100A

Ying Nian Wu

Discrete

Continuous

STATS 100A: RANDOM VARIABLES

Ying Nian Wu

Department of Statistics University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

Random variables

100A

Ying Nian Wu

Discrete

Randomly sample a person ω from a population Ω .

$$\begin{array}{l} X(\omega) \text{: gender of } \omega, \ \Omega \to \{0,1\}.\\ Y(\omega) \text{: height of } \omega, \ \Omega \to \mathbb{R}^+.\\ A = \{\omega: X(\omega) = 1\}. \ P(A) = P(X = 1). \ \text{Discrete}.\\ B = \{\omega: Y(\omega) > 6\}. \ P(B) = P(Y > 6). \ \text{Continuous}.\\ \text{We shall study random variables more systematically.}\\ \omega \in \Omega \ \text{equally likely, but } X(\omega) \ \text{and } Y(\omega) \ \text{are not necessarily equally likely.} \end{array}$$

Discrete random variable

100A

Ying Nian Wu

Discrete

Randomly sample a person ω from a population Ω of N people.

$$\begin{split} X(\omega): \text{ eye color of person } \omega, \ \Omega \to \{1(blue), 2(brown), 3, 4\}.\\ N(x) = \text{number of people with eye color } x.\\ \text{Probability mass function, probability distribution, law:} \end{split}$$

$$X \sim p(x) = P(X = x) = \frac{N(x)}{N}.$$

x	1	2	3	4
p(x)	p(1)	p(2)	p(3)	p(4)
number	N(1)	N(2)	N(3)	N(4)

Discrete random variable

100A Ying Nian Wi

Discrete

Continuous

Randomly sample a person ω from a population Ω of N people.

 $X(\omega)$: number of siblings of person ω , $\Omega \rightarrow \{0, 1, 2, ...\}$. N(x) = number of people with x siblings. Probability mass function, probability distribution, law:

$$X \sim p(x) = P(X = x) = \frac{N(x)}{N}.$$

x	0	1	2	3	
p(x)	p(0)	p(1)	p(2)	p(3)	
number	N(0)	N(1)	N(2)	N(3)	

Population average

100A

Ying Nian Wu

Discrete

Continuous

N(x) = number of people with x siblings.

$$X \sim p(x) = P(X = x) = \frac{N(x)}{N}.$$

x	0	1	2	3	
p(x)	p(0)	p(1)	p(2)	p(3)	
number	N(0)	N(1)	N(2)	N(3)	

Population average:

$$\mathbb{E}(X) = \frac{1}{N} \sum_{\omega \in \Omega} X(\omega) = \frac{1}{N} \sum_{x} xN(x) = \sum_{x} x \frac{N(x)}{N} = \sum_{x} xp(x).$$

Long run average: N^n reasoning

100A

Ying Nian Wu

Discrete

Continuous

Randomly sample a person ω from a population Ω of N people. Each person ω carries a number $X(\omega)$.

Population average:

$$\mu = \mathbb{E}(X) = \sum_{x} x p(x).$$

Repeat random sampling n times independently $\rightarrow N^n$ equally likely sequences: Ω_n . $\bar{X}(\text{sequence}) = \text{average of the sequence.}$ $\bar{X} \rightarrow \mu$ in probability as $n \rightarrow \infty$.

Law of large number: N^n reasoning

Ying Nian Wu

Discrete

Continuous

Repeat random sampling n times independently $\rightarrow N^n$ equally likely sequences: Ω_n . $\bar{X}(\text{sequence}) = \text{average of the sequence.}$ $A = \{\text{sequence} : |\bar{X}(\text{sequence}) - \mu| \le .01\}$: representative sequences. $P(A) = \frac{|A|}{Nn} \rightarrow 1 \text{ as } n \rightarrow \infty.$

Die rolling

100A Ying Nian W

Discrete

Continuous

Randomly throw a point into [0, 1], which bin (1, 2, ..., 6) it falls into?

 $\omega\in\Omega=[0,1],$ population of points (tiny balls), equally likely. $X(\omega)$ is the bin that ω belongs to, not necessarily equally likely. Probability mass function, probability distribution, law:

$$X \sim p(x) = P(X = x) =$$
length of bin x .

