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STATS 100A: RANDOM VARIABLES

Ying Nian Wu

Department of Statistics
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Some pictures are taken from the internet.
Credits belong to original authors.
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Random variables

Connection to events:
Randomly sample a person ω from a population Ω.

X(ω): gender of ω, Ω → {0, 1}.
Y (ω): height of ω, Ω → R+.
A = {ω : X(ω) = 1}. P (A) = P (X = 1). Discrete.
B = {ω : Y (ω) > 6}. P (B) = P (Y > 6). Continuous.
We shall study random variables more systematically.
ω ∈ Ω equally likely, but X(ω) and Y (ω) are not necessarily
equally likely.
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Discrete random variable

Randomly sample a person ω from a population Ω of N people.

X(ω): eye color of person ω, Ω → {1(blue), 2(brown), 3, 4}.
N(x) = number of people with eye color x.
Probability mass function, probability distribution, law:

X ∼ p(x) = P (X = x) =
N(x)

N
.

x 1 2 3 4

p(x) p(1) p(2) p(3) p(4)

number N(1) N(2) N(3) N(4)
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Discrete random variable

Randomly sample a person ω from a population Ω of N people.

X(ω): number of siblings of person ω, Ω → {0, 1, 2, ...}.
N(x) = number of people with x siblings.
Probability mass function, probability distribution, law:

X ∼ p(x) = P (X = x) =
N(x)

N
.

x 0 1 2 3 ...

p(x) p(0) p(1) p(2) p(3) ...

number N(0) N(1) N(2) N(3) ...
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Population average

N(x) = number of people with x siblings.

X ∼ p(x) = P (X = x) =
N(x)

N
.

x 0 1 2 3 ...

p(x) p(0) p(1) p(2) p(3) ...

number N(0) N(1) N(2) N(3) ...

Population average:

E(X) =
1

N

∑
ω∈Ω

X(ω) =
1

N

∑
x

xN(x) =
∑
x

x
N(x)

N
=

∑
x

xp(x).
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Long run average: Nn reasoning

Randomly sample a person ω from a population Ω of N people.
Each person ω carries a number X(ω).

Population average:

µ = E(X) =
∑
x

xp(x).

Repeat random sampling n times independently →
Nn equally likely sequences: Ωn.
X̄(sequence) = average of the sequence.
X̄ → µ in probability as n→ ∞.
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Law of large number: Nn reasoning

Repeat random sampling n times independently →
Nn equally likely sequences: Ωn.
X̄(sequence) = average of the sequence.
A = {sequence : |X̄(sequence)− µ| ≤ .01}: representative
sequences.
P (A) = |A|

Nn → 1 as n→ ∞.
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Die rolling

Randomly throw a point into [0, 1], which bin (1, 2, ..., 6) it
falls into?
ω ∈ Ω = [0, 1], population of points (tiny balls), equally likely.
X(ω) is the bin that ω belongs to, not necessarily equally likely.
Probability mass function, probability distribution, law:

X ∼ p(x) = P (X = x) = length of bin x.

Population average (each point or tiny ball ω carries a number
X(ω)).

E(X) =
∑
x

xp(x).
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Long run average

Independent repetitions:
p(x): how often X = x in the long run (e.g., throw 1 million
points into [0, 1]).

E(X) =
∑
x

xp(x).
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Expectation of function

Function of random variable

E(h(X)) =
∑
x

h(x)p(x).
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Utility

Utility, reward, value

E(h(X)) =
∑
x

h(x)p(x).

Offer 1: E[h(X)] = $100× 1 = $100.
Offer 2: E[h(X)] = $0× 1

2 + $150× 1
2 = $75.
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Variance

E(X) =
∑
x

xp(x) = µ(= $0× 1/2 + $200× 1/2 = $100)

Var(X) = E[(X − µ)2] =
∑
x

(x− µ)2p(x) = σ2

= ($0− $100)2 × 1/2 + ($200− $100)2 × 1/2

= $210, 000.

