100A

Ying Nian Wi

Distribution Correlation

Limiting

STATS 100A: Two or More Random Variables

Ying Nian Wu

Department of Statistics University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

Discrete distribution

Distribution Correlation Limiting

N: number of people in population.

N(x, y): number of people with eye color x and hair color y. $N(x) = \sum_{y} N(x, y)$: number of people with eye color x. $N(y) = \sum_{x} N(x, y)$: number of people with hair color y.

Joint and marginal

100A Ying Nian Wi

Distribution Correlation

Limiting

 $\mathsf{Prob} = \mathsf{population}\ \mathsf{proportion}\ \approx \mathsf{sample}\ \mathsf{proportion}\ /\ \mathsf{frequency}_{\scriptscriptstyle 0}$

Conditional

Ying Nian Wu

Distribution Correlation

$$p(x|y) = \frac{N(x,y)}{N(y)} = \frac{N(x,y)/N}{N(y)/N} = \frac{p(x,y)}{p(y)}$$
$$p(y|x) = \frac{N(x,y)}{N(x)} = \frac{N(x,y)/N}{N(x)/N} = \frac{p(x,y)}{p(x)}$$

Statistics Hela

Rules

100A

Ying Nian Wi

Distribution Correlation Limiting

 $\begin{array}{l} \text{Marginalization: } p(y) = \sum_x p(x,y).\\ \text{Conditioning: } p(x|y) = p(x,y)/p(y).\\ \text{Chain rule: } p(x,y) = p(x)p(y|x). \end{array}$

100A

Distribution

Random variables, probability mass functions

Marginal: prior p(x) = P(X = x), marginal p(y) = P(Y = y). **Conditional:** forward generation p(y|x) = P(Y = y|X = x)backward inference p(x|y) = P(X = x|Y = y). **Chain rule:** joint p(x, y) = p(x)p(y|x). **Rule of total probability:** marginal $p(y) = \sum_{x} p(x, y) = \sum_{x} p(x)p(y|x)$.

100A

Generative Pre-trained Transformer (GPT)

 $x = (x_1, ..., x_{T_x})$ (e.g., "Can you write a poem?") $y = (y_1, ..., y_{T_y})$ (e.g., "Certainly. Below is the poem...") $p(y|x) = \prod_{t=1}^{T_y} p(y_t|y_{< t}, x).$ Learn from training data $(x^{(i)}, y^{(i)}, i = 1, ..., n)$ by maximizing

$$\frac{1}{n}\sum_{i=1}^{n}\log p_{\theta}(y^{(i)}|x^{(i)}) = \frac{1}{n}\sum_{i=1}^{n}\sum_{t}\log p_{\theta}(y_{t}^{(i)}|y_{< t}^{(i)}, x^{(i)}).$$

memorize and generalize (interpolation).

Bayes rule

$$p(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
$$= \frac{p(x, y)}{p(y)} = \frac{p(x)p(y|x)}{\sum_{x'} p(x')p(y|x')}.$$

Expectation

Ying Nian Wı

Distribution Correlation Limiting

Population average or long run average.

$$\begin{split} \frac{1}{N}\sum_{x,y}h(x,y)N(x,y) &= \sum_{x,y}h(x,y)\frac{N(x,y)}{N} \\ &= \sum_{x,y}h(x,y)p(x,y) = \mathbb{E}[h(X,Y)]. \end{split}$$

Expectation

eye

x

Distribution Correlation Limiting

y

N(x, y)

 $\operatorname{Var}(h(X,Y)) = \mathbb{E}[(h(X,Y) - \mathbb{E}[h(X,Y)])^2].$

N(x)

 eye^{hair}

x

y

p(x,y)

p(x)

Two continuous random variables

Ying Nian W Distribution Correlation

$$X =$$
height, $Y =$ weight.

