 50 males and 50 females. 30 males are taller than 6 ft, 10 females are taller than 6 ft.

100A

Population proportion

Distribution

Example 2: A male, B tall.

Probability = population proportion.

Population proportion

100A Ying Nian W Distribution

Correlation

Statistics Zicla

Experiment \rightarrow **outcome** \rightarrow **number Example 2**: *A* male, *B* tall.

$$P(B|A) = \frac{|A \cap B|}{|A|} = \frac{30}{50} = 60\%.$$

Among males, what is the proportion of tall people? Conditional probability = proportion within sub-population.

Joint distribution

100A

Ying Nian Wi

Distribution Correlation

$$p(1,1) = .3, p(1,0) = .2,$$

 $p(0,1) = .1, p(0,0) = .4.$

Marginal distribution

100A

Distribution Correlation

Example 2: $X \in \{ \text{ male, female} \}, Y \in \{ \text{ tall, short} \}.$

$$p(x,y) = P(X = x, Y = y).$$

$$P(X = x) = p_X(x) = \sum_y p(x, y).$$
$$P(Y = y) = p_Y(y) = \sum_y p(x, y).$$

$$= y) = p_Y(y) = \sum_x p(x, y)$$

Conditional distribution

100A

Ying Nian Wi

Distribution Correlation

Example 2:
$$X \in \{ \text{ male, female} \}, Y \in \{ \text{ tall, short} \}.$$

$$p(x,y) = P(X = x, Y = y).$$

$$\begin{split} P(X = x | Y = y) &= p_{X|Y}(x|y) = p(x,y)/p(y). \\ P(Y = y | X = x) &= p_{Y|X}(y|x) = p(x,y)/p(x). \\ \end{split}$$
 Chain rule: $p(x,y) = p(x)p(y|x) = p(y)p(x|y).$

Rule of total probability

100A

Ying Nian Wi

Distribution Correlation

Example 2: $X \in \{ \text{ male, female} \}, Y \in \{ \text{ tall, short} \}.$

$$p(x,y) = P(X = x, Y = y).$$

$$p(y) = \sum_{x} p(x, y) = \sum_{x} p(x)p(y|x).$$

Bayes rule

100A

Ying Nian Wi

Distribution Correlation Limiting

Example 2: $X \in \{ \text{ male, female} \}, Y \in \{ \text{ tall, short} \}.$

$$p(x, y) = P(X = x, Y = y).$$

Independence

Ying Nian W Distribution

$$P(A|B) = P(A).$$

$$P(A \cap B) = P(A)P(B).$$

$$X \in \{ \text{ male, female} \}, Y \in \{ \text{ college, not} \}$$

$$p(y|x) = p(y).$$

$$p(x,y) = p(x)p(y|x) = p(x)p(y).$$

Reasoning

Ying Nian W Distribution

100A

Correlation

Recall Example 6: Rare disease example

1% of population has a rare disease.

A random person goes through a test.

If the person has disease, 90% chance test positive.

If the person does not have disease, 90% chance test negative.

If tested positive, what is the chance he or she has disease?

$$P(D) = 1\%.$$

$$P(+|D) = 90\%, P(-|N) = 90\%.$$

$$P(D|+) = ?$$

$$X \in \{D, N\}, Y \in \{+, -\}.$$

Reasoning

$$P(D|+) = \frac{9}{9+99} = \frac{1}{12}.$$

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(x)p(y|x)}{\sum_{x'}p(x')p(y|x')}$$

p(x): prior belief. p(x|y): posterior belief.

Discrete distribution

Distribution Correlation Limiting

N: number of people in population.

N(x, y): number of people with eye color x and hair color y. $N(x) = \sum_{y} N(x, y)$: number of people with eye color x. $N(y) = \sum_{x} N(x, y)$: number of people with hair color y.