Long run average of squared deviation from the mean.

SD(X) =
√

Var(X) = σ(= $100).

Extent of variation from the mean.



100A

Ying Nian Wu

Discrete

Continuous

13/67

Variance

E(h(X)) =
∑
x

h(x)p(x).

Var[h(X)] = E[(h(X)− E(h(X)))2].
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Data

E(X) =
∑
x

xp(x) = µ.

Var(X) = E[(X − µ)2] =
∑
x

(x− µ)2p(x) = σ2.

Long run average of squared deviation from the mean.
Sampling p(x) → x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

s2 =
1

n

n∑
i=1

(xi − x̄)2 → Var(X) = σ2
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Linear transformation

E(h(X)) =
∑
x

h(x)p(x).

Y = aX + b.

E(Y ) = E(aX + b) =
∑
x

(ax+ b)p(x)

=
∑
x

axp(x) +
∑
x

bp(x)

= a
∑
x

xp(x) + b
∑
x

p(x) = aE(X) + b.
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Data

Sampling p(x) → x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

yi = axi + b.

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

ȳ =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.
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Linear transformation

Var(h(X)) = E[(h(X)− E(h(X)))2].

Y = aX + b.

E(Y ) = aE(X) + b.

Var(Y ) = E[(Y − E(Y ))2].

Var(aX + b) = E[((aX + b)− E(aX + b))2]

= E[(aX + b− (aE(X) + b))2]

= E[(a(X − E(X)))2]

= a2E[(X − E(X))2] = a2Var(X).
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Data

Sampling p(x) → x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

yi = axi + b.

ȳ =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.

1

n

n∑
i=1

(yi− ȳ)2 =
1

n

n∑
i=1

(axi+b−(ax̄+b))2 =
1

n

n∑
i=1

a2(xi−x̄)2.
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Short-cut for variance

µ = E(X).

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E(X2)− 2µE(X) + µ2

= E(X2)− µ2 = E(X2)− [E(X)]2.

E[h(X) + g(X)] =
∑
x

[h(x) + g(x)]p(x)

=
∑
x

h(x)p(x) +
∑
x

g(x)p(x)

= E[h(X)] + E[g(X)].
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Bernoulli

Flip a coin (probability of head is p)
Z ∼ Bernoulli(p)
Z ∈ {0, 1}, P (Z = 1) = p and P (Z = 0) = 1− p.

E(Z) = 0× (1− p) + 1× p = p.

Var(Z) = (0− p)2 × (1− p) + (1− p)2 × p

= p(1− p)[p+ (1− p)] = p(1− p).

E(Z2) = p.

Var(Z) = E(Z2)− E(Z)2 = p− p2 = p(1− p).
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Binomial

Flip a coin (probability of head is p) n times independently.
X = number of heads.
X ∼ Binomial(n, p)

P (X = k) =

(
n

k

)
pk(1− p)n−k.

(
n
k

)
is the number of sequences with exactly k heads.

pk(1− p)n−k is the probability of each sequence with k heads.
e.g., n = 3,
P (X = 2) = P (HHT ) + P (HTH) + P (THH) = 3p2(1− p).
p = 1/2, we have P (X = k) =

(
n
k

)
/2n.
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Recall independence

Definition 1:
P (A|B) = P (A).

Definition 2:
P (A ∩B) = P (A)P (B).
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Binomial formula

(H + T )n =

n∑
k=0

(
n

k

)
HkTn−k.

n = 1, H + T .
n = 2, (H + T )(H + T ) = HH +HT + TH + TT .
n = 3, above ×(H + T ) =
HHH+HHT+HTH+HTT+THH+THT+TTH+TTT .
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Binomial and Bernoulli

X = Z1 + Z2 + ...+ Zn,

where Zi ∼ Bernoulli(p) independently.

E(X) =

n∑
i=1

E(Zi) = np.