Population average (each point or tiny ball ω carries a number $X(\omega)$).

$$\mathbb{E}(X) = \sum_{x} x p(x).$$

Long run average

100A

Ying Nian Wu

Discrete

Continuous

p(x): how often X = x in the long run (e.g., throw 1 million points into [0, 1]).

x	1	2	3	4	5	6	
p(<i>x</i>)	0.1	0.1	0.2	0.2	0.1	0.3	

x	1	2	3	4	5	6
#	0.1m	0.1m	0.2m	0.2m	0.1m	0.3m
%	10%	10%	20%	20%	10%	30%

 $average = \frac{(1 \times 0.1m + 2 \times 0.1m + 3 \times 0.2m + 4 \times 0.2m + 5 \times 0.1m + 6 \times 0.3m)}{1m}$

$$\mathbb{E}(X) = \sum_{x} x p(x).$$

100A

Discrete

Expectation of function

Function of random variable

	x	1	2	3	4	5	6
	p(x)	0.1	0.1	0.2	0.2	0.1	0.3
	x	1	2	3	4	5	6
	#	0.1m	0.1m	0.2m	0.2m	0.1m	0.3m
	%	10%	10%	20%	20%	10%	200/
		10/0	10/0	20%	2076	10%	30%
	average	$=\frac{(1\times 0.1n)}{(1\times 0.1n)}$	n + 2×0.1m	+ 3×0.2m	+ 4×0.2m + m	- 5×0.1m +	6×0.3m)
x	average 1	= (1×0.1 <i>n</i>	n + 2×0.1m	+ 3×0.2m - 1	4	- 5×0.1m +	6×0.3 <i>m</i>)
x yoff	average 1 -\$30	$= \frac{(1 \times 0.1r)}{2}$	10,0 n + 2×0.1m	+ 3×0.2m - 1	4 20% + 4×0.2m + m 4	- 5×0.1m + 5 \$30	<u>6×0.3m)</u> 6 \$100

 $longrun\ average = (-\$30) \times 0.1 + (-\$20) \times 0.1 + (\$0) \times 0.2 + (\$20) \times 0.2 + (\$30) \times 0.1 + (\$100) \times 0.3$

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$

Utility

100A

Ying Nian Wu

Discrete

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$

Off	er 1
x	\$100
p(<i>x</i>)	1

$$E(X) = (\$100) \times 1 = \$100$$

	Offer 2	
x	\$0	\$200
p(<i>x</i>)	1/2	1/2

$$E(X) = (\$0) \times \frac{1}{2} + (\$200) \times \frac{1}{2} = \$100$$

x: face value	\$0	\$100	\$200
h(x): perceived value	\$0	\$100	\$150

Offer 1:
$$\mathbb{E}[h(X)] = \$100 \times 1 = \$100.$$

Offer 2: $\mathbb{E}[h(X)] = \$0 \times \frac{1}{2} + \$150 \times \frac{1}{2} = \$75.$

Variance

100A

Thig Mail W

Discrete

Continuous

$$\mathbb{E}(X) = \sum_{x} xp(x) = \mu(=\$0 \times 1/2 + \$200 \times 1/2 = \$100)$$

$$Var(X) = \mathbb{E}[(X - \mu)^2] = \sum_x (x - \mu)^2 p(x) = \sigma^2$$

= (\$0 - \$100)^2 × 1/2 + (\$200 - \$100)^2 × 1/2
= \$^210,000.

Long run average of squared deviation from the mean.

$$SD(X) = \sqrt{\operatorname{Var}(X)} = \sigma(=\$100).$$

Extent of variation from the mean.

Variance

100A

Ying Nian Wu

Discrete

Continuous

 $longrun\ average = (-\$30) \times 0.1 + (-\$20) \times 0.1 + (\$0) \times 0.2 + (\$20) \times 0.2 + (\$30) \times 0.1 + (\$100) \times 0.3$

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$
$$\operatorname{Var}[h(X)] = \mathbb{E}[(h(X) - \mathbb{E}(h(X)))^{2}].$$

Data

100A Ying Nian W

Discrete

Continuous

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mu)^2] = \sum_{x} (x - \mu)^2 p(x) = \sigma^2.$$

Long run average of squared deviation from the mean. Sampling $p(x) \rightarrow x_1, ..., x_i, ..., x_n$ (e.g., rolling a die \rightarrow 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \to \operatorname{Var}(X) = \sigma^{2}$$