$$\begin{split} y + \Delta y & \qquad \qquad N \approx \infty \\ y + \Delta y & \qquad \qquad N(x) \\ xx + \Delta x \\ f(x,y) & = \frac{P(X \in (x, x + \Delta x), Y \in (y, y + \Delta y))}{\Delta x \Delta y} = \frac{N(x, y)/N}{\Delta x \Delta y}. \end{split}$$

$$\begin{aligned} & f(x,y) = \frac{P(X \in (x, x + \Delta x), Y \in (y, y + \Delta y))}{\Delta x \Delta y} = \frac{N(x, y)/N}{\Delta x \Delta y}. \end{aligned}$$

$$\begin{aligned} & \text{density} = \text{probability} \ / \ \text{size} \end{aligned}$$

11/70

Probability density function

1004

ring Man VVI

Distribution Correlation Limiting

Marginal

Ying Nian W Distribution Correlation

Limiting

density = prob / size

$$\begin{split} f(x) &= \frac{P(X \in (x, x + \Delta x))}{\Delta x} = \frac{N(x)/N}{\Delta x} \\ &= \frac{\sum_{y} N(x, y)/N}{\Delta x} = \frac{\sum_{y} f(x, y) \Delta x \Delta y}{\Delta x} = \int f(x, y) dy. \\ f(y) &= \int f(x, y) dx. \end{split}$$

Joint and marginal densities

Distribution Correlation Limiting

Sample points under the surface, collapse on the plane.

Conditional density

Ying Nian W Distribution

100A

Limiting

 $\begin{array}{ll} {\rm density} = {\rm prob} \ / \ {\rm size} \\ f(y|x) & = & \displaystyle \frac{P(Y \in (y,y+\Delta y) \mid X \in (x,x+\Delta x))}{\Delta y} \\ & = & \displaystyle \frac{N(x,y)/N(x)}{\Delta y} = \displaystyle \frac{N(x,y)/N}{(N(x)/N)\Delta y} \\ & = & \displaystyle \frac{f(x,y)\Delta x\Delta y}{f(x)\Delta x\Delta y} = \displaystyle \frac{f(x,y)}{f(x)}. \\ f(x|y) = f(x,y)/f(y). \end{array}$

Conditional density

Ying Nian W Distribution

Correlation

Limiting

Rules

100A Ying Nian Wu

Distribution Correlation Limiting

Marginalization: $f(y) = \int f(x, y)dx$. Normalization (conditioning): f(x|y) = f(x, y)/f(y). Factorization (chain rule): f(x, y) = f(x)f(y|x). f(y|x): prediction. f(x|y): inference.

Denoising Diffusion Probability Model

Ying Nian W Distribution

100A

imiting

 $(\mathbf{x}_T) \longrightarrow \cdots \longrightarrow (\mathbf{x}_t) \xrightarrow[r_{q(\mathbf{x}_{t-1}]}]{r_{q(\mathbf{x}_{t-1})}} (\mathbf{x}_{t-1}) \longrightarrow \cdots \longrightarrow (\mathbf{x}_0)$

 x_0 : clean image. $x_t = x_{t-1} + e_t$, e_t : small noise Forward noising $q(x_t | x_{t-1})$, t = 1, ..., T. x_T : big noise. Backward denoising $p(x_{t-1} | x_t)$. Learn from training data $(x_0^{(i)}, i = 1, ..., n)$ by maximizing

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{t=T}^{1} \log p_{\theta}(x_{t-1}^{(i)} | x_t^{(i)}).$$

memorize and generalize (interpolation).

Expectation

Ying Nian W Distribution Correlation

Limiting

If
$$(X,Y)\sim p(x,y),$$
 then
$$\mathbb{E}(h(X,Y))=\sum_{x}\sum_{y}h(x,y)p(x,y).$$

If $(X,Y)\sim f(x,y),$ then

$$\mathbb{E}(h(X,Y)) = \int \int h(x,y)f(x,y)dxdy.$$
$$\operatorname{Var}(h(X,Y)) = \mathbb{E}[(h(X,Y) - \mathbb{E}[h(X,Y)])^2]$$

.