Due to independence of Zi, i = 1, ..., n,

Var(X) =

n∑
i=1

Var(Zi) = np(1− p).
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Frequency

X/n is the frequency of heads.

E(X/n) = E(X)/n = p.

Var(X/n) = Var(X)/n2 = p(1− p)/n.

Var(X/n) → 0 as n→ ∞.

X/n→ p, in probability

Law of large number
Probability = long run frequency
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Recall survey sampling

Population of N people, M males.
Repeat random sampling n times independently

→ Nn equally likely sequences.
For a sequence ω, X(ω) = number of males in ω.
Am = {ω : X(ω) = m}: sequences with m males.
|Am| =

(
n
m

)
Mm(N −M)n−m. n blanks. Choose m blanks for

males, the rest n−m blanks for females. Each male blank has
M choices. Each female blank has N −M choices.
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Survey sampling

Population of N people. M males.
Sample a person, p =M/N = Prob(male).

P (Am) = P (X = m) =
|Am|
|Ωn|

=

(
n
m

)
Mm(N −M)n−m

Nn

=

(
n

m

)
pm(1− p)n−m.

Most sequences are representative, X/n ≈M/N = p.
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Binomial distribution

Flip a coin n times independently, p = probability of head.

p(x) = P (X = x) =

(
n

x

)
px(1− p)n−x

x = 0, 1, ..., n.

p(x): probability mass function, probability distribution.

Survey sampling, poll before election, p =M/N .
Monte Carlo, p = π/4.
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Law of large number: Nn reasoning

Survey sampling, poll before election, p =M/N .

Among all Nn sequences in the hyper-population of sequences
Ωn, let

A =

{
ω :

∣∣∣∣X(ω)

n
− p

∣∣∣∣ ≤ .01

}
.

consist of representative sequences.

P (A) =
|A|
|Ωn|

=
∑

x∈[n(p−.01),n(p+.01)]

p(x) → 1,

X/n→ p in probability.
E(X/n) = p: average of X(ω)/n in Ωn.
Var(X/n) = p(1− p)/n→ 0: variance of X(ω)/n in Ωn.
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Binomial expectation

E(X) =

n∑
x=0

xp(x) =

n∑
k=0

kP (X = k)

=

n∑
k=0

k
n!

k!(n− k)!
pk(1− p)n−k

=

n∑
k=1

np
(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

=

n′∑
k′=0

np

(
n′

k′

)
pk

′
(1− p)n

′−k′ = np.

k′ = k − 1; n′ = n− 1.
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Binomial variance

E(X(X − 1)) =

n∑
x=0

x(x− 1)p(x) =

n∑
k=0

k(k − 1)P (X = k)

=

n∑
k=0

k(k − 1)
n!

k!(n− k)!
pk(1− p)n−k

=

n∑
k=2

n(n− 1)p2
(n− 2)!

(k − 2)!(n− k)!
pk−2(1− p)n−k

=

n′∑
k′=0

n(n− 1)p2
(
n′

k′

)
pk

′
(1− p)n

′−k′

= n(n− 1)p2.

k′ = k − 2; n′ = n− 2.
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Binomial variance

E(X) = np.

E(X(X − 1)) = E(X2)− E(X) = n(n− 1)p2.

Var(X) = E(X2)− E(X)2

= n(n− 1)p2 + np− (np)2

= np− np2 = np(1− p).
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Geometric

T ∼ Geometric(p)
T is the number of flips to get the first head, if we flip a coin
independently and the probability of getting a head in each flip
is p.

P (T = k) = (1− p)k−1p.

e.g., T = 1, H
T = 2, TH.
T = 3, TTH.
T = 4, TTTH.
Waiting time.