Linear transformation

100A

Ying Nian Wu

Discrete

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$
$$Y = aX + b.$$

$$\begin{split} \mathbb{E}(Y) &= \mathbb{E}(aX+b) = \sum_{x} (ax+b)p(x) \\ &= \sum_{x} axp(x) + \sum_{x} bp(x) \\ &= a\sum_{x} xp(x) + b\sum_{x} p(x) = a\mathbb{E}(X) + b. \end{split}$$

Data

100A

Ying Nian Wu

Discrete

$$y_i = ax_i + b.$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \frac{1}{n} \sum_{i=1}^{n} x_i + b = a\bar{x} + b.$$

Linear transformation

100A

Ying Nian Wu

Discrete

$$\operatorname{Var}(h(X)) = \mathbb{E}[(h(X) - \mathbb{E}(h(X)))^2].$$
$$Y = aX + b.$$
$$\mathbb{E}(Y) = a\mathbb{E}(X) + b.$$
$$\operatorname{Var}(Y) = \mathbb{E}[(Y - \mathbb{E}(Y))^2].$$

$$Var(aX + b) = \mathbb{E}[((aX + b) - \mathbb{E}(aX + b))^2]$$
$$= \mathbb{E}[(aX + b - (a\mathbb{E}(X) + b))^2]$$
$$= \mathbb{E}[(a(X - \mathbb{E}(X)))^2]$$
$$= a^2\mathbb{E}[(X - \mathbb{E}(X))^2] = a^2Var(X).$$

Data

100A

Ying Nian Wu

Discrete

Continuous

 $\frac{1}{n}\sum_{i=1}^{n}(y_i-\bar{y})^2 = \frac{1}{n}\sum_{i=1}^{n}(ax_i+b-(a\bar{x}+b))^2 = \frac{1}{n}\sum_{i=1}^{n}a^2(x_i-\bar{x})^2.$

Short-cut for variance

100A

Ying Nian Wu

Discrete

$$Var(X) = \mathbb{E}[(X - \mu)^{2}]$$

= $\mathbb{E}[X^{2} - 2\mu X + \mu^{2}]$
= $\mathbb{E}(X^{2}) - 2\mu \mathbb{E}(X) + \mu^{2}$
= $\mathbb{E}(X^{2}) - \mu^{2} = \mathbb{E}(X^{2}) - [\mathbb{E}(X)]^{2}.$

$$\begin{split} \mathbb{E}[h(X) + g(X)] &= \sum_{x} [h(x) + g(x)] p(x) \\ &= \sum_{x} h(x) p(x) + \sum_{x} g(x) p(x) \\ &= \mathbb{E}[h(X)] + \mathbb{E}[g(X)]. \end{split}$$

Bernoulli

100A

Ying Nian Wu

Discrete

Binomial

100A

Ying Nian Wu

Discrete

Continuous

Flip a coin (probability of head is p) n times independently. X = number of heads.

 $X \sim \operatorname{Binomial}(n, p)$

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

 $\binom{n}{k}$ is the number of sequences with exactly k heads. $p^k(1-p)^{n-k}$ is the probability of each sequence with k heads. e.g., n=3, $P(X=2)=P(HHT)+P(HTH)+P(THH)=3p^2(1-p).$ p=1/2, we have $P(X=k)=\binom{n}{k}/2^n.$

Recall independence

100A

Ying Nian Wu

Discrete

Continuous

Definition 1:

$$P(A|B) = P(A).$$

Definition 2:

$$P(A \cap B) = P(A)P(B).$$

Binomial formula

Binomial and Bernoulli

100A

Ying Nian Wu

Discrete

Continuous

 $X = Z_1 + Z_2 + \dots + Z_n,$

where $Z_i \sim \text{Bernoulli}(p)$ independently.