Joint and marginal

Ying Nian W Distribution

Correlatior

Limiting

$$p(x,y) = \frac{N(x,y)}{N}.$$

$$p(x) = \frac{N(x)}{N} = \frac{\sum_{y} N(x,y)}{N} = \sum_{y} p(x,y).$$

$$p(y) = \frac{N(y)}{N} = \frac{\sum_{x} N(x,y)}{N} = \sum_{x} p(x,y).$$

Conditional

Limiting

$$p(x|y) = \frac{N(x,y)}{N(y)} = \frac{N(x,y)/N}{N(y)/N} = \frac{p(x,y)}{p(y)},$$
$$p(y|x) = \frac{N(x,y)}{N(x)} = \frac{N(x,y)/N}{N(x)/N} = \frac{p(x,y)}{p(x)}.$$

Rules

100A

Ying Nian Wu

Distribution Correlation

Limiting

 $\begin{array}{l} \text{Marginalization: } p(y) = \sum_x p(x,y).\\ \text{Conditioning: } p(x|y) = p(x,y)/p(y).\\ \text{Chain rule: } p(x,y) = p(x)p(y|x). \end{array}$

Expectation

Ying Nian Wu

Distribution Correlation Limiting

Population average or long run average.

$$\begin{aligned} \frac{1}{N}\sum_{x,y}h(x,y)N(x,y) &= \sum_{x,y}h(x,y)\frac{N(x,y)}{N} \\ &= \sum_{x,y}h(x,y)p(x,y) = \mathbb{E}[h(X,Y)]. \end{aligned}$$

Expectation

Distribution Correlation Limiting

$$\mathbb{E}(X) = \sum_{x,y} xp(x,y) = \sum_{x} x \sum_{y} p(x,y) = \sum_{x} xp(x).$$

same for $\mathbb{E}[h(X)]$.

 $\operatorname{Var}(h(X,Y)) = \mathbb{E}[(h(X,Y) - \mathbb{E}[h(X,Y)])^2].$

100A

Two continuous random variables

Ying Nian W Distribution Correlation

$$X =$$
height, $Y =$ weight.

19/71

Probability density function

1004

ring Man VVI

Distribution Correlation Limiting

Marginal

Ying Nian W Distribution Correlation

Limiting

density = prob / size

$$\begin{split} f(x) &= \frac{P(X \in (x, x + \Delta x))}{\Delta x} = \frac{N(x)/N}{\Delta x} \\ &= \frac{\sum_y N(x, y)/N}{\Delta x} = \frac{\sum_y f(x, y)\Delta x \Delta y}{\Delta x} = \int f(x, y) dy. \\ f(y) &= \int f(x, y) dx. \end{split}$$

Joint and marginal densities

Distribution Correlation Limiting

Sample points under the surface, collapse on the plane.

Conditional density

Ying Nian W Distribution

100A

Limiting

 $\begin{array}{ll} {\rm density} = {\rm prob} \ / \ {\rm size} \\ f(y|x) & = & \displaystyle \frac{P(Y \in (y,y+\Delta y) \mid X \in (x,x+\Delta x))}{\Delta y} \\ & = & \displaystyle \frac{N(x,y)/N(x)}{\Delta y} = \displaystyle \frac{N(x,y)/N}{(N(x)/N)\Delta y} \\ & = & \displaystyle \frac{f(x,y)\Delta x\Delta y}{f(x)\Delta x\Delta y} = \displaystyle \frac{f(x,y)}{f(x)}. \\ f(x|y) = f(x,y)/f(y). \end{array}$

Conditional density

Ying Nian W Distribution

Correlation

Limiting

Rules

100A

Distribution

N(x)

Marginalization: $f(y) = \int f(x, y) dx$. Normalization (conditioning): f(x|y) = f(x,y)/f(y). Factorization (chain rule): f(x, y) = f(x)f(y|x). f(y|x): prediction. f(x|y): inference.

