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STATS 100A: Two or More Random Variables

Ying Nian Wu

Department of Statistics
University of California, Los Angeles

Some pictures are taken from the internet.
Credits belong to original authors.
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Discrete distribution

N : number of people in population.
N(x, y): number of people with eye color x and hair color y.
N(x) =

∑
y N(x, y): number of people with eye color x.

N(y) =
∑

xN(x, y): number of people with hair color y.
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Joint and marginal

p(x, y) =
N(x, y)

N
.

p(x) =
N(x)

N
=

∑
y N(x, y)

N
=
∑
y

p(x, y).

p(y) =
N(y)

N
=

∑
xN(x, y)

N
=
∑
x

p(x, y).

Prob = population proportion ≈ sample proportion / frequency
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Conditional

p(x|y) = N(x, y)

N(y)
=

N(x, y)/N

N(y)/N
=

p(x, y)

p(y)
.

p(y|x) = N(x, y)

N(x)
=

N(x, y)/N

N(x)/N
=

p(x, y)

p(x)
.

Prob = population proportion ≈ sample proportion / frequency
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Rules

Marginalization: p(y) =
∑

x p(x, y).
Conditioning: p(x|y) = p(x, y)/p(y).
Chain rule: p(x, y) = p(x)p(y|x).
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Random variables, probability mass functions

Marginal: prior p(x) = P (X = x), marginal p(y) = P (Y = y).
Conditional: forward generation p(y|x) = P (Y = y|X = x)

backward inference p(x|y) = P (X = x|Y = y).
Chain rule: joint p(x, y) = p(x)p(y|x).
Rule of total probability: marginal
p(y) =

∑
x p(x, y) =

∑
x p(x)p(y|x).



100A

Ying Nian Wu

Distribution

Correlation

Limiting

7/70

Generative Pre-trained Transformer (GPT)

x = (x1, ..., xTx) (e.g., “Can you write a poem?”)
y = (y1, ..., yTy) (e.g., “Certainly. Below is the poem...”)

p(y|x) =
∏Ty

t=1 p(yt|y<t, x).
Learn from training data (x(i), y(i), i = 1, ..., n) by maximizing

1

n

n∑
i=1

log pθ(y
(i)|x(i)) = 1

n

n∑
i=1

∑
t

log pθ(y
(i)
t |y(i)<t, x

(i)).

memorize and generalize (interpolation).
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Bayes rule

P (A|B) =
P (A ∩B)

P (B)
.

Bayes rule: backward inference, back tracing, posterior

p(x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

=
p(x, y)

p(y)
=

p(x)p(y|x)∑
x′ p(x′)p(y|x′)

.
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Expectation

E[h(X,Y )] =
∑
x,y

h(x, y)p(x, y).

Population average or long run average.

1

N

∑
x,y

h(x, y)N(x, y) =
∑
x,y

h(x, y)
N(x, y)

N

=
∑
x,y

h(x, y)p(x, y) = E[h(X,Y )].
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Expectation

E(X) =
∑
x,y

xp(x, y) =
∑
x

x
∑
y

p(x, y) =
∑
x

xp(x).

same for E[h(X)].

Var(h(X,Y )) = E[(h(X,Y )− E[h(X,Y )])2].
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Two continuous random variables

X = height, Y = weight.

f(x, y) =
P (X ∈ (x, x+∆x), Y ∈ (y, y +∆y))

∆x∆y
=

N(x, y)/N

∆x∆y
.

density = probability / size
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Probability density function
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Marginal

density = prob / size

f(x) =
P (X ∈ (x, x+∆x))

∆x
=

N(x)/N

∆x

=

∑
y N(x, y)/N

∆x
=

∑
y f(x, y)∆x∆y

∆x
=

∫
f(x, y)dy.

f(y) =

∫
f(x, y)dx.
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Joint and marginal densities

Sample points under the surface, collapse on the plane.
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Conditional density

density = prob / size

f(y|x) =
P (Y ∈ (y, y +∆y) | X ∈ (x, x+∆x))

∆y

=
N(x, y)/N(x)

∆y
=

N(x, y)/N

(N(x)/N)∆y

=
f(x, y)∆x∆y

f(x)∆x∆y
=

f(x, y)

f(x)
.

f(x|y) = f(x, y)/f(y).
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Conditional density
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Rules

Marginalization: f(y) =
∫
f(x, y)dx.

