	n	h	Λ
_ <u>1</u>	υ	υ	А

Ying Nian Wi

Process

Transformation

Entropy

STATS 100A: Advanced

Ying Nian Wu

Department of Statistics University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

Stochastic processes

100A

Ying Nian Wu

Process

Transformatior

Entropy

$$\begin{split} T &: \text{ time until decay.} \\ T &\sim \text{Exponential}(\lambda). \\ P(T \in (t, t + \Delta t)) = f(t)\Delta t = \lambda e^{-\lambda t}\Delta t. \end{split}$$

Make a movie

100A

Ying Nian Wu

Process

Transformation

Divide the time into small intervals of length Δt (e.g., 1/24 second, or 1/100 second).

Show a picture at 0, Δt , $2\Delta t$, ... Give an illusion of continuous time process as $\Delta t \rightarrow 0$.

100A

Bank account

Process

Transformation

Divide [0, t] into n small intervals, $\Delta t = t/n$. Interest rate = r. Time 0: \$1. Time Δt : $(1 + r\Delta t)$. Time $2\Delta t$: $(1 + r\Delta t)^2$. Time $3\Delta t$: $(1 + r\Delta t)^3$ Time $t = n\Delta t$: $(1 + r\Delta t)^n$. $\left(1+r\frac{t}{n}\right)^n \to e^{rt},$

as $n \to \infty$ or $\Delta t \to 0$.

Exponential

100A

Bank account

Process

Transformation

Entropy

Divide
$$[0, t]$$
 into n small intervals, $\Delta t = t/n$.
Interest rate $= r$.
 $\left(1 + \frac{1}{n}\right)^n \rightarrow e$.
 $1 + \frac{1}{n} \doteq e^{1/n}$.
 $1 + \Delta x \doteq e^{\Delta x}$.
 $\left(1 + r\frac{t}{n}\right)^n \rightarrow e^{rt}$.
 $(1 + r\Delta t)^{t/\Delta t} \doteq (e^{r\Delta t})^{t/\Delta t} = e^{rt}$

Poisson process

Ying Nian Wu

Process

Transformation

Entropy

Flip a coin within each interval. $p = \lambda \Delta t$ (e.g., $\Delta t = 1$ hour. $\lambda =$ once every 10 year. $\lambda \Delta t = 1/3650 \times 1/24$). Geometric waiting time

$$P(T \in (t, t + \Delta t)) = (1 - \lambda \Delta t)^{t/\Delta t} \lambda \Delta t$$

$$\doteq \left(e^{-\lambda \Delta t} \right)^{t/\Delta t} \lambda \Delta t = e^{-\lambda t} \lambda \Delta t.$$

Exponential distribution

100A Ying Nian Wu

Process

Transformatior

Flip a coin within each interval. $p = \lambda \Delta t$ (e.g., $\Delta t = .001$ second. $\lambda =$ once every minute. $\lambda \Delta t = 1/60 \times .001$). Exponential waiting time

$$\frac{P(T \in (t, t + \Delta t))}{\Delta t} = \lambda e^{-\lambda t}.$$

 $P(T > t) = (1 - \lambda \Delta t)^{t/\Delta t} \doteq (e^{-\lambda \Delta t})^{t/\Delta t} = e^{-\lambda t}.$

Exponential = geometric

1 million particles decay in different period. Each small period is a bin.

Geometric waiting time

We can write $T = \tilde{T}\Delta t$, where $\tilde{T} \sim \text{Geometric}(p = \lambda \Delta t)$. Then

$$\mathbb{E}(T) = \mathbb{E}(\tilde{T})\Delta t = \frac{1}{p}\Delta t = \frac{1}{\lambda\Delta t}\Delta t = 1/\lambda.$$

Poisson distribution

Ying Nian Wu

Process

Transformation

Entropy

Flip a coin within each interval. Let X be the number of heads within [0, t], then $X \sim \text{Binomial}(n = t/\Delta t, p = \lambda \Delta t)$.

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \to \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$\begin{split} \mathbb{E}(X) &= np = (t/\Delta t)(\lambda \Delta t) = \lambda t. \\ \lambda &= \mathbb{E}(X)/t, \text{ rate or intensity.} \end{split}$$

Poisson distribution

100A

Ying Nian Wu

Process

Transformation

Entropy

Diffusion or Brownian motion

100A

Ying Nian Wu

Process

Transformation

Entropy

Dust particle in water

Recall random walk

Number of heads $Y \sim \text{Binomial}(n, 1/2)$, then random walk ends up at X,

$$X = Y - (n - Y) = 2Y - n.$$

$$X = \epsilon_1 + \epsilon_2 + \dots + \epsilon_n.$$

 $\epsilon_i = 1$ or -1 with probability 1/2 each.

