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Population

Distribution Recall Example 2 in Part 1: Sample a random person from a
population of 100 people, 50 males and 50 females. 30 males
are taller than 6 ft, 10 females are taller than 6 ft.

male female

taller than 6 ft 10
30

shorter than 6 ft

50 50



Population proportion

Example 2: A male, B tall.

male female

Distribution 10
taller than 6 ft

30

shorter than 6 ft

50 50

| Al 50
_|B] 30410
Q100
|AnB| 30
1Q _100_30%'

Probability = population proportion.

P(B) = 40%.

P(ANnB) =



Population proportion

Experiment — outcome — number
A Example 2: A male, B tall.

Distribution male female
taller than 6 ft 10
30
shorter than 6 ft
50 50
|[AnB| _ 30
A|B =175
PAIB) = == = {5 =T5%
Among tall people, what is the proportion of males?
|[AnB| 30
BlA = 60%
P(BIA) = == = 55 = 60%

Among males, what is the proportion of tall people?
Conditional probability = proportion within
sub-population.



Joint distribution

Example 2: X € { male (1), female (0)}, Y € { tall (1), short
(0)}.

Distribution

p(x,y) :P(X:x,Y:y)

male female
taller than 6 ft 10
30
shorter than 6 ft
50 50

p(1,1) = .3, p(1,0) = .2,
p(0,1) = .1, p(0,0) = 4.



Marginal distribution

Example 2: X € { male, female}, Y € { tall, short}.

Distribution p(.’L‘, y) — P(X — 1‘, Y = y)
male female
taller than 6 ft 10

30

shorter than 6 ft

50 50

P(X =2)=px(x) = >_plx,y).
Yy



Conditional distribution

Example 2: X € { male, female}, Y € { tall, short}.

Distribution . . .
p(z,y) = P(X = 2,Y =y).
male female
taller than 6 ft 10
30
shorter than 6 ft
50 50

P(X =z|Y =y) = pxy(z|y) = p(z,y)/p(y).
P(Y =y|X =) = pyx(ylz) = p(z,y)/p(z).

Chain rule: p(x,y) = p(x)p(y|x) = p(y)p(z|y).



Rule of total probability

Example 2: X € { male, female}, Y € { tall, short}.

Distribution

p($ay) :P(sz,yzy)

male female
taller than 6 ft 10
30
shorter than 6 ft
50 50

= play) = Zp p(y|z).



Bayes rule

Example 2: X € { male, female}, Y € { tall, short}.

Distribution

p($ay) :P(X:x,Y:y)

male female
10
taller than 6 ft %0 X
Inference ( l Causal
shorter than 6 ft
50 50 Y
_plzy) _ pl@)p(y|z)

) =y T S o )



Independence

100A

Ying Nian Wu P(A|B) == P(A)
Distribution P(A m B) = P(A)P(B)

X € { male, female}, Y € { college, not}

0

M F
College 20 20
degree

B AnB
No college

degree

50 50 - A "

p(ylz) = p(y)



Reasoning
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Distribution Recall Example 6: Rare disease example
1% of population has a rare disease.

A random person goes through a test.

If the person has disease, 90% chance test positive.

If the person does not have disease, 90% chance test negative.
If tested positive, what is the chance he or she has disease?

P(D) = 1%.
P(+|D) = 90%, P(—|N) = 90%.
P(D|+) =7

X e{D,N}. Y e{+,-}.



Distribution

N

9 99

- &
Inference Causal
Y

10 (1%) 990 (99%)

p(w,y): p(@)p(ylz)
ply) 2 p(plyla’)

p(zly) =

p(x): prior belief. p(x|y): posterior belief.
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Distribution

N(y) N p(y)

N: number of people in population.

N(z,y): number of people with eye color z and hair color y.
N(z) =>_, N(z,y): number of people with eye color z.
N(y) =>_, N(z,y): number of people with hair color y.
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Distribution
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Distribution
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Distribution

X
Inference( l Causal
Y

Marginalization: p(y) = >, p(z,y).
Conditioning: p(z|y) = p(z,y)/p(y).
Chain rule: p(z,y) = p(x)p(y|z).
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Distribution

N(y) N p(y)
E[A(X,Y)] = h(z,y)p(x,y).
z,y

Population average or long run average.
1 N(z,y
S b Ny = Y nGy) Y

T,y T,y

= Y h(x,y)p(x,y) = EA(X,Y)].
z,y
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Distribution

N(y) N p(y)

E(X) =) ap(z,y)=> =) plx,y) = xpx).

T Y T

same for E[h(X)].

Var(h(X,Y)) = E[(A(X,Y) — E[h(X,Y)])?].



Two continuous random variables

X = height, Y = weight.