Normalization (conditioning): f(x|y) = f(x, y)/f(y).
Factorization (chain rule): f(x, y) = f(x)f(y|x).
f(y|x): prediction. f(x|y): inference.
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Denoising Diffusion Probability Model

x0: clean image.
xt = xt−1 + et, et: small noise
Forward noising q(xt|xt−1), t = 1, ..., T . xT : big noise.
Backward denoising p(xt−1|xt).
Learn from training data (x

(i)
0 , i = 1, ..., n) by maximizing

1

n

n∑
i=1

1∑
t=T

log pθ(x
(i)
t−1|x

(i)
t ).

memorize and generalize (interpolation).
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Expectation

If (X,Y ) ∼ p(x, y), then

E(h(X,Y )) =
∑
x

∑
y

h(x, y)p(x, y).

If (X,Y ) ∼ f(x, y), then

E(h(X,Y )) =

∫ ∫
h(x, y)f(x, y)dxdy.

Var(h(X,Y )) = E[(h(X,Y )− E[h(X,Y )])2].
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Expectation

Population average or long run average of h(X,Y ).

1

n

n∑
i=1

h(Xi, Yi) =
1

n

∑
cells

h(x, y)nf(x, y)∆x∆y

→
∫ ∫

h(x, y)f(x, y)dxdy.
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Conditional expectation and variance

Recall E(Y ) =
∫
yf(y)dy.

h(x) = E[Y |X = x] =

∫
yf(y|x)dy.

Regression, prediction.

Var(Y |X = x) = E[(Y−h(X))2|X = x] =

∫
(y−h(x))2f(y|x)dy.
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Bivariate Normal

X ∼ N(0, 1),

Y = ρX + ϵ; ϵ ∼ N(0, 1− ρ2), (|ρ| ≤ 1).

ϵ is independent of X. Given X = x, Y = ρx+ ϵ.



100A

Ying Nian Wu

Distribution

Correlation

Limiting

23/70

Bivariate Normal

The distribution of points within a vertical slice at x.

E(Y |X = x) = E(ρx+ ϵ) = ρx.

Regression towards the mean (ρ < 1), e.g., son’s height given
father’s height.

Var(Y |X = x) = Var(ρx+ ϵ) = Var(ϵ) = 1− ρ2.

[Y |X = x] ∼ N(ρx, 1− ρ2).
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Bivariate Normal

f(x, y) = f(x)f(y|x)

=
1√
2π

exp

(
−x2

2

)
1√

2π(1− ρ2)
exp

(
−(y − ρx)2

2(1− ρ2)

)
=

1

2π
√

1− ρ2
exp

[
− 1

2(1− ρ2)
(x2 + y2 − 2ρxy)

]
.

symmetric in (x, y)



100A

Ying Nian Wu

Distribution

Correlation

Limiting

25/70

Covariance

Let µX = E(X), µY = E(Y ), we define the covariance

Cov(X,Y ) = E[(X − µX)(Y − µY )].

It is defined for both discrete and continuous random variables.
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Covariance

(Xi, Yi) ∼ f(x, y), i = 1, ..., n.

X̄ =
1

n

n∑
i=1

Xi; Ȳ =
1

n

n∑
i=1

Yi.

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).
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Covariance

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).

I, III: (Xi − X̄)(Yi − Ȳ ) > 0.
II, IV: (Xi − X̄)(Yi − Ȳ ) < 0.
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Covariance

Cov(X,Y ) = E[(X − µX)(Y − µY )]

= E[XY − µXY −XµY + µXµY ]

= E(XY )− µXE(Y )− µY E(X) + µXµY

= E(XY )− µXµY

= E(XY )− E(X)E(Y ).

Clearly, Cov(X,X) = Var(X) and Cov(Y, Y ) = Var(Y ).
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Linearity

Cov(aX + b, cY + d)

= E[(aX + b− E(aX + b))(cY + d− E(cY + d))]

= E[a(X − E(X))c(Y − E(Y ))] = acCov(X,Y ).

Covariance depends on units (meter/foot, kilogram/pound).

Cov(X + Y,Z) = E[(X + Y − E(X + Y ))(Z − E(Z))]

= E[(X − E(X) + Y − E(Y ))(Z − E(Z))]

= E[(X − E(X))(Z − E(Z))] + E[(Y − E(Y ))(Z − E(Z))]

= Cov(X,Z) + Cov(Y,Z).
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Correlation

Standardize: X → (X − µX)/σX , Y → (Y − µY )/σY .