Discretize time and space

100A Ying Nian W

Process

Transformation

Entropy

(1) Time: Divide [0, t] into n intervals, $\Delta t = t/n$ (time unit). (2) Space: Within each small time interval, move forward or backward by Δx (space unit). $P(\epsilon_i = 1) = P(\epsilon_i = -1) = 1/2$. ϵ_i are independent.

$$X = \sum_{i=1}^{n} \epsilon_i \Delta x = (Y - (n - Y))\Delta x = (2Y - n)\Delta x.$$

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(\epsilon_i) \Delta x = \mathbb{E}(2Y - n) \Delta x = 0.$$

Diffusion or Brownian motion

100A

Ying Nian Wu

Process

Transformation

Entropy

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(\epsilon_i) \Delta x^2 = n \Delta x^2 = \frac{t}{\Delta t} \Delta x^2.$$
$$\operatorname{Var}(X) = \operatorname{Var}((2Y - n)\Delta x) = 4\operatorname{Var}(Y)\Delta x^2 = n\Delta x^2.$$
$$\Delta x^2 / \Delta t = \sigma^2; \ \Delta x = \sigma \sqrt{\Delta t}; \ \operatorname{Var}(X) = \sigma^2 t.$$
$$\operatorname{velocity} = \Delta x / \Delta t = \sigma / \sqrt{\Delta t} \to \infty.$$

Einstein, σ related to the size of molecules.

Diffusion or Brownian motion

Brownian motion:

$$X_{t+\Delta t} = X_t + \sigma \sqrt{\Delta t} \epsilon_t,$$

Nowhere differentiable. σ : volatility of stock price, basis for option pricing. A drop of milk (millions of particles) diffuses in coffee.

where $\mathbb{E}(\epsilon_t) = 0$, $Var(\epsilon_t) = 1$, and ϵ_t are iid.

100A

Ying Nian Wu

Process Transformat

Central limit theorem D(z = 1) = D(z = 1)

 $P(\epsilon_i = 1) = P(\epsilon_i = -1) = 1/2$. ϵ_i are independent.

$$X = \sum_{i=1}^{n} \epsilon_i \Delta x = (2Y - n)\Delta x \sim \mathcal{N}(0, \sigma^2 t),$$

 $\text{ as }n\rightarrow 0.$

Sum of independent random variables \sim Normal distribution.

100A

Process Transforma

Entropy

$$\begin{split} X &\sim \text{Binomial}(n, 1/2). \ \mu = \mathbb{E}(X) = n/2, \\ \sigma^2 &= \text{Var}(X) = n/4, \ \sigma = SD(X) = \sqrt{n}/2. \\ \text{Let} \\ Z &= \frac{X - \mu}{\sigma} = \frac{X - n/2}{\sqrt{n}/2}, \end{split}$$

then $\mathbb{E}(Z) = 0$, Var(Z) = 1, no matter what n is. Z takes discrete values, with spacing $\Delta z = 1/\sigma = 2/\sqrt{n}$.

$$P(Z \in (a,b)) = \sum_{z \in (a,b)} p(z) \doteq \sum_{z \in (a,b)} f(z)\Delta z \to \int_a^b f(z)dz,$$

where $f(z)=\frac{1}{\sqrt{2\pi}}e^{-z^2/2}$ is the density of ${\rm N}(0,1).$

$$p(z)/\Delta z \to f(z).$$

Proof

100A

Ying Nian Wu

Process

Transformation

Entropy

Step 1:

$$p(0) \doteq \frac{1}{\sqrt{2\pi}} \Delta z.$$

Step 2:

$$\frac{p(z)}{p(0)} \doteq e^{-z^2/2}.$$

 $X = \mu + Z\sigma = n/2 + Z\sqrt{n}/2.$

$$p(0) = P(X = n/2).$$
$$\frac{p(z)}{p(0)} = \frac{P(X = n/2 + z\sqrt{n}/2)}{P(X = n/2)} = \frac{P(X = n/2 + d)}{P(X = n/2)}.$$