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(Z_i) = np.$$

Due to independence of Z_i , i = 1, ..., n,

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(Z_i) = np(1-p).$$

Frequency

V

100A

Ying Nian Wu

Discrete

Continuous

$$\mathbb{E}(X/n) = \mathbb{E}(X)/n = p.$$

$$\operatorname{Var}(X/n) = \operatorname{Var}(X)/n^2 = p(1-p)/n.$$

$$\operatorname{Var}(X/n) \to 0 \text{ as } n \to \infty.$$

 $X/n \rightarrow p$, in probability

Law of large number Probability = long run frequency

Recall survey sampling

100A

Ying Nian Wu

Discrete

Continuous

 $\rightarrow N^n$ equally likely sequences. For a sequence ω , $X(\omega) =$ number of males in ω . $A_m = \{\omega: X(\omega) = m\}$: sequences with m males. $|A_m| = \binom{n}{m} M^m (N-M)^{n-m}$. n blanks. Choose m blanks for males, the rest n-m blanks for females. Each male blank has M choices. Each female blank has N-M choices.

Survey sampling

100A

Ying Nian Wu

Discrete

Continuous

Population of N people. M males. Sample a person, p = M/N = Prob(male).

$$P(A_m) = P(X = m) = \frac{|A_m|}{|\Omega_n|}$$
$$= \frac{\binom{n}{m}M^m(N - M)^{n-m}}{N^n}$$
$$= \binom{n}{m}p^m(1-p)^{n-m}.$$

Most sequences are representative, $X/n \approx M/N = p$.

Binomial distribution

100A

Ying Nian Wu

Discrete

Continuous

$$p(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
$$x = 0, 1, ..., n.$$

p(x): probability mass function, probability distribution.

Survey sampling, poll before election, p=M/N. Monte Carlo, $p=\pi/4.$

Law of large number: N^n reasoning

100A

Ying Nian Wu

Discrete

Continuous

Among all ${\cal N}^n$ sequences in the hyper-population of sequences $\Omega_n,$ let

$$A = \left\{ \omega : \left| \frac{X(\omega)}{n} - p \right| \le .01 \right\}.$$

consist of representative sequences.

$$P(A) = \frac{|A|}{|\Omega_n|} = \sum_{x \in [n(p-.01), n(p+.01)]} p(x) \to 1,$$

 $X/n \to p$ in probability. $\mathbb{E}(X/n) = p$: average of $X(\omega)/n$ in Ω_n . $\operatorname{Var}(X/n) = p(1-p)/n \to 0$: variance of $X(\omega)/n$ in Ω_n .

Binomial expectation

100A

Ying Nian Wu

Discrete

$$\mathbb{E}(X) = \sum_{k=0}^{n} xp(x) = \sum_{k=0}^{n} kP(X = k)$$

= $\sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$
= $\sum_{k=1}^{n} np \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$
= $\sum_{k'=0}^{n'} np \binom{n'}{k'} p^{k'} (1-p)^{n'-k'} = np.$
 $k' = k-1; n' = n-1.$

Binomial variance

100A

Ying Nian Wu

Discrete

Binomial variance

100A

Ying Nian Wu

Discrete

$$\mathbb{E}(X(X-1)) = \mathbb{E}(X^2) - \mathbb{E}(X) = n(n-1)p^2.$$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$
$$= n(n-1)p^2 + np - (np)^2$$
$$= np - np^2 = np(1-p).$$

Geometric

100A

Ying Nian Wi

Discrete

Continuous

$T \sim \operatorname{Geometric}(p)$

T is the number of flips to get the first head, if we flip a coin independently and the probability of getting a head in each flip is $p. \end{tabular}$

$$P(T = k) = (1 - p)^{k-1}p.$$

e.g., T = 1, HT = 2, TH. T = 3, TTH. T = 4, TTTH. Waiting time.

Geometric expectation

100A

Ying Nian Wu

$T \sim \text{Geometric}(p)$

Discrete

$$\begin{split} \mathbb{E}(T) &= \sum_{k=1}^{\infty} k P(T=k) \\ &= \sum_{k=1}^{\infty} k q^{k-1} p = p \sum_{k=1}^{\infty} \frac{d}{dq} q^k \\ &= p \frac{d}{dq} \sum_{k=1}^{\infty} q^k = p \frac{d}{dq} \left(\frac{1}{1-q} - 1 \right) \\ &= p \frac{1}{(1-q)^2} = \frac{1}{p}. \end{split}$$

Geometric series

100A

Ying Nian Wu

Discrete

Continuous

$$\begin{aligned} (1-a)(1+a+\ldots+a^m) &= 1+a+\ldots+a^m \\ &-(a+a^2+\ldots+a^m+a^{m+1}) \\ &= 1-a^{m+1}. \\ 1+a+\ldots+a^m &= \frac{1-a^{m+1}}{1-a}. \end{aligned}$$

 ${\sf lf}\;|a|<1{\sf ,}$

 $a^{m+1} \to 0$, as $m \to \infty$.