E
[
X − µX

σX

]
=

E(X)− µX

σX
= 0; Var

[
X − µX

σX

]
=

Var(X)

σ2
X

= 1.

Cov

(
X − µX

σX
,
Y − µY

σY

)
=

Cov(X,Y )√
Var(X)

√
Var(Y )

= Corr(X,Y ).
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Correlation

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
.

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).

Var(X)
.
=

1

n

n∑
i=1

(Xi − X̄)2; Var(Y )
.
=

1

n

n∑
i=1

(Yi − Ȳ )2.

Corr(X,Y )
.
=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
.
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Correlation

Centralize: X̃i = Xi − X̄; Ỹi = Yi − Ȳ .

Corr(X,Y )
.
=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

=

∑n
i=1 X̃iỸi√∑n

i=1 X̃
2
i

√∑n
i=1 Ỹ

2
i

.
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Correlation

Corr(X,Y ) =

∑n
i=1 X̃iỸi√∑n

i=1 X̃
2
i

√∑n
i=1 Ỹ

2
i

=
⟨X,Y⟩
∥X∥∥Y∥

= cos θ.

1

n
⟨X,Y⟩ = 1

n

n∑
i=1

X̃iỸi =
1

n

n∑
i=1

(Xi−X̄)(Yi−Ȳ )
.
= Cov(X,Y ).

1

n
∥X∥2 = 1

n

n∑
i=1

X̃2
i =

1

n

n∑
i=1

(Xi − X̄)2
.
= Var(X).

1

n
∥Y∥2 = 1

n

n∑
i=1

Ỹ 2
i =

1

n

n∑
i=1

(Yi − Ȳ )2
.
= Var(Y ).
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Correlation and regression

Strength of linear relationship:

∥e∥2

∥Y∥2
=

∑
i e

2
i∑

i(Yi − Ȳ )2
= sin2 θ = 1− cos2 θ = 1− ρ2.

∥βX∥
∥Y∥

= cos θ = ρ; β = ρ
∥Y∥
∥X∥

= ρ
σY
σX

.
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Bivariate normal

Xi ∼ N(0, 1),

Yi = ρXi + ϵi; ϵi ∼ N(0, 1− ρ2), i = 1, ..., n.

µX = µY = 0, σX = σY = 1.

∥e∥2

∥Y∥2
= 1− ρ2.

β = ρ
∥Y∥
∥X∥

= ρ
σY
σX

= ρ.
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Correlation and regression
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Correlation and regression
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Correlation and regression
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Correlation and regression
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Correlation and regression

Regression line:
Ŷ − Ȳ = β1(X − X̄).

Ŷ = β1X + (Ȳ − β1X̄) = β1X + β0.

Multiple regression:

Ŷ = β0 + β1X1 + β2X2 + ...+ βpXp.
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Deep learning: non-linear regression

Perceptron

Rectified Linear Unit (ReLU(a) = max(0, a)):

y = max

(
0,
∑
i

wixi + b

)
.
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Deep learning: multi-layer perceptron

Each node = Linear combination of nodes at layer below∑
iwixi, and then ReLU max(0,

∑
iwixi − θ).

hl = max (0,Wlhl−1 + bl) .

hl: embedding, encoding, representation, thought vector.
Wl: weight matrix. bl: bias vector.
Piecewise linear mapping from input to output
Weights can be learned from training data .
Learned weights can be used for testing
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Deep learning: GPT

Embed: word → vector
Compute: vectors operated by learned matrices
Unembed: vector → probabilities for next word
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Independence

P (A ∩B) = P (A)P (B).
p(x, y) = pX(x)pY (y); p(y|x) = pY (y).
f(x, y) = fX(x)fY (y); f(y|x) = fY (y).

Cov(X,Y ) = E[(X − µX)(Y − µY )]

=
∑
x

∑
y

(x− µX)(y − µY )p(x, y)

=
∑
x

∑
y

(x− µX)(y − µY )pX(x)pY (y)

=
∑
x

(x− µX)pX(x)
∑
y

(y − µY )pY (y)

=

(∑
x

xpX(x)− µX

)(∑
y

ypY (y)− µY

)
= 0.
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Correlation
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Correlation

Let X be a uniform distribution over [−1, 1]. Let Y = X2.
Then X and Y are not independent.
However, E(XY ) = E(X3) = 0, and E(X) = 0. Thus
Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0.
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Bivariate normal

X ∼ N(0, 1),

Y = ρX + ϵ; ϵ ∼ N(0, 1− ρ2),

E(Y ) = E(ρX + ϵ) = 0.