Proof

100A

Ying Nian Wi

Process

Transformation

Entropy

$$P(X = k) = \frac{\binom{n}{k}}{2^n} = \frac{n!}{k!(n-k)!2^n},$$

For big n,

$$n! \sim \sqrt{2\pi n} n^n e^{-n},$$

$$P(X = n/2) \sim \frac{n!}{(n/2)!^2 2^n}$$

$$\sim \frac{\sqrt{2\pi n n^n e^{-n}}}{(\sqrt{2\pi (n/2)} (n/2)^{n/2})^2 2^n}$$

$$\sim \frac{1}{\sqrt{2\pi}} \frac{2}{\sqrt{n}}.$$

Proof

Ying Nian V

Process

Transformation

Entropy

Let
$$k = \mu + z\sigma = n/2 + z\sqrt{n}/2 = n/2 + d.$$

$$\frac{P(X = n/2 + d)}{P(X = n/2)} = \frac{\binom{n}{n/2 + d}}{\binom{n}{n/2}}$$

$$= \frac{n!/[(n/2 + d)!(n/2 - d)!]}{n!/[(n/2)!(n/2)!]}$$

$$= \frac{(n/2)!(n/2)!}{(n/2 + d)!(n/2 - d)!}$$

$$= \frac{(n/2)(n/2 - 1)...(n/2 - (d - 1))}{(n/2 + 1)(n/2 + 2)...(n/2 + d)}$$

$$= \frac{1(1 - 2/n)(1 - 2 \times 2/n)...(1 - (d - 1) \times 2/n)}{(1 + 2/n)(1 + 2 \times 2/n)...(1 + d \times 2/n)}$$

$$= \frac{(1 - \delta)(1 - 2\delta)...(1 - (d - 1)\delta)}{(1 + \delta)(1 + 2\delta)...(1 + d\delta)}$$

100A

Proof

 $\begin{array}{lll} \rightarrow & \frac{e^{-\delta}e^{-2\delta}...e^{-(d-1)\delta}}{e^{\delta}e^{2\delta}...e^{d\delta}} \\ = & \frac{e^{-(1+2+...+(d-1))\delta}}{e^{(1+2+...+d)\delta}} \\ = & \frac{e^{-d(d-1)\delta/2}}{e^{d(d+1)\delta/2}} \\ = & e^{-[d(d-1)/2+d(d+1)/2]\delta} = e^{-d^2\delta} \\ = & e^{-(z\sqrt{n}/2)^2(2/n)} = e^{-\frac{z^2}{2}}, \end{array}$

where $\delta = 2/n$, and $d = z\sqrt{n}/2$.

100A

Ying Nian Wu

Process

Transformatior

Entropy

Let
$$X \sim \text{Binomial}(n, p)$$
, sum of independent Bernoulli.
 $\mathbb{E}(X) = np$, $\text{Var}(X) = np(1-p)$.
 $\mathbb{E}(X/n) = p$, $\text{Var}(X/n) = p(1-p)/n$.
Approximately,
 $X \sim \text{N}(np, np(1-p))$.
 $X/n \sim \text{N}(p, p(1-p)/n)$.
e.g., $n = 100, p = 1/2$. $X \sim \text{N}(50, 25)$.
 $P(X \in [50 - 2 \times 5, 50 + 2 \times 5]) = P(X \in [40, 60]) = 95\%$.

 \mathbf{D} : \mathbf{D}

Recall $\sum_{k=40}^{60} {\binom{100}{k}}/{2^{100}} \rightarrow \text{integral}.$

100A

Ying Nian Wu

Process

Transformatior

Entropy

Let
$$X \sim \text{Binomial}(n, p)$$
, sum of independent Bernoulli.
 $\mathbb{E}(X) = np$, $\text{Var}(X) = np(1-p)$.
 $\mathbb{E}(X/n) = p$, $\text{Var}(X/n) = p(1-p)/n$.
Approximately,
 $X \sim \text{N}(np, np(1-p))$.
 $X/n \sim \text{N}(p, p(1-p)/n)$.
e.g., Polling $n = 100, p = .2$. $X/n \sim \text{N}(.2, .04^2)$.
 $P(X/n \in [.2 - 2 \times .04, .2 + 2 \times .04]) = P(X/n \in [.12, .28]) = 95\%$.

100A

Ying Nian Wu

Process

Transformatior

Entropy

Let $X \sim \text{Binomial}(n, p)$, sum of independent Bernoulli. $\mathbb{E}(X) = np$, Var(X) = np(1-p). $\mathbb{E}(X/n) = p$, Var(X/n) = p(1-p)/n. Approximately, $X \sim \text{N}(np, np(1-p))$. $X/n \sim \text{N}(p, p(1-p)/n)$. e.g., Monte Carlo n = 10000, $p = \pi/4$. $4m/n \sim \text{N}(\pi, \pi(4-\pi)/10000)$.