Expectation

Ying Nian W Distribution Correlation

Limiting

If
$$(X,Y)\sim p(x,y),$$
 then
$$\mathbb{E}(h(X,Y))=\sum_{x}\sum_{y}h(x,y)p(x,y).$$

If $(X,Y)\sim f(x,y),$ then

$$\mathbb{E}(h(X,Y)) = \int \int h(x,y)f(x,y)dxdy.$$
$$\operatorname{Var}(h(X,Y)) = \mathbb{E}[(h(X,Y) - \mathbb{E}[h(X,Y)])^2].$$

Expectation

Ying Nian W

Distribution Correlation

Population average or long run average of h(X, Y).

$$\frac{1}{n}\sum_{i=1}^{n}h(X_i,Y_i) = \frac{1}{n}\sum_{\text{cells}}h(x,y)nf(x,y)\Delta x\Delta y$$
$$\rightarrow \int \int h(x,y)f(x,y)dxdy.$$

Conditional expectation and variance

Ying Nian W Distribution Correlation

Recall $\mathbb{E}(Y) = \int y f(y) dy$.

$$h(x) = \mathbb{E}[Y|X = x] = \int yf(y|x)dy.$$

Regression, prediction.

$$\operatorname{Var}(Y|X=x) = \mathbb{E}[(Y-h(X))^2|X=x] = \int (y-h(x))^2 f(y|x) dy.$$

Bivariate Normal

Limiting

$$X \sim \mathcal{N}(0, 1),$$

$$Y = \rho X + \epsilon; \ \epsilon \sim \mathcal{N}(0, 1 - \rho^2), \ (|\rho| \le 1).$$

 ϵ is independent of X. Given X=x, $Y=\rho x+\epsilon.$

Bivariate Normal

Ying Nian W Distribution Correlation

100A

Limiting

The distribution of points within a vertical slice at x.

$$\mathbb{E}(Y|X=x) = \mathbb{E}(\rho x + \epsilon) = \rho x.$$

Regression towards the mean ($\rho < 1$), e.g., son's height given father's height.

$$\operatorname{Var}(Y|X=x) = \operatorname{Var}(\rho x + \epsilon) = \operatorname{Var}(\epsilon) = 1 - \rho^{2}.$$
$$[Y|X=x] \sim \operatorname{N}(\rho x, 1 - \rho^{2}).$$

Bivariate Normal

$$\begin{aligned} f(x,y) &= f(x)f(y|x) \\ &= \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)\frac{1}{\sqrt{2\pi(1-\rho^2)}}\exp\left(-\frac{(y-\rho x)^2}{2(1-\rho^2)}\right) \\ &= \frac{1}{2\pi\sqrt{1-\rho^2}}\exp\left[-\frac{1}{2(1-\rho^2)}(x^2+y^2-2\rho xy)\right]. \end{aligned}$$

symmetric in (x, y)

100A

Correlation

Covariance

Let $\mu_X = \mathbb{E}(X), \ \mu_Y = \mathbb{E}(Y),$ we define the covariance

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)].$$

It is defined for both discrete and continuous random variables.

Covariance

Ying Nian V Distribution

Limiting

 $(X_i, Y_i) \sim f(x, y), \ i = 1, ..., n.$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i; \ \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

$$\operatorname{Cov}(X,Y) \doteq \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).$$

Covariance

Distribution

Correlation

$$\operatorname{Cov}(X,Y) \doteq \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).$$

I, III:
$$(X_i - \bar{X})(Y_i - \bar{Y}) > 0.$$

II, IV: $(X_i - \bar{X})(Y_i - \bar{Y}) < 0.$

Covariance

Ying Nian W

Distribution

Correlation

$$Cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

= $\mathbb{E}[XY - \mu_XY - X\mu_Y + \mu_X\mu_Y]$
= $\mathbb{E}(XY) - \mu_X\mathbb{E}(Y) - \mu_Y\mathbb{E}(X) + \mu_X\mu_Y$
= $\mathbb{E}(XY) - \mu_X\mu_Y$
= $\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$

Clearly, Cov(X, X) = Var(X) and Cov(Y, Y) = Var(Y).