100A

Ying Nian Wu

Discrete

Continuous

34/67

Geometric expectation

T ∼ Geometric(p)

E(T ) =

∞∑
k=1

kP (T = k)

=

∞∑
k=1

kqk−1p = p

∞∑
k=1

d

dq
qk

= p
d

dq

∞∑
k=1

qk = p
d

dq

(
1

1− q
− 1

)
= p

1

(1− q)2
=

1

p
.
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Geometric series

(1− a)(1 + a+ ...+ am) = 1 + a+ ...+ am

−(a+ a2 + ...+ am + am+1)

= 1− am+1.

1 + a+ ...+ am =
1− am+1

1− a
.

If |a| < 1,
am+1 → 0, as m→ ∞.



100A

Ying Nian Wu

Discrete

Continuous

36/67

Quantum bit

state vector = α|0⟩+ β|1⟩.
state vector rotates over time.
squared length = |α|2 + |β|2 = 1 under rotation.
observer: p(0) = |α|2, p(1) = |β|2.

Schrodinger cat: P(alive) = (1/
√
2)2 = 1/2.
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Continuous random variable: density

Randomly sample a person ω from a population Ω of N people.
X(ω): height of person ω.
Density or distribution of the N points.

N(x) = number of people in (x, x+∆x) (6 ft, 6 ft 1 inch),
precision = 1 inch.
Probability density function, probability distribution, law:

X ∼ f(x) =
P (X ∈ (x, x+∆x))

∆x
=
N(x)/N

∆x
.

Mathematical idealization: N ≈ ∞.
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Population scatterplot and histogram

Discretize x-axis into equally spaced bins (x, x+∆x), e.g., (6
ft, 6 ft 1 inch), precision = 1 inch.

P (X ∈ (x, x+∆x)) =
N(x)

N
= f(x)∆x.

f(x): height of bin (x, x+∆x). f(x)∆x: area.∑
x

N(x)

N
=

∑
x

f(x)∆x→
∫
f(x)dx = 1.
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Region under curve

Randomly throw a point ω into the region Ω below curve f(x).
Ω: population of points (tiny squares or balls).
Let X = X(ω) be the horizontal coordinate of point ω.

P (X ∈ (x, x+∆x)) = f(x)∆x.

P (X ∈ (a, b)) =
∑

x∈(a,b)

f(x)∆x→
∫ b

a
f(x)dx.
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Independent repetitions, sample scatterplot and
histogram

Repeat n times, collapse to x-axis, histogram.
Nn reasoning:
sample scatterplot (random) ≈ population scatterplot (fixed),
sample histogram (random) ≈ population histogram (fixed).
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Point cloud

Electron orbits around nucleus: wrong conception
Electron cloud, probability density function, f(x)
Wave function ψ(x), evolves over time.
Observer: f(x) = |ψ(x)|2.
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Population

Electron cloud, heat map, prob density

Population of N equally likely possibilities.
Mathematical idealization: N ≈ ∞.
Prob density = prob mass in the cell / volume of cell.
Observer: f(x) = |ψ(x)|2.
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Cumulative density function

F (x) = P (X ≤ x) =

∫ x

−∞
f(x)dx.

SAT score x→ percentile F (x).
Percentage of people below x.
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Area and slope

Area:
F (x+∆x)− F (x) = f(x)∆x.

Slope:

F ′(x) =
F (x+∆x)− F (x)

∆x
= f(x).

Notation:

F ′(x) =
dF (x)

dx
=

d

dx
F (x) = f(x).

dF (x) = F ′(x)dx = f(x)dx
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Expectation

Recall discrete
P (X = x) = p(x).

E(X) =
∑

xP (X = x) =
∑

xp(x).

Continuous

P (X ∈ (x, x+∆x)) = f(x)∆x.

E(X) =
∑

xP (X ∈ (x, x+∆x)) =
∑

xf(x)∆x→
∫
xf(x)dx.

Population average, long run average, center.
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Population average

Population Ω of N people. X(ω).
N(x): number of people in (x, x+∆x).