Expectation

Ying Nian W

Distribution Correlation

Population average or long run average of h(X, Y).

$$\frac{1}{n}\sum_{i=1}^{n}h(X_i,Y_i) = \frac{1}{n}\sum_{\text{cells}}h(x,y)nf(x,y)\Delta x\Delta y$$
$$\rightarrow \int \int h(x,y)f(x,y)dxdy.$$

Conditional expectation and variance

Ying Nian W Distribution Correlation

Recall $\mathbb{E}(Y) = \int y f(y) dy$.

$$h(x) = \mathbb{E}[Y|X = x] = \int yf(y|x)dy.$$

Regression, prediction.

$$\operatorname{Var}(Y|X=x) = \mathbb{E}[(Y-h(X))^2|X=x] = \int (y-h(x))^2 f(y|x) dy.$$

Bivariate Normal

$$\begin{aligned} X &\sim \mathcal{N}(0,1), \\ Y &= \rho X + \epsilon; \ \epsilon &\sim \mathcal{N}(0,1-\rho^2), \ (|\rho| \leq 1). \end{aligned}$$

 ϵ is independent of X. Given $X=x\text{, }Y=\rho x+\epsilon.$

Bivariate Normal

Ying Nian W Distribution Correlation

100A

Limiting

The distribution of points within a vertical slice at x.

$$\mathbb{E}(Y|X=x) = \mathbb{E}(\rho x + \epsilon) = \rho x.$$

Regression towards the mean ($\rho < 1$), e.g., son's height given father's height.

$$\operatorname{Var}(Y|X=x) = \operatorname{Var}(\rho x + \epsilon) = \operatorname{Var}(\epsilon) = 1 - \rho^{2}.$$
$$[Y|X=x] \sim \operatorname{N}(\rho x, 1 - \rho^{2}).$$

Bivariate Normal

$$\begin{aligned} f(x,y) &= f(x)f(y|x) \\ &= \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)\frac{1}{\sqrt{2\pi(1-\rho^2)}}\exp\left(-\frac{(y-\rho x)^2}{2(1-\rho^2)}\right) \\ &= \frac{1}{2\pi\sqrt{1-\rho^2}}\exp\left[-\frac{1}{2(1-\rho^2)}(x^2+y^2-2\rho xy)\right]. \end{aligned}$$

symmetric in (x, y)

100A

Correlation

Covariance

Let $\mu_X = \mathbb{E}(X), \ \mu_Y = \mathbb{E}(Y),$ we define the covariance

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)].$$

It is defined for both discrete and continuous random variables.

Covariance

Ying Nian V Distribution

Limiting

 $(X_i, Y_i) \sim f(x, y), \ i = 1, ..., n.$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i; \ \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

$$\operatorname{Cov}(X,Y) \doteq \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).$$

Covariance

Distribution

Correlation

$$\operatorname{Cov}(X,Y) \doteq \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).$$

I, III:
$$(X_i - \bar{X})(Y_i - \bar{Y}) > 0.$$

II, IV: $(X_i - \bar{X})(Y_i - \bar{Y}) < 0.$

Covariance

Ying Nian W

Distribution

Correlation

$$Cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

= $\mathbb{E}[XY - \mu_XY - X\mu_Y + \mu_X\mu_Y]$
= $\mathbb{E}(XY) - \mu_X\mathbb{E}(Y) - \mu_Y\mathbb{E}(X) + \mu_X\mu_Y$
= $\mathbb{E}(XY) - \mu_X\mu_Y$
= $\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$

Clearly, Cov(X, X) = Var(X) and Cov(Y, Y) = Var(Y).

Linearity

100A Ying Nian W

Distributio

Correlation Limiting

$$Cov(aX + b, cY + d)$$

= $\mathbb{E}[(aX + b - \mathbb{E}(aX + b))(cY + d - \mathbb{E}(cY + d))]$
= $\mathbb{E}[a(X - \mathbb{E}(X))c(Y - \mathbb{E}(Y))] = acCov(X, Y).$

Covariance depends on units (meter/foot, kilogram/pound).