Quantum bit

Discrete

state vector $= \alpha |0\rangle + \beta |1\rangle$. state vector rotates over time. squared length $= |\alpha|^2 + |\beta|^2 = 1$ under rotation. observer: $p(0) = |\alpha|^2$, $p(1) = |\beta|^2$.

$$\frac{1}{\sqrt{2}}\left|\left(\right)\right\rangle + \frac{1}{\sqrt{2}}\left|\right\rangle$$

Schrodinger cat:
$$P(alive) = (1/\sqrt{2})^2 = 1/2.$$

Continuous random variable: density

100A

Ying Nian Wu

Discrete

Continuous

Randomly sample a person ω from a population Ω of N people. $X(\omega):$ height of person $\omega.$

Density or distribution of the N points.

 $N(x) = \text{number of people in } (x, x + \Delta x) \text{ (6 ft, 6 ft 1 inch),}$ precision = 1 inch.

Probability density function, probability distribution, law:

$$X \sim f(x) = \frac{P(X \in (x, x + \Delta x))}{\Delta x} = \frac{N(x)/N}{\Delta x}.$$

Mathematical idealization: $N \approx \infty$.

Population scatterplot and histogram

100A Ying Nian \

Discrete

Continuous

Discretize x-axis into equally spaced bins $(x, x + \Delta x)$, e.g., (6 ft, 6 ft 1 inch), precision = 1 inch.

$$P(X \in (x, x + \Delta x)) = \frac{N(x)}{N} = f(x)\Delta x.$$

f(x): height of bin $(x,x+\Delta x).$ $f(x)\Delta x:$ area.

$$\sum_{x} \frac{N(x)}{N} = \sum_{x} f(x) \Delta x \to \int f(x) dx = 1.$$

Region under curve

100A Ying Nian V

Discrete

Continuous

Randomly throw a point ω into the region Ω below curve f(x). Ω : population of points (tiny squares or balls). Let $X = X(\omega)$ be the horizontal coordinate of point ω .

$$P(X \in (x, x + \Delta x)) = f(x)\Delta x.$$
$$P(X \in (a, b)) = \sum_{x \in (a, b)} f(x)\Delta x \to \int_{a}^{b} f(x)dx$$

Independent repetitions, sample scatterplot and histogram

Repeat n times, collapse to x-axis, histogram.

 N^n reasoning:

sample scatterplot (random) \approx population scatterplot (fixed), sample histogram (random) \approx population histogram (fixed).

Point cloud

100A

Ying Nian Wi

Discrete

Continuous

Electron orbits around nucleus: wrong conception Electron cloud, probability density function, f(x)Wave function $\psi(x)$, evolves over time. Observer: $f(x) = |\psi(x)|^2$.

Population

100A

Ying Nian Wi

Discrete

Continuous

Electron cloud, heat map, prob density

Population of N equally likely possibilities.

Mathematical idealization: $N \approx \infty$.

Prob density = prob mass in the cell / volume of cell. Observer: $f(x) = |\psi(x)|^2$.

Cumulative density function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx.$$

SAT score $x \rightarrow$ percentile F(x). Percentage of people below x.

Area and slope

Area:

$$F(x + \Delta x) - F(x) = f(x)\Delta x.$$

Slope:

$$F'(x) = \frac{F(x + \Delta x) - F(x)}{\Delta x} = f(x).$$

Notation:

$$F'(x) = \frac{dF(x)}{dx} = \frac{d}{dx}F(x) = f(x).$$
$$dF(x) = F'(x)dx = f(x)dx$$

Expectation

Recall discrete

100A

Ying Nian Wi

Discrete

Continuous

Continuous

$$P(X \in (x, x + \Delta x)) = f(x)\Delta x.$$

$$\mathbb{E}(X) = \sum x P(X \in (x, x + \Delta x)) = \sum x f(x) \Delta x \to \int x f(x) dx.$$

Population average, long run average, center.