ϵ and X are independent.

Var(Y ) = Var(ρX + ϵ) = ρ2Var(X) + Var(ϵ) = 1.

Cov(X,Y ) = Cov(X, ρX+ ϵ) = ρCov(X,X)+Cov(X, ϵ) = ρ.
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Variance of sum

E(X + Y ) =
∑

x

∑
y(x+ y)p(x, y) =∑

x

∑
y xp(x, y) +

∑
x

∑
y yp(x, y) = E(X) + E(Y ).

Var(X + Y ) = E[((X + Y )− µX+Y )
2]

= E[((X − µX) + (Y − µY ))
2]

= E[(X − µX)2 + (Y − µY )
2 + 2(X − µX)(Y − µY )]

= E[(X − µX)2] + E[(Y − µY )
2] + 2E[(X − µX)(Y − µY )]

= Var(X) + Var(Y ) + 2Cov(X,Y ).

If X and Y are independent, then Cov(X,Y ) = 0, and

Var(X + Y ) = Var(X) + Var(Y ).
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Variance of sum
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Variance of sum
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Average of iid

X1, X2, ..., Xn ∼ f(x) independently.
independent and identically distributed, iid

x̄, n = 1 x̄, n = 2 x̄, large n

x1\x2 small large

small small medium

large medium large

Variance becomes smaller, distribution becomes smoother.
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Average of iid

x1\x2 small large

small small medium

large medium large
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Average of iid
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Sum and average of iid

Xi ∼ f(x), i = 1, ..., n, iid: independent and identically
distributed.

S =

n∑
i=1

Xi. X̄ =
S

n
.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

E(S) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) = nµ.

Var(S) = Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) = nσ2.

E(X̄) =
E(S)
n

= µ.

Var(X̄) =
Var(S)

n2
=

nσ2

n2
=

σ2

n
.
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Monte Carlo method

Want to compute I =
∫
a(x)dx. Key equation:

I =

∫
a(x)dx =

∫
a(x)

p(x)
p(x)dx = Ep

[
a(X)

p(X)

]
= Ep[h(X)],

where p(x) is probability density function, and
h(x) = a(x)/p(x).
Sample Xi ∼ p(x), i = 1, ..., n, iid. Approximate I by

Î =
1

n

n∑
i=1

h(Xi).

E[Î] = E[h(X)] = I.

Var[Î] = Var(h(X))/n.
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Law of large number

E(X̄) =
E(S)
n

= µ.

Var(X̄) =
Var(S)

n2
=

nσ2

n2
=

σ2

n
→ 0.

X̄ → µ, in probability.

P (|X̄ − µ| < ϵ) → 1, ∀ϵ > 0.

Average → expectation.
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Law of large number

Special case:

X =

n∑
i=1

Zi, Zi ∼ Bernoulli(p) iid.

E(X) = np; Var(X) = np(1− p).

E(X/n) = p; Var(X/n) = p(1− p)/n → 0.

X/n → p, in probability.

Frequency → probability.
X/n is average of Zi. Probability is expectation of Zi.
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Law of large number

Special case:

Keep flipping a fair coin, frequency → 1/2.
Intuition: most of 2n sequences have frequencies close to
1/2.
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Survey sampling: Nn reasoning

Ω1: Population of N people.
Each person a ∈ Ω1, X(a) = height.
µ = E(X) = population average height.
Repeat random sampling n times independently

→ Nn equally likely sequences: Ωn.
For a sequence ω ∈ Ωn, X̄(ω) = sequence average.
A = {ω : |X̄(ω)− µ| ≤ .01}: representative sequences.

P (A) = |A|
|Ωn| → 1 as n → ∞.
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Cube

Special case: Xi ∼ Uniform[0, 1] = Ω1, iid, i = 1, ..., n.

X̄ =

∑n
i=1Xi

n
→ E(Xi) = 1/2.

P (|X̄ − 1/2| < .01) → 1.