 $Cov(X + Y, Z) = \mathbb{E}[(X + Y - \mathbb{E}(X + Y))(Z - \mathbb{E}(Z))]$ = $\mathbb{E}[(X - \mathbb{E}(X) + Y - \mathbb{E}(Y))(Z - \mathbb{E}(Z))]$

- $= \mathbb{E}[(X \mathbb{E}(X))(Z \mathbb{E}(Z))] + \mathbb{E}[(Y \mathbb{E}(Y))(Z \mathbb{E}(Z))]$
- $= \operatorname{Cov}(X, Z) + \operatorname{Cov}(Y, Z).$

Distribution Correlation

Limiting

Standardize: $X \to (X - \mu_X)/\sigma_X$, $Y \to (Y - \mu_Y)/\sigma_Y$.

$$\mathbb{E}\left[\frac{X-\mu_X}{\sigma_X}\right] = \frac{\mathbb{E}(X)-\mu_X}{\sigma_X} = 0; \text{ Var}\left[\frac{X-\mu_X}{\sigma_X}\right] = \frac{\text{Var}(X)}{\sigma_X^2} = 1$$
$$\text{Cov}\left(\frac{X-\mu_X}{\sigma_X}, \frac{Y-\mu_Y}{\sigma_Y}\right) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}} = \text{Corr}(X,Y).$$

100A

Correlation

Perfect +ve

Low -ve

Hiah -ve

Perfect -ve

Low +ve

Centralize: $\tilde{X}_i = X_i - \bar{X}$; $\tilde{Y}_i = Y_i - \bar{Y}$.

High +ve

$$\operatorname{Corr}(X,Y) \doteq \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \sqrt{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}}$$
$$= \frac{\sum_{i=1}^{n} \tilde{X}_{i} \tilde{Y}_{i}}{\sqrt{\sum_{i=1}^{n} \tilde{X}_{i}^{2}} \sqrt{\sum_{i=1}^{n} \tilde{Y}_{i}^{2}}}.$$

Ying Nian W

Distribution Correlation

Limiting

$$\operatorname{Corr}(X,Y) = \frac{\sum_{i=1}^{n} X_{i}Y_{i}}{\sqrt{\sum_{i=1}^{n} \tilde{X}_{i}^{2}} \sqrt{\sum_{i=1}^{n} \tilde{Y}_{i}^{2}}}$$
$$= \frac{\langle \mathbf{X}, \mathbf{Y} \rangle}{\|\mathbf{X}\| \|\mathbf{Y}\|} = \cos \theta.$$

$$\frac{1}{n}\langle \mathbf{X}, \mathbf{Y} \rangle = \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_i \tilde{Y}_i = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y}) \doteq \operatorname{Cov}(X, Y).$$

$$\frac{1}{n} \|\mathbf{X}\|^2 = \frac{1}{n} \sum_{i=1}^n \tilde{X}_i^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 \doteq \operatorname{Var}(X).$$

$$\frac{1}{n} \|\mathbf{Y}\|^2 = \frac{1}{n} \sum_{i=1}^n \tilde{Y}_i^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2 \doteq \operatorname{Var}(Y).$$

Limiting

Strength of linear relationship:

$$\frac{\|\mathbf{e}\|^2}{\|\mathbf{Y}\|^2} = \frac{\sum_i e_i^2}{\sum_i (Y_i - \bar{Y})^2} = \sin^2 \theta = 1 - \cos^2 \theta = 1 - \rho^2.$$

$$\frac{\|\beta \mathbf{X}\|}{\|\mathbf{Y}\|} = \cos \theta = \rho; \ \beta = \rho \frac{\|\mathbf{Y}\|}{\|\mathbf{X}\|} = \rho \frac{\sigma_Y}{\sigma_X}.$$