E(X) =
1

N

∑
ω

X(ω) =
1

N

∑
x

xN(x)

=
∑
x

x
N(x)

N
=

∑
xP (X ∈ (x, x+∆x))

=
∑

xf(x)∆x→
∫
xf(x)dx.
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Expectation of function

Recall discrete
P (X = x) = p(x).

E[h(X)] =
∑

h(x)P (X = x) =
∑

h(x)p(x).

Continuous

P (X ∈ (x, x+∆x)) = f(x)∆x.

E[h(X)] =
∑

h(x)P (X ∈ (x, x+∆x))

=
∑

h(x)f(x)∆x→
∫
h(x)f(x)dx.
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Data, long run average

f(x) → x1, ..., xi, ..., xn.
n(x) = number of points in (x, x+∆x).

x̄ =
1

n

n∑
i=1

xi =
1

n

∑
x

xn(x) =
∑
x

x
n(x)

n

→
∑

xP (X ∈ (x, x+∆x))

=
∑

xf(x)∆x→
∫
xf(x)dx = E(X).

Same logic for E(h(X)).
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Variance

Continuous

P (X ∈ (x, x+∆x)) = f(x)∆x.

E(X) =

∫
xf(x)dx = µ.

Var(X) = E[(X − µ)2] =

∫
(x− µ)2f(x)dx.

Var[h(X)] = E[(h(X)− E(h(X)))2].

Fluctuation, volatility, spread.
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Uniform

U ∼ Uniform[0, 1], i.e., the density of U is
f(u) = 1 for u ∈ [0, 1] (or f(u) = 1/(b− a) if u ∈ [a, b]),
f(u) = 0 otherwise.

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

u

y

P (U ∈ (u, u+∆u)) = f(u)∆u = ∆u.
Imagine 1 million points distributed uniformly in [0, 1].
Number of points in (u, u+∆u) is ∆u million.
e.g., Number of points in (.3, .31) is .01 million.
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Uniform

F (u) = P (U ≤ u) =


0 0 < u
u 0 ≤ u ≤ 1
1 u > 1

F (u): proportion of points below u.

E(U) =

∫ 1

0
uf(u)du =

1

2
.

E(U2) =

∫ 1

0
u2f(u)du =

1

3
.

Var(U) = E(U2)− (E(U))2 =
1

3
− 1

4
=

1

12
.
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Pseudo-random number generator

Linear congruential method
Start from an integer X0, and iterate

Xt+1 = aXt + b modM.

Output Ut = Xt/M . e.g., a = 75, b = 0, and M = 231 − 1.
mod: divide and take the remainder, e.g., 7 = 2 mod 5.
e.g., a = 7, b = 1, M = 5, X0 = 1, then
X1 = 1× 7 + 1 mod 5 = 3.
X2 = 3× 7 + 1 mod 5 = 2.
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Exponential

0 1 2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

t

y

T ∼ Exponential(λ),
f(t) = λe−λt for t ≥ 0,
f(t) = 0 for t < 0.
P (T ∈ (t, t+∆t)) = λe−λt∆t.
Imagine 1 million particles, mark the times when they decay.
1 million points on real line. Their distribution is exponential.
Number of points in (t, t+∆t) is λe−λt∆t million.
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Exponential
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F (t) =

∫ t

0
f(t)dt =

∫ t

0
λe−λtdt

= −e−λt|t0 = 1− e−λt.

F (t): proportion of points below t
Half-life: F (thalf) = P (T ≤ thalf) = 1/2.
1 million particles, by half life, half million will have decayed.
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Exponential expectation

E(T ) =

∫ ∞

0
tλe−λtdt

= −
∫ ∞

0
tde−λt

= −(te−λt|∞0 −
∫ ∞

0
e−λtdt)

= −(0− 0 +
1

λ
e−λt|∞0 ) =

1

λ
.
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Integral by parts

d

dx
u(x)v(x) = u′(x)v(x) + u(x)v′(x).

duv = udv + vdu.∫
[u′(x)v(x) + u(x)v′(x)]dx = u(x)v(x).∫

u(x)v′(x)dx = u(x)v(x)−
∫
v(x)u′(x)dx.∫

udv = uv −
∫
vdu.
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Integral by parts

∫
udv = uv −

∫
vdu.∫

u(x)v′(x)dx = u(x)v(x)−
∫
v(x)u′(x)dx.

du(x)

dx
=

d

dx
u(x) = u′(x); du(x) = u′(x)dx.
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Normal or Gaussian

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z2/2.