Distribution

zx + Az zx + Az

P(X € (z,z 4+ Az),Y € (y,y + Ay)) N(x,y)/N.

fly) = AzAy - AzxAy

density = probability / size




Probability density function
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Distribution




Distribution

density = prob / size
P(X € (z,z+ Az)) N(z)/N

fla) = Ax Az
N(z,y)/N T, y)ArA
LT A R

Az
fy) = / f(x.y)dz.



Joint and marginal densities

Distribution

Sample points under the surface, collapse on the




Distribution

density = prob / size
P(Y € (y,y + Ay) | X € (z,2 + Ax))

flylz) = Ay
_ N(z,y)/N(x) _ N(z,y)/N
Ay (N(z)/N)Ay

[z y)Azdy _ f(z,y)
f(x)AzAy flx)
fzly) = f(z,9)/ f(y).




Conditional density

. p(x)
pXIY=(-2-23])
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2
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Distribution

X
Inference( lCausaI
Y

Marginalization: f(y) = [ f(z,y)dz.

Normalization (conditioning): f(x|y) = f(x,y)/f(y).
Factorization (chain rule): f(z,y) = f(z)f(y|z).
f(y|x): prediction. f(z|y): inference.



Expectation

Distribution

If (X,Y) ~p(z,y

), then

=3 @, y)p(e, y).

If (X,Y) ~ f(z,y), then

hMX,Y)) //hxy (z,y)dzdy.

Var(h(X,Y)) = Y) - E[h(X,Y)))?]



Distribution

Population average or long run average of h(X,Y).

n

1 1
=~ MY = = b y)nf(z,y)Ardy
i=1 cells

— //h(a:,y)f(m,y)da:dy.



Conditional expectation and variance

Distribution

Regression, prediction.

Var(Y]X = z) = E[(Y~h(X))’|X = 2] = /(y—h(w))zf(yll‘)dy.



Distribution

X ~N(0,1),
Y =pX 46 e~N(0,1-p%), (|p| <1).

€ is independent of X. Given X =z, Y = pzr + €.



Distribution

zx + Az
The distribution of points within a vertical slice at .
E(Y|X =xz) = E(px + €) = pz.

Regression towards the mean (p < 1), e.g., son’s height given
father's height.

Var(Y|X = x) = Var(pz + ¢) = Var(e) = 1 — p*.

[Y|X =] ~ N(pz,1 - p?).



Distribution

flzy) = f(o)f(ylo)
(e =)
- Vor p< 2) 27(1 — p?) p( 2(1—02)>

1 2 2
————xp |~ 57— (2" + Y  —2pry)|.
21y/1 — p2 [ 2(1-p?)

symmetric in (z,y)



Covariance

Correlation

Let ux = E(X), py = E(Y), we define the covariance
Cov(X,Y) =E[(X — px)(Y — py)].

It is defined for both discrete and continuous random variables.



Covariance

Correlation




Covariance
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Correlation

Positive Negative No
Relationship Relationship Relationship
1 n
Cov(X,Y) == (X; — X)(V; - Y).
n
=1

1L (X (Y; —¥) > 0.

_ _) _
I, IvV: (X; —X)(Y; -Y) <0.



Covariance

Correlation

Cov(X,Y)

Clearly, Cov(X, X)

E
E

(X = px)(Y — py)]

XY — pxY — Xpy + pxpy]
E(XY) — puxE(Y) — pyE(X) + pxpy
E(XY) — pxpy

E(XY) — E(X)E(Y).

[
[

= Var(X) and Cov(Y,Y) = Var(Y).



Linearity

Cov(aX + b,cY +d)
= E[(aX +b—E(aX +0))(cY +d—E(cY +d))]
= Ela(X —E(X))e(Y —E(Y))] = acCov(X,Y).

Covariance depends on units (meter/foot, kilogram/pound).

Cov(X+Y,Z) =E[(X+Y —-E(X +Y))(Z - E(2))]
= E[(X -E(X)+Y —E(Y))(Z - E(2))]
E[(X - E(X))(Z - E(2))] + E[(Y - E(Y))(Z - E(2))]
= Cov(X,Z)+ Cov(Y, Z).



Correlation

Perfect +ve High +ve Low +ve Low -ve High -ve Perfect -ve
X Correlation Correlation Correlation Correlation Correlation Correlation
Correlation
¥ 0.9 +0.5 0.5 -0.9 1

Standardize: X — (X — pux)/ox, Y = (Y — uy)/oy.