Bivariate normal

Ying Nian V Distribution

Correlation

$$X_i \sim \mathcal{N}(0, 1),$$

$$Y_i = \rho X_i + \epsilon_i; \ \epsilon_i \sim \mathcal{N}(0, 1 - \rho^2), \ i = 1, ..., n.$$

$$\mu_X = \mu_Y = 0, \ \sigma_X = \sigma_Y = 1.$$

$$\frac{\|\mathbf{e}\|^2}{\|\mathbf{Y}\|^2} = 1 - \rho^2.$$

$$\beta = \rho \frac{\|\mathbf{Y}\|}{\|\mathbf{X}\|} = \rho \frac{\sigma_Y}{\sigma_X} = \rho.$$

x

x

 $\rho = -0.8$

 \vec{x}

x

14

Ying Nian W

Distribution

Correlation

Relationship between Height and Weight

Regression line:

$$\hat{Y} - \bar{Y} = \beta_1 (X - \bar{X}).$$
$$\hat{Y} = \beta_1 X + (\bar{Y} - \beta_1 \bar{X}) = \beta_1 X + \beta_0.$$

Multiple regression:

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

100A

Deep learning: non-linear regression

Ying Nian Wu Distribution Correlation

Perceptron

Limiting

Rectified Linear Unit (ReLU(a) = max(0, a)):

$$y = \max\left(0, \sum_{i} w_i x_i + b\right)$$

Deep learning: multi-layer perceptron

Ying Nian V Distribution

100A

Correlation

Each node = Linear combination of nodes at layer below $\sum_i w_i x_i$, and then ReLU $\max(0, \sum_i w_i x_i - \theta)$.

 $h_l = \max(0, W_l h_{l-1} + b_l).$

 h_l : embedding, encoding, representation, thought vector. W_l : weight matrix. b_l : bias vector. Piecewise linear mapping from input to output Weights can be learned from training data . Learned weights can be used for testing

100A

Deep learning: GPT

Limiting

The final logits are produced by applying the unembedding. $T(t) = W_{II} x_{-1}$

An MLP layer, m, is run and added to the residual stream. $x_{i+2} \ = \ x_{i+1} \ + \ m(x_{i+1})$

One residual block

Each attention head, h, is run and added to the residual stream.

$$x_{i+1} ~=~ x_i ~+~ {\sum}_{h \in H_i} h(x_i)$$

Token embedding. $x_0 = W_E t$

 $\mathsf{Embed} \colon \mathsf{word} \to \mathsf{vector}$

Compute: vectors operated by learned matrices Unembed: vector \rightarrow probabilities for next word

Independence

 $P(A \cap B) = P(A)P(B).$

100A

Ying Nian Wi

Distributior

Correlation

100A

Correlation Limiting

Let X be a uniform distribution over [-1,1]. Let $Y = X^2$. Then X and Y are not independent. However, $\mathbb{E}(XY) = \mathbb{E}(X^3) = 0$, and $\mathbb{E}(X) = 0$. Thus $\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0$.

Bivariate normal

$$X \sim \mathcal{N}(0, 1),$$

$$Y = \rho X + \epsilon; \ \epsilon \sim \mathcal{N}(0, 1 - \rho^2),$$

$$\mathbb{E}(Y) = \mathbb{E}(\rho X + \epsilon) = 0.$$

 ϵ and X are independent.

$$Var(Y) = Var(\rho X + \epsilon) = \rho^2 Var(X) + Var(\epsilon) = 1.$$
$$Cov(X, Y) = Cov(X, \rho X + \epsilon) = \rho Cov(X, X) + Cov(X, \epsilon) = \rho$$

Variance of sum

100A

Ying Nian W

Distribution Correlation

$$\begin{split} \mathbb{E}(X+Y) &= \sum_{x} \sum_{y} (x+y) p(x,y) = \\ \sum_{x} \sum_{y} x p(x,y) + \sum_{x} \sum_{y} y p(x,y) = \mathbb{E}(X) + \mathbb{E}(Y). \\ & \operatorname{Var}(X+Y) = \mathbb{E}[((X+Y) - \mu_{X+Y})^2] \\ &= \mathbb{E}[((X-\mu_X) + (Y-\mu_Y))^2] \\ &= \mathbb{E}[((X-\mu_X)^2 + (Y-\mu_Y)^2 + 2(X-\mu_X)(Y-\mu_Y)] \\ &= \mathbb{E}[(X-\mu_X)^2] + \mathbb{E}[(Y-\mu_Y)^2] + 2\mathbb{E}[(X-\mu_X)(Y-\mu_Y)] \\ &= \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y). \end{split}$$