Linearity

100A Ying Nian W

Distributio

Correlation Limiting

$$Cov(aX + b, cY + d)$$

= $\mathbb{E}[(aX + b - \mathbb{E}(aX + b))(cY + d - \mathbb{E}(cY + d))]$
= $\mathbb{E}[a(X - \mathbb{E}(X))c(Y - \mathbb{E}(Y))] = acCov(X, Y).$

Covariance depends on units (meter/foot, kilogram/pound).

 $Cov(X + Y, Z) = \mathbb{E}[(X + Y - \mathbb{E}(X + Y))(Z - \mathbb{E}(Z))]$ = $\mathbb{E}[(X - \mathbb{E}(X) + Y - \mathbb{E}(Y))(Z - \mathbb{E}(Z))]$

- $= \mathbb{E}[(X \mathbb{E}(X))(Z \mathbb{E}(Z))] + \mathbb{E}[(Y \mathbb{E}(Y))(Z \mathbb{E}(Z))]$
- $= \operatorname{Cov}(X, Z) + \operatorname{Cov}(Y, Z).$

Correlation

Ying Nian Wi

Distributio

Correlation

Standardize: $X \to (X - \mu_X)/\sigma_X$, $Y \to (Y - \mu_Y)/\sigma_Y$.

$$\operatorname{Cov}\left(\frac{X-\mu_X}{\sigma_X},\frac{Y-\mu_Y}{\sigma_Y}\right) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} = \operatorname{Corr}(X,Y).$$

Correlation

100A

Correlation

Perfect +ve

Correlation

1

High +ve

Correlation

Centralize: $\tilde{X}_i = X_i - \bar{X}$; $\tilde{Y}_i = Y_i - \bar{Y}$.

Low +ve

Correlation

$$\operatorname{Corr}(X,Y) \doteq \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \sqrt{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}} \\ = \frac{\sum_{i=1}^{n} \tilde{X}_{i} \tilde{Y}_{i}}{\sqrt{\sum_{i=1}^{n} \tilde{X}_{i}^{2}} \sqrt{\sum_{i=1}^{n} \tilde{Y}_{i}^{2}}}.$$

Correlation

Distribution Correlation

Limiting

Centralize: $\tilde{X}_i = X_i - \bar{X}$; $\tilde{Y}_i = Y_i - \bar{Y}$.

(

$$\operatorname{Corr}(X,Y) = \frac{\sum_{i=1}^{n} \tilde{X}_{i} \tilde{Y}_{i}}{\sqrt{\sum_{i=1}^{n} \tilde{X}_{i}^{2}} \sqrt{\sum_{i=1}^{n} \tilde{Y}_{i}^{2}}}$$
$$= \frac{\langle \mathbf{X}, \mathbf{Y} \rangle}{|\mathbf{X}||\mathbf{Y}|} = \cos \theta.$$

Correlation Limiting

Strength of linear relationship:

$$\frac{\|\mathbf{e}\|^2}{\|\mathbf{Y}\|^2} = \frac{\sum_i e_i^2}{\sum_i (Y_i - \bar{Y})^2} = \sin^2 \theta = 1 - \cos^2 \theta = 1 - \rho^2.$$

Regression line:

$$\hat{Y} - \bar{Y} = \beta_1 (X - \bar{X}).$$
$$\hat{Y} = \beta_1 X + (\bar{Y} - \beta_1 \bar{X}) = \beta_1 X + \beta_0.$$

x

ī

 $\rho = -0.8$

 \vec{x}

x

Ŀ.