Population average

100A

Ying Nian Wi

Discrete

Continuous

Population Ω of N people. $X(\omega)$. N(x): number of people in $(x, x + \Delta x)$.

$$\mathbb{E}(X) = \frac{1}{N} \sum_{\omega} X(\omega) = \frac{1}{N} \sum_{x} xN(x)$$
$$= \sum_{x} x \frac{N(x)}{N} = \sum xP(X \in (x, x + \Delta x))$$
$$= \sum xf(x)\Delta x \to \int xf(x)dx.$$

Expectation of function

100A

Ying Nian Wu

Discrete

Continuous

Continuous

Recall discrete

$$P(X \in (x, x + \Delta x)) = f(x)\Delta x.$$

$$\mathbb{E}[h(X)] = \sum h(x)P(X \in (x, x + \Delta x))$$
$$= \sum h(x)f(x)\Delta x \to \int h(x)f(x)dx.$$

Data, long run average

f(x)

Ying Nian Wu

Discrete

Continuous

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{x} xn(x) = \sum_{x} x \frac{n(x)}{n}$$
$$\rightarrow \sum_{x} xP(X \in (x, x + \Delta x))$$
$$= \sum_{x} xf(x)\Delta x \rightarrow \int xf(x)dx = \mathbb{E}(X).$$

Same logic for $\mathbb{E}(h(X))$.

Variance

Continuous

100A

Ying Nian Wi

Discrete

Continuous

$$P(X \in (x, x + \Delta x)) = f(x)\Delta x.$$

$$\mathbb{E}(X) = \int xf(x)dx = \mu.$$

$$Var(X) = \mathbb{E}[(X - \mu)^2] = \int (x - \mu)^2 f(x)dx.$$

$$Var[h(X)] = \mathbb{E}[(h(X) - \mathbb{E}(h(X)))^2].$$
Fluctuation, volatility, spread.

49/67

Uniform

100A

Ying Nian Wu

Discrete

Continuous

$$\begin{split} P(U \in (u, u + \Delta u)) &= f(u)\Delta u = \Delta u.\\ \text{Imagine 1 million points distributed uniformly in [0, 1].}\\ \text{Number of points in } (u, u + \Delta u) \text{ is } \Delta u \text{ million.}\\ \text{e.g., Number of points in } (.3, .31) \text{ is } .01 \text{ million.} \end{split}$$

Uniform

100A

Ying Nian Wu

Discrete

Continuous

F(u): proportion of points below u.

$$\mathbb{E}(U) = \int_0^1 uf(u)du = \frac{1}{2}.$$
$$\mathbb{E}(U^2) = \int_0^1 u^2 f(u)du = \frac{1}{3}.$$
$$\operatorname{Var}(U) = \mathbb{E}(U^2) - (\mathbb{E}(U))^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Pseudo-random number generator

100A

Ying Nian Wu

Discrete

Continuous

Linear congruential method

Start from an integer X_0 , and iterate

$$X_{t+1} = aX_t + b \mod M.$$

Output $U_t = X_t/M$. e.g., $a = 7^5$, b = 0, and $M = 2^{31} - 1$. mod: divide and take the remainder, e.g., $7 = 2 \mod 5$. e.g., a = 7, b = 1, M = 5, $X_0 = 1$, then $X_1 = 1 \times 7 + 1 \mod 5 = 3$. $X_2 = 3 \times 7 + 1 \mod 5 = 2$.

Exponential

$$\begin{split} T &\sim \text{Exponential}(\lambda), \\ f(t) &= \lambda e^{-\lambda t} \text{ for } t \geq 0, \\ f(t) &= 0 \text{ for } t < 0. \\ P(T \in (t, t + \Delta t)) &= \lambda e^{-\lambda t} \Delta t. \end{split}$$

Imagine 1 million particles, mark the times when they decay. 1 million points on real line. Their distribution is exponential. Number of points in $(t, t + \Delta t)$ is $\lambda e^{-\lambda t} \Delta t$ million.

Exponential

F(t): proportion of points below tHalf-life: $F(t_{half}) = P(T \le t_{half}) = 1/2$. 1 million particles, by half life, half million will have decayed.