∫ 2

−2
f(z)dz = 95%.
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Normal expectation

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z2/2.

E(Z) =

∫ ∞

−∞
z

1√
2π
e−

z2

2 dz

= − 1√
2π
e−

z2

2 |∞−∞

= 0.

The density is symmetric around 0.
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Normal variance

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z2/2.

E(Z2) =

∫ ∞

−∞
z2

1√
2π
e−

z2

2 dz

=
1√
2π

∫ ∞

−∞
(−z)de−

z2

2

=
1√
2π

(−ze−
z2

2 |∞−∞ −
∫ ∞

−∞
e−

z2

2 d(−z))

=

∫ ∞

−∞

1√
2π
e−

z2

2 dz = 1.

Var(Z) = E(Z2)− (E(Z))2 = 1.
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Variance

For X ∼ f(x), let µ = E(X).

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E(X2)− 2µE(X) + µ2

= E(X2)− (E(X))2.

E[r(X) + s(X)] =

∫
[r(x) + s(x)]f(x)dx

=

∫
r(x)f(x)dx+

∫
s(x)f(x)dx

= E[r(X)] + E[s(X)].
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Linear transformation

For X ∼ f(x). Let Y = aX + b.

E(Y ) = E(aX + b) =

∫
(ax+ b)f(x)dx

= a

∫
xf(x)dx+ b

∫
f(x)dx

= aE(X) + b.

Var(Y ) = Var(aX + b) = E[((aX + b)− E(aX + b))2]

= E[(aX + b− (aE(X) + b))2]

= E[a2(X − E(X))2]

= a2E[(X − E(X))2] = a2Var(X).
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Data

Sampling f(x) → x1, ..., xi, ..., xn
(e.g., random number generator → .22, .31, .92, .45, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

s2 =
1

n

n∑
i=1

(xi − x̄)2 → Var(X) = σ2
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Data

Sampling f(x) → x1, ..., xi, ..., xn
(e.g., random number generator → .22, .31, .92, .45, ...)

yi = axi + b.

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

ȳ =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.

1

n

n∑
i=1

(yi− ȳ)2 =
1

n

n∑
i=1

(axi+b−(ax̄+b))2 =
1

n

n∑
i=1

a2(xi−x̄)2.
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Change of density under linear transformation

Change of variable
X ∼ f(x), Y = aX + b (a > 0). Y ∼ g(y).

y = ax+ b, x = (y − b)/a.

P (X ∈ (x, x+∆x)) = P (Y ∈ (y, y +∆y)).

f(x)∆x = g(y)∆y.

g(y) = f(x)
∆x

∆y
= f((y − b)/a))/a.

Space warping, stretching or squeezing.
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Normal or Gaussian

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z2/2.

Let X = µ+ σZ. Z = (X − µ)/σ. Then

E(X) = E(µ+ σZ) = µ+ σE(Z) = µ.

Var(X) = Var(µ+ σZ) = σ2Var(Z) = σ2.

f(z)∆z = g(x)∆x.

g(x) = f(z)
∆z

∆x
= f((x− µ)/σ)/σ

=
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
.
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Normal or Gaussian

Let Z ∼ N(0, 1). Let X = µ+ σZ. Z = (X − µ)/σ.
X ∼ N(µ, σ2),

f(x) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
.

(we now use f(x) to denote the density of X.)

P (µ− 2σ ≤ X ≤ µ+ 2σ) = P (−2 ≤ Z ≤ 2) = 95%.
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