Ying Nian W

Distribution

Correlation

Relationship between Height and Weight

Independence

 $P(A \cap B) = P(A)P(B).$

 $p(x, y) = p_X(x)p_Y(y); \ p(y|x) = p_Y(y).$ $f(x, y) = f_X(x)f_Y(y); \ f(y|x) = f_Y(y).$

100A

Ying Nian Wi

Distributio

Correlation

Conditional independence

Shared cause: [siblings | parent]

100A

Ying Nian W

Distribution Correlation

$$\begin{array}{l} p(x,y|z) = p(x|z)p(y|z) \\ f(x,y|z) = f(x|z)f(y|z) \\ \text{Markov: [future | present, past], [child | parent, grandparent]} \end{array}$$

$$X \longrightarrow Z \longrightarrow Y$$

 $\begin{array}{l} p(y|x,z) = p(y|z) \\ f(y|x,z) = f(y|z) \end{array}$

Correlation

Correlation

100A

Correlation Limiting

Let X be a uniform distribution over [-1, 1]. Let $Y = X^2$. Then X and Y are not independent. However, $\mathbb{E}(XY) = \mathbb{E}(X^3) = 0$, and $\mathbb{E}(X) = 0$. Thus $\operatorname{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0$.

Bivariate normal

$$X \sim \mathcal{N}(0, 1),$$

$$Y = \rho X + \epsilon; \ \epsilon \sim \mathcal{N}(0, 1 - \rho^2),$$

$$\mathbb{E}(Y) = \mathbb{E}(\rho X + \epsilon) = 0.$$

 ϵ and X are independent.

$$\operatorname{Var}(Y) = \operatorname{Var}(\rho X + \epsilon) = \rho^2 \operatorname{Var}(X) + \operatorname{Var}(\epsilon) = 1.$$

$$Cov(X,Y) = \mathbb{E}(XY) = \mathbb{E}[X(\rho X + \epsilon)] = \rho \mathbb{E}(X^2) + \mathbb{E}(X\epsilon) = \rho.$$
$$\mathbb{E}(X\epsilon) = \mathbb{E}(X)\mathbb{E}(\epsilon) = 0.$$

Distribution Correlation

Limiting

Variance of sum

100A

Ying Nian W

Distribution Correlation

$$\begin{split} \mathbb{E}(X+Y) &= \sum_{x} \sum_{y} (x+y) p(x,y) = \\ \sum_{x} \sum_{y} x p(x,y) + \sum_{x} \sum_{y} y p(x,y) = \mathbb{E}(X) + \mathbb{E}(Y). \\ & \operatorname{Var}(X+Y) = \mathbb{E}[((X+Y) - \mu_{X+Y})^2] \\ &= \mathbb{E}[((X-\mu_X) + (Y-\mu_Y))^2] \\ &= \mathbb{E}[((X-\mu_X)^2 + (Y-\mu_Y)^2 + 2(X-\mu_X)(Y-\mu_Y)] \\ &= \mathbb{E}[(X-\mu_X)^2] + \mathbb{E}[(Y-\mu_Y)^2] + 2\mathbb{E}[(X-\mu_X)(Y-\mu_Y)] \\ &= \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y). \end{split}$$

If X and Y are independent, then Cov(X, Y) = 0, and

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y).$$

Variance of sum

Ying Nian W

Distribution Correlation

Limiting

$$\frac{1}{n} \sum_{i=1}^{n} \tilde{x_i}^2 = Var(X) = \frac{1}{n} |\vec{x}|^2$$

Variance of sum

Average of iid

Variance becomes smaller, distribution becomes smoother.

Average of iid

100A

Ying Nian W

Distributio

Correlation

Limiting

$x_1 \backslash x_2$	small	large
small	small	medium
large	medium	large

Average of iid

Ying Nian Wi

- Distributio
- Correlation
- Limiting

Sum and average of iid

100A

Ying Nian W

Distribution

Limiting

 $X_i \sim f(x), i = 1, ..., n$, iid: independent and identically

100A

Distributio

Correlation

Limiting

Average \rightarrow expectation.

Special case:

100A

Ying Nian Wi

Distribution Correlation

Limiting

$$\begin{split} X &= \sum_{i=1}^n Z_i, \ Z_i \sim \text{Bernoulli}(p) \text{ iid.} \\ \mathbb{E}(X) &= np; \ \text{Var}(X) = np(1-p). \\ \mathbb{E}(X/n) &= p; \ \text{Var}(X/n) = p(1-p)/n \to 0. \\ X/n \to p, \text{ in probability.} \end{split}$$

Frequency \rightarrow probability. X/n is average of Z_i . Probability is expectation of Z_i .