If X and Y are independent, then Cov(X, Y) = 0, and

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y).$$

Variance of sum

Ying Nian Wi

Distribution Correlation

Limiting

$$\frac{1}{n} \sum_{i=1}^{n} \tilde{x_i}^2 = Var(X) = \frac{1}{n} |\vec{x}|^2$$

Variance of sum

Average of iid

Variance becomes smaller, distribution becomes smoother.

Average of iid

100A

Distributior

Correlation

Limiting

$x_1 \backslash x_2$	small	large
small	small	medium
large	medium	large

Average of iid

Ying Nian Wi

- Distributio
- Correlation
- Limiting

Sum and average of iid

distributed.

100A

Ying Nian W

Distribution

Limiting

 $X_i \sim f(x), i = 1, ..., n$, iid: independent and identically

Monte Carlo method

Ying Nian V

100A

Correlation

Limiting

$$I = \int a(x)dx = \int \frac{a(x)}{p(x)}p(x)dx = \mathbb{E}_p\left[\frac{a(X)}{p(X)}\right] = \mathbb{E}_p[h(X)],$$

where p(x) is probability density function, and h(x) = a(x)/p(x). Sample $X_i \sim p(x)$, i = 1, ..., n, iid. Approximate I by

$$\hat{I} = \frac{1}{n} \sum_{i=1}^{n} h(X_i).$$

$$\mathbb{E}[\hat{I}] = \mathbb{E}[h(X)] = I.$$
$$\operatorname{Var}[\hat{I}] = \operatorname{Var}(h(X))/n.$$

Law of large number

100A

Distributio

Correlation

Limiting

Average \rightarrow expectation.

Law of large number

Special case:

100A

Ying Nian Wi

Distribution Correlation

Limiting

$$\begin{split} X &= \sum_{i=1}^n Z_i, \ Z_i \sim \text{Bernoulli}(p) \text{ iid.} \\ \mathbb{E}(X) &= np; \ \text{Var}(X) = np(1-p). \\ \mathbb{E}(X/n) &= p; \ \text{Var}(X/n) = p(1-p)/n \to 0. \\ X/n \to p, \text{ in probability.} \end{split}$$

Frequency \rightarrow probability. X/n is average of Z_i . Probability is expectation of Z_i .

Law of large number

Special case:

100A

Ying Nian W

Distribution Correlation

Limiting

Keep flipping a fair coin, frequency $\rightarrow 1/2$. Intuition: most of 2^n sequences have frequencies close to 1/2.

Survey sampling: N^n reasoning

100A

Ying Nian Wi

Distributior Correlation

Limiting

 $\begin{array}{l} \Omega_1 \colon \text{Population of } N \text{ people.} \\ \text{Each person } a \in \Omega_1, \ X(a) = \text{height.} \\ \mu = \mathbb{E}(X) = \text{population average height.} \\ \text{Repeat random sampling } n \text{ times independently} \end{array}$

 $\begin{array}{l} \rightarrow N^n \text{ equally likely sequences: } \Omega_n. \\ \text{For a sequence } \omega \in \Omega_n, \ \bar{X}(\omega) = \text{sequence average.} \\ A = \{\omega : |\bar{X}(\omega) - \mu| \leq .01\}: \text{ representative sequences.} \\ P(A) = \frac{|A|}{|\Omega_n|} \rightarrow 1 \text{ as } n \rightarrow \infty. \end{array}$

Cube

100A

Distribution Correlation Limiting

Special case: $X_i \sim \text{Uniform}[0, 1] = \Omega_1$, iid, i = 1, ..., n.