X—pux Y—py\ Cov(X,Y)
COV< ’ ) ~ /Var(X)y/Var(Y)

= Corr(X,Y).

ox oy



Perfect +ve High +ve Low +ve Low -ve High -ve Perfect -ve

i (o O Correlation Correlation Correlation Correlation Correlation Correlation
Correlation ‘ ‘ N ‘ . ‘ - ',' ‘ .
I +0.9 +0.5 -0.5 -0.9 -1
XY
Corr(X,Y) = Cov(X, ¥)
\/Var X)y/Var(Y)
1 _ _
XY)=— X,i—-X)Y;,-Y).
Cov(X,Y) - ;( ) )
Var(X) = 1 3 00x - %07 varr) = L3 - vy
ar = — i 5 I = - i .
nia ’ i
X; —
Corr(X,Y) iz O —Y)

¢zlyx X2\ /S -V



Correlation

Perfect +ve High +ve Low +ve Low -ve High -ve Perfect -ve
Correlation Correlation Correlation Correlation Correlation Correlation

Correlation

-




Correlation

Perfect +ve High +ve Low +ve Low -ve High -ve Perfect -ve
Correlation Correlation Correlation Correlation Correlation Correlation

Correlation

-

Centralize: X; =X, - X; Y, =Y, - Y.
Z?:l Xszl

VI, X2y, v
(X, Y)

= — L =cos#.
XY

Corr(X,Y) =




Correlation and regression
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Scatter Plot — 2 dimension

—~ = y Vector Plot - n dimension
Correlation a n e ! F=B%
g (&, 7
€ /’
% Vi €; e
q - 1 ~ 8 e
: B x 5% X
Xn n en
Strength of linear relationship:
2 2
el _ i G 2

=sin?0=1—cos’f =1—p

Y[ 3 —Y)?



Correlation

random error for X,

Y

observed value for ¥, |-~

predicted value for ¥; F------
.

Regression line:

An observed value

of y when x = x, Straight line

§=BotPBix

Error term ——>

Estimated value
of y whenx =xo

One unit change in x

Y- intercept

Xo= Aspecific value of the
independent variable x

Y -Y =61 (X - X).
V=8X+ (Y - BiX) = B1X + b




Correlation and regression

Correlation




Correlation and regression

Correlation




Correlation and regression

Correlation




Correlation and regression

70
&0 7
& 5
e £ g5
< =
5 =
g 40 ) .
Correlation E %
= 2
20 = N
T T 551, T T T
20 40 80 60 85 70 75
Husband's age (in years) Husband's height (in inches)

Relationship between Height and Weight

— Males Regresion Line .
— Females Regresion Line

o Ma
Females

y=-246.01+5.99%

Weight (pounds)

& »
Height (inches)



Independence

E[(X — pux)(Y — py)]
= > > (= —px)(y — py)p(z,y)
x Yy

_ Z Z(x — px)(y — py)px (@)py (y)
= > (z—px)px (@) _(y = py)py ()

T Yy

= (Z wpx (z) — ux> (Z ypy (y) — uy) =0.



Correlation

p(x,ylz) = p(z]2)p(yl2)
[z, ylz) = f(z]2) f(y]2)

Markov: [future | present, past], [child | parent, grandparent]

X—2)—y



Correlation

Correlation = -0.81

Correlation = 0.81

Correlation

o o ~
s o > o 4
T ¥
[ o
> - > 5 4
@ e ]




Correlation

Correlation

| |
-1 I +1

Let X be a uniform distribution over [~1,1]. Let Y = X?2.
Then X and Y are not independent.

However, E(XY) = E(X3) =0, and E(X) = 0. Thus
Cov(X,Y)=E(XY)-E(X)E(Y)=0.




Bivariate normal

L

Correlation

X ~N(0,1),
Y =pX +€ e~ N(0,1—p?),

EY)=E(pX +¢) =0.
€ and X are independent.
Var(Y) = Var(pX + ¢€) = p*Var(X) + Var(e) = 1.
Cov(X,Y) = E(XY) = E[X (pX +¢)] = pE(X?)+E(X¢) = p.
E(Xe) =E(X)E(e) = 0.



Variance of sum

Correlation

Var(X +Y) = E[(X +Y) — pux+v)’]
= E[(X — px) + (Y — py))?]

= E[(X —px)?+ (Y — py)? +2(X — pux)(Y — py)]

= E[(X — pux)’| + E[(Y — py)?] + 2E[(X — px)(Y — py)]
= Var(X) + Var(Y) + 2Cov(X,Y).

If X and Y are independent, then Cov(X,Y) =0, and

Var(X +Y) = Var(X) + Var(Y).



Variance of sum

Limiting




Variance of sum

x +y = const. y x+y = const.

Limiting Cov>0 Cov <0

<
=l
<l
Q £
®l



Average of iid

X1, Xo, ..., X,y ~ f(x) independently.
independent and identically distributed, iid

Ying Nian Wu

Limiting

z,n=1 ,n=2 z, large n
x1\xg | small large
small small medium
large | medium large

Variance becomes smaller, distribution becomes smoother.