Special case:

100A

Ying Nian W

Distribution Correlation

Limiting

Keep flipping a fair coin, frequency $\rightarrow 1/2$. Intuition: most of 2^n sequences have frequencies close to 1/2.

100A

Law of large number

Ying Nian W Distribution Correlation

Limiting

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \to \mathbb{E}(X_i) = 1/2.$$

$$P(|\bar{X} - 1/2| < \epsilon) \to 1, \ \forall \epsilon > 0.$$

Intuition: $(X_1, ..., X_i, ..., X_n)$ is a random point in $\Omega = [0, 1]^n$, *n*-dimensional unit cube.

 $A = \{(x_1,...,x_i,...,x_n): |\bar{x}-1/2|<\epsilon\}$ is the central diagonal piece.

P(A) is the volume of A. $P(A) \rightarrow 1$.

No matter how small ϵ is, the volume of the central diagonal piece is almost the same as the volume of the whole n-dimensional unit cube Ω .

Most of the points in Ω belong to A. Concentration of measure.

Statistical physics

100A

Distribution Correlation Limiting Most of the points in Ω belong to A. Concentration of measure.

Suppose $(x_1,...,x_i,...,x_n)$ describes a physical system, e.g., $n=10^{23}~{\rm molecules}.$

It evolves **deterministically** over time, by traversing with Ω . **Ergodic**: it traverses every point in Ω with equal number of visits in the long run.

At any random moment, $(x_i, ..., x_i, ..., x_n) \sim \text{Unif}(\Omega)$.

Then most likely it will be in A, with fixed statistical properties (e.g., temperature, pressure, magnetism).

Distribution

Limiting

$$X = \sum_{i=1}^{n} \epsilon_i, \ \epsilon_i \sim \text{Bernoulli}(1/2) \text{ iid.}$$

 $X \sim \text{Binomial}(n, 1/2). \ \mu = \mathbb{E}(X) = n/2; \ \sigma^2 = \text{Var}(X) = n/4.$

$$P\left(Z = \frac{X - n/2}{\sqrt{n}/2} = z\right) \doteq \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) \frac{2}{\sqrt{n}} = f(z)\Delta z.$$

Repeat and plot histogram

histogram.

100A

Ying Nian W

Distributio

Correlation

Limiting

 6^n equally likely sequences $\rightarrow 6^n$ equally likely sums \rightarrow

Distribution

Limiting

Universal, regardless of the distribution of each X_i .

$$S \sim \mathcal{N}(n\mu, n\sigma^2). \ \bar{X} \sim \mathcal{N}(\mu, \sigma^2/n).$$

$$Z = \frac{S - n\mu}{\sqrt{n\sigma}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

Probability models

100A

Ying Nian Wi

Distribution Correlation Limiting Markov chain: Part 1. Bayes network, graphical model: Part 1. Poisson process: Part 2. Brownian motion: Part 2.

$$X_{t+\Delta t} = X_t + \sigma \sqrt{\Delta t} \epsilon_t,$$

where $\mathbb{E}(\epsilon_t) = 0$, $Var(\epsilon_t) = 1$, and ϵ_t are iid. Stochastic differential equation, diffusion

$$X_{t+\Delta t} = X_t + \mu \Delta t + \sigma \sqrt{\Delta t} \epsilon_t,$$

$$dX_t = \mu dt + \sigma dB_t.$$

Statistics Zicia Imagine 1 million particles moving.

Take home message

Ying Nian W Distribution Correlation Limiting

100A

As long as you can count (and average)
(1) Population of equally likely possibilities
Probability = population proportion
(2) Large sample of repetitions
Frequency (sample proportion) ≈ probability
(a) Probability: population proportion, long run frequency
(b) Expectation: population average, long run average
(c) Conditional: sub-population, when something happens
Continuous: discretize, infinitesimal analysis