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \to \mathbb{E}(X_i) = 1/2.$$

$$P(|\bar{X} - 1/2| < .01) \to 1.$$

Intuition: a sequence $(X_1, ..., X_i, ..., X_n)$ is a random point in $\Omega_n = [0, 1]^n$, *n*-dimensional unit cube. $A = \{(x_1, ..., x_i, ..., x_n) : |\bar{x} - 1/2| < .01\}$ is the central diagonal piece.

P(A) is the volume of A. $P(A) \rightarrow 1$.

The volume of the central diagonal piece is almost the same as the volume of the whole n-dimensional unit cube Ω .

Most of the points in Ω belong to A. Concentration of measure (volume).

Cube

Statistical physics

100A

Distribution Correlation Limiting Most of the points in Ω belong to A. Concentration of measure.

Suppose $(x_1,...,x_i,...,x_n)$ describes a physical system, e.g., $n=10^{23}~{\rm molecules}.$

It evolves **deterministically** over time, by traversing with Ω . **Ergodic**: it traverses every point in Ω with equal number of visits in the long run.

At any random moment, $(x_i, ..., x_i, ..., x_n) \sim \text{Unif}(\Omega)$.

Then most likely it will be in A, with fixed statistical properties (e.g., temperature, pressure, magnetism).

Central limit theorem

100A

Ying Nian Wi

Distributior

Limiting

 $X_i \sim f(x), i = 1, ..., n$, iid. $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$.

distribution.

$$P(Y_n = \sqrt{n}(\bar{X} - \mu) \in [a, b]) \rightarrow \int_a^b \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}} dy,$$

regardless of the original distribution of X_i , or whether X_i is discrete or continuous.

Central limit theorem

100A Ying Nian W

Distribution

Limiting

$$X_i \sim f(x), i = 1, ..., n$$
, iid. $\mathbb{E}(X_i) = \mu$, $\operatorname{Var}(X_i) = \sigma^2$.
 $S = \sum_{i=1}^n X_i; \ \bar{X} = \frac{S}{n}$.

$$\mathbb{E}(S) = n\mu, \operatorname{Var}(S) = n\sigma^2; \ \mathbb{E}(\bar{X}) = \mu, \operatorname{Var}(\bar{X}) = \sigma^2/n.$$

Normalization = (random variable - mean)/standard deviation.

$$Z_n = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} = \frac{S - n\mu}{\sqrt{n}\sigma} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}.$$

Central limit theorem: $Z_n \rightarrow N(0,1)$ in distribution.

$$P(Z_n \in [a,b]) \to \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz,$$

Statistics recea

regardless of the original distribution of X_i , or whether X_i is discrete or continuous.

 $P\left(Z = \frac{X - n/2}{\sqrt{n}/2} = z\right) \doteq \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) \frac{2}{\sqrt{n}} = f(z)\Delta z.$

In general, ϵ_i can be any discrete or continuous random variable with $\mathbb{E}(\epsilon_i) = 0$.

Die rolling

Repeat and plot histogram

Population of sequences

histogram.

100A

Ying Nian W

Distributio

Correlation

Limiting

 6^n equally likely sequences $\rightarrow 6^n$ equally likely sums \rightarrow

Central limit theorem

Central limit theorem

Distributio

Limiting

Universal, regardless of the distribution of each X_i .

$$S \sim \mathcal{N}(n\mu, n\sigma^2). \ \bar{X} \sim \mathcal{N}(\mu, \sigma^2/n).$$

$$Z = \frac{S - n\mu}{\sqrt{n\sigma}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

Take home message

100A

Ying Nian Wı

Distribution Correlation Limiting

As long as you can count (and average) (1) Population of equally likely possibilities Probability = population proportion (2) Large sample of repetitions Frequency (fluctuating) \approx probability (fixed) (3) N^n reasoning: hyper-population of sequences $(1) \rightarrow (2)$. (a) **Probability**: population proportion, long run frequency (b) **Expectation**: population average, long run average (c) **Conditional**: sub-population, when something happens **Forward** conditional: cause \rightarrow effect **Backward** conditional: effect \rightarrow cause Population migration: cause state \rightarrow effect state **Continuous**: discretize, infinitesimal analysis