Limiting

small
large | medium large




Average of iid

P a b Non-STEM c STEM Girls
Limiting Overall -Boys

1

1

1

1

=N Grades Grades
 Onavragn g grados e + On average girs grades much better, + On average girs grades slightly beter,
 Gifs grades more consist « Gira grades simiarly veriable,  Girls grades much more consistent,

« Fewer top scoring girls « More top scoring gils + Many fewer top scoring girls



Sum and average of iid

Xi~ f(z),i=1,...,n, iid: independent and identically
distributed.

1=1
Limiting E(X;) = u; Var(X;) = 0.2’ t1=1,..,n.
n n
E(S)=E (Z Xi) = ZE(Xl) = ny
i=1 =1




Law of large number

o _ E(5)
Limiting E(X) = T = K.
2 2
Var(x) = Y8 1007
n n n

X — p, in probability.
P(IX —pu|l <€) =1, Ve > 0.

Average — expectation.



Law of large number

Special case:

n
Limiting X = Z Z;, Z; ~ Bernoulli(p) iid.
=1

E(X) = np; Var(X) =np(1 - p).
E(X/n) = p; Var(X/n) = p(1 —p)/n — 0.
X/n — p, in probability.

Frequency — probability.
X/n is average of Z;. Probability is expectation of Z;.



Law of large number

Special case:

Law of Large Numbers
p=05

10
Limiting L

probability
o
S
T

», 05

1 100 200 300 400 SO0 600 70O 800 900 1000
# of trials

Keep flipping a fair coin, frequency — 1/2.
Intuition: most of 2" sequences have frequencies close to

1/2.



Law of large number

Special case: X; ~ Uniform[0,1], iid, i = 1,...,n.

Ying Nian Wu

n
X
g o 2zt — E(X;) =1/2.
n

Limiting P(|X —1/2| <€) = 1, Ve > 0.

Intuition: (X1, ..., X, ..., X;,) is a random point in 2 = [0, 1],
n-dimensional unit cube.

A={(x1,...,Ti,...,xy) : |T —1/2] < €} is the central diagonal
piece.

P(A) is the volume of A. P(A) — 1.

No matter how small € is, the volume of the central diagonal
piece is almost the same as the volume of the whole
n-dimensional unit cube €.

Most of the points in ) belong to A. Concentration of
measure.



Law of large number

Limiting




Statistical physics
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Most of the points in 2 belong to A. Concentration of
measure.

Suppose (z1, ..., X, ..., T ) describes a physical system, e.g.,

n = 10%* molecules.

It evolves deterministically over time, by traversing with €.
Ergodic: it traverses every point in ) with equal number of
visits in the long run.

At any random moment, (z;, ..., x;, ..., ;) ~ Unif(Q).

Then most likely it will be in A, with fixed statistical properties
(e.g., temperature, pressure, magnetism).

Limiting



Central limit theorem

g lI
. ..-I Ill.._

X = €, € ~ Bernoulli(1/2) iid.
=1

X ~ Binomial(n,1/2). p = E(X) = n/2; 0 = Var(X) = n/4.

P (z _ X\/_—T%? _ z) - \/%_Wexp <—§> % — f(2)Ax.




Limiting

~.‘ '.I. |I|||||||||I|
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Repeat and plot histogram

E(X;) =

p; Var(X.

L 1y t::‘ 5 10 15 20 25 30
o e o
Youg il
+g.'j}+\%.,‘, ..
o 6 12 18 24 30 36
+57 4+
n

2 .
i)=0°%i=1,..,n.

S ~ N(nu,no?).



Central limit theorem

6" equally likely sequences — 6™ equally likely sums —
histogram.
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Central limit theorem

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Limiting

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

sampling distribution

E(X;) = p; Var(X;) =02, i=1,...,n.
S ~N(np,no?). X ~ N(p,0?/n).



Central limit theorem

:

Limiting
4& = . e =

ibution of Sample Mean, N=25

*n g . B =

Universal, regardless of the distribution of each X;.

S ~ N(nu,no?). X ~ N(u,o?/n).

S—nu_X—,u
Vo a/yn

Z = ~N(0,1).



Probability models

Markov chain: Part 1.
Bayes network, graphical model: Part 1.
Poisson process: Part 2.
Limiting Brownian motion: Part 2.

Xirar = Xy + oV Atey,
where E(e;) = 0, Var(e;) = 1, and ¢; are iid.
Stochastic differential equation, diffusion

Xitar = X¢ + pAt + oV Atey,

dXt = /J,dt + O'dBt.

Imagine 1 million particles moving.



Take home message
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As long as you can count (and average)
(1) Population of equally likely possibilities

Probability = population proportion

(2) Large sample of repetitions

Frequency (sample proportion) & probability

(a) Probability: population proportion, long run frequency
(b) Expectation: population average, long run average
(c) Conditional: sub-population, when something happens
Continuous: discretize, infinitesimal analysis

Limiting
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