Intuition: a sequence (X1, ..., Xi, ..., Xn) is a random point in
Ωn = [0, 1]n, n-dimensional unit cube.
A = {(x1, ..., xi, ..., xn) : |x̄− 1/2| < .01} is the central
diagonal piece.
P (A) is the volume of A. P (A) → 1.
The volume of the central diagonal piece is almost the same as
the volume of the whole n-dimensional unit cube Ω.
Most of the points in Ω belong to A. Concentration of
measure (volume).
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Cube

.
x̄, n = 1 x̄, n = 2 x̄, n = 3
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Statistical physics

Most of the points in Ω belong to A. Concentration of
measure.
Suppose (x1, ..., xi, ..., xn) describes a physical system, e.g.,
n = 1023 molecules.
It evolves deterministically over time, by traversing with Ω.
Ergodic: it traverses every point in Ω with equal number of
visits in the long run.
At any random moment, (xi, ..., xi, ..., xn) ∼ Unif(Ω).
Then most likely it will be in A, with fixed statistical properties
(e.g., temperature, pressure, magnetism).
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Central limit theorem

Xi ∼ f(x), i = 1, ..., n, iid. E(Xi) = µ, Var(Xi) = σ2.

E(X̄ − µ) = 0; Var(X̄ − µ) =
σ2

n
.

X̄ − µ → 0 in probability.
Magnify: Yn =

√
n(X̄ − µ).

E(Yn) = E[
√
n(X̄ − µ)] = 0.

Var(Yn) = Var[
√
n(X̄ − µ)] = (

√
n)2

σ2

n
= σ2.

Central limit theorem: Yn =
√
n(X̄ − µ) → N(0, σ2) in

distribution.

P (Yn =
√
n(X̄ − µ) ∈ [a, b]) →

∫ b

a

1√
2πσ2

e−
y2

2σ2 dy,

regardless of the original distribution of Xi, or whether Xi is
discrete or continuous.
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Central limit theorem

Xi ∼ f(x), i = 1, ..., n, iid. E(Xi) = µ, Var(Xi) = σ2.

S =

n∑
i=1

Xi; X̄ =
S

n
.

E(S) = nµ,Var(S) = nσ2; E(X̄) = µ,Var(X̄) = σ2/n.

Normalization = (random variable - mean)/standard deviation.

Zn =

√
n(X̄ − µ)

σ
=

S − nµ√
nσ

=
X̄ − µ

σ/
√
n
.

Central limit theorem: Zn → N(0, 1) in distribution.

P (Zn ∈ [a, b]) →
∫ b

a

1√
2π

e−
z2

2 dz,

regardless of the original distribution of Xi, or whether Xi is
discrete or continuous.



100A

Ying Nian Wu

Distribution

Correlation

Limiting

65/70

Coin flipping, random walk, diffusion

X =

n∑
i=1

ϵi, ϵi ∼ Bernoulli(1/2) iid.

X ∼ Binomial(n, 1/2). µ = E(X) = n/2; σ2 = Var(X) = n/4.

P

(
Z =

X − n/2√
n/2

= z

)
.
=

1√
2π

exp

(
−z2

2

)
2√
n
= f(z)∆z.

In general, ϵi can be any discrete or continuous random
variable with E(ϵi) = 0.
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Die rolling

Repeat and plot histogram

S =

n∑
i=1

Xi.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

S ∼ N(nµ, nσ2).
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Population of sequences

6n equally likely sequences → 6n equally likely sums →
histogram.
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Central limit theorem

S =
n∑

i=1

Xi. X̄ = S/n.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

S ∼ N(nµ, nσ2). X̄ ∼ N(µ, σ2/n).



100A

Ying Nian Wu

Distribution

Correlation

Limiting

69/70

Central limit theorem

Universal, regardless of the distribution of each Xi.

S ∼ N(nµ, nσ2). X̄ ∼ N(µ, σ2/n).

Z =
S − nµ√

nσ
=

X̄ − µ

σ/
√
n

∼ N(0, 1).
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Take home message

As long as you can count (and average)
(1) Population of equally likely possibilities
Probability = population proportion
(2) Large sample of repetitions
Frequency (fluctuating) ≈ probability (fixed)
(3) Nn reasoning: hyper-population of sequences (1) → (2).
(a) Probability: population proportion, long run frequency
(b) Expectation: population average, long run average
(c) Conditional: sub-population, when something happens
Forward conditional: cause → effect
Backward conditional: effect → cause
Population migration: cause state → effect state
Continuous: discretize, infinitesimal analysis
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