2

Exponential expectation

100A

Ying Nian Wi

Discrete

$$\begin{split} \mathbb{E}(T) &= \int_0^\infty t\lambda e^{-\lambda t} dt \\ &= -\int_0^\infty t de^{-\lambda t} \\ &= -(te^{-\lambda t}|_0^\infty - \int_0^\infty e^{-\lambda t} dt) \\ &= -(0-0+\frac{1}{\lambda}e^{-\lambda t}|_0^\infty) = \frac{1}{\lambda}. \end{split}$$

Integral by parts

Ying Nian V

Discrete

Δv	$u \Delta v$	$\Delta u \Delta v$
v	uv	$v\Delta u$
L	и	Δu

$$\frac{d}{dx}u(x)v(x) = u'(x)v(x) + u(x)v'(x).$$

$$duv = udv + vdu.$$

$$\int [u'(x)v(x) + u(x)v'(x)]dx = u(x)v(x).$$

$$\dot{f}u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx.$$

$$\int udv = uv - \int vdu.$$

Integral by parts

100A

Ying Nian Wu

Discrete

Normal or Gaussian

100A

Ying Nian Wi

Discrete

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

$$\int_{-2}^{2} f(z)dz = 95\%.$$

Normal expectation

100A

Ying Nian Wi

Discrete

Continuous

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

$$\mathbb{E}(Z) = \int_{-\infty}^{\infty} z \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$
$$= -\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \Big|_{-\infty}^{\infty}$$
$$= 0.$$

The density is symmetric around 0.

Normal variance

100A

Ying Nian Wu

Discrete

$$\begin{split} \mathbb{E}(Z^2) &= \int_{-\infty}^{\infty} z^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-z) de^{-\frac{z^2}{2}} \\ &= \frac{1}{\sqrt{2\pi}} (-ze^{-\frac{z^2}{2}} |_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} d(-z)) \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 1. \\ &\operatorname{Var}(Z) = \mathbb{E}(Z^2) - (\mathbb{E}(Z))^2 = 1. \end{split}$$

Variance

For $X \sim f(x)$, let $\mu = \mathbb{E}(X)$.

100A

Ying Nian Wu

Discrete

$$\mathbb{E}[r(X) + s(X)] = \int [r(x) + s(x)]f(x)dx$$

= $\int r(x)f(x)dx + \int s(x)f(x)dx$
= $\mathbb{E}[r(X)] + \mathbb{E}[s(X)].$

Linear transformation

For $X \sim f(x)$. Let Y = aX + b.

100A

Ying Nian Wu

Discrete

$$\mathbb{E}(Y) = \mathbb{E}(aX+b) = \int (ax+b)f(x)dx$$
$$= a\int xf(x)dx + b\int f(x)dx$$
$$= a\mathbb{E}(X) + b.$$

$$\operatorname{Var}(Y) = \operatorname{Var}(aX + b) = \mathbb{E}[((aX + b) - \mathbb{E}(aX + b))^2]$$
$$= \mathbb{E}[(aX + b - (a\mathbb{E}(X) + b))^2]$$
$$= \mathbb{E}[a^2(X - \mathbb{E}(X))^2]$$
$$= a^2\mathbb{E}[(X - \mathbb{E}(X))^2] = a^2\operatorname{Var}(X).$$

Data

Ying Nian V

Discrete

Continuous

Sampling $f(x) \rightarrow x_1, ..., x_i, ..., x_n$ (e.g., random number generator $\rightarrow .22$, .31, .92, .45, ...)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \to \operatorname{Var}(X) = \sigma^{2}$$

Data

100A

Ying Nian Wu

Discrete

Continuous

Sampling $f(x) \rightarrow x_1, ..., x_i, ..., x_n$ (e.g., random number generator \rightarrow .22, .31, .92, .45, ...)

$$y_i = ax_i + b.$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \frac{1}{n} \sum_{i=1}^{n} x_i + b = a\bar{x} + b.$$

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\bar{y})^2 = \frac{1}{n}\sum_{i=1}^{n}(ax_i+b-(a\bar{x}+b))^2 = \frac{1}{n}\sum_{i=1}^{n}a^2(x_i-\bar{x})^2.$$

Change of density under linear transformation

100A

Ying Nian Wi

Discrete

Continuous

Change of variable $X \sim f(x), Y = aX + b \ (a > 0). \ Y \sim g(y).$

Space warping, stretching or squeezing.

Normal or Gaussian

100A

Ying Nian Wu

Discrete

Normal or Gaussian

100A

Ying Nian Wu

Discrete

Continuous

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

(we now use f(x) to denote the density of X.)

 $P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(-2 \le Z \le 2) = 95\%.$

67/67