Conditional independence

100A

Ying Nian Wi

Process Transformation Markov: [future | present, past], [child | parent, grandparent] $p(y \vert x, z) = p(y \vert z)$

 $\begin{array}{l} \mbox{Shared cause: [siblings | parent]} \\ p(x,y|z) = p(x|z)p(y|z) \end{array}$

Markov decision process

state s_t , action a_t , reward r_t .

100A

Ying Nian Wu

Process Transformat

Dynamics: $p(s_{t+1} | s_t, a_t)$. Policy: $\pi(a_t | s_t)$. Reward: $p(r_t | s_t, a_t, s_{t+1})$. Return: $R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$. Value: $V(s) = \mathbb{E}[R_t | s_t = s]$, $Q(s, a) = \mathbb{E}[R_t | s_t = s, a_t = a]$. Reinforcement learning: find π to optimize $V(s_0)$. Imagine 1 million people playing out.

Bayes net

Ying Nian W Process

100A

a: Been to Asia; s: Smoking; t: Tuberculosis; l: Lung cancer;b: Bronchitis; d: Short of breath (Dyspnea); x: X-ray.

$$\begin{split} p(a, s, t, l, b, d, x) &= p(a)p(s)p(t|a)p(l|s)p(b|s)p(d|t, l)p(x|b, l), \\ p(l|a, s, d, x) &= \frac{p(l, a, s, d, x)}{p(a, s, d, x)}, \\ p(l, a, s, d, x) &= \sum_{t, b} p(a, s, t, l, b, d, x), \\ p(a, s, d, x) &= \sum_{l} p(l, a, s, d, x). \end{split}$$

Efficient calculation: message passing / belief propagation. 27/49

Linear transformation

100A

Ying Nian Wi

Process

Transformation

Change of variable $X \sim f(x)$, Y = aX + b (a > 0). $Y \sim g(y)$.

$$P(X \in (x, x + \Delta x)) = P(Y \in (y, y + \Delta y))$$
$$f(x)\Delta x = g(y)\Delta y.$$
$$g(y) = f(x)\frac{\Delta x}{\Delta y} = f((y - b)/a))/a.$$

Space warping, stretching or squeezing.

Non-linear transformation

100A

Ying Nian Wu

Process

Transformation

yy = r(x)x $y = r(x), x = r^{-1}(y).$ $P(X \in (x, x + \Delta x)) = P(Y \in (y, y + \Delta y)).$ $f(x)\Delta x = q(y)\Delta y.$ $\Delta u / \Delta x = r'(x).$

Locally linear, space warping.

Space warping

Squeezing or stretching the bins \rightarrow changes the density and histogram.

100A

Non-linear transformation

Order preserving mapping:

$$P(X \le x) = P(Y \le y).$$

$$F(x) = G(y).$$
31/4

Inversion method

Ying Nian Wi

Process

Transformation Entropy

$$\begin{split} &U \sim \text{Unif}[0,1]. \\ &P(U \leq u) = P(X \leq x). \\ &u = F(x), \ x = F^{-1}(u). \\ &\text{Population: } \{x_1, x_2, ..., x_N\} \text{ (ordered).} \\ &\text{Sample } i \sim \text{Uniform}\{1, 2, ..., N\}, \text{ return } x_i. \\ &P(X \leq x_i) = i/N = F(x_i). \\ &U = i/N \sim \text{Uniform}[0,1], \ x_i = F^{-1}(U). \end{split}$$

$$P(U \in (u, u + \Delta u)) = P(X \in (x, x + \Delta x)).$$
$$\Delta u = f(x)\Delta x.$$
$$f(x) = \frac{\Delta u}{\Delta x} = F'(x).$$

Inversion method

100A

Ying Nian Wi

Process

Transformation

Intropy

Suppose we want to generate $X \sim \text{Exponential}(1)$. $F(x) = 1 - e^{-x}$. F(x) = u, i.e., $1 - e^{-x} = u$, $e^{-x} = 1 - u$. $x = -\log(1 - u)$. Generate $U \sim \text{Unif}[0, 1]$. Return $X = -\log(1 - U)$.

100A

Ying Nian Wi

Process

Transformation Entropy

$$X \sim \mathcal{N}(0,1), \ f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

$$Y \sim \mathcal{N}(0,1), \ f(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right).$$

$$X \text{ and } Y \text{ are independent}$$

$$P(X \in (x, x + \Delta x), Y \in (y, y + \Delta y))$$

= $P(X \in (x, x + \Delta x)) \times P(Y \in (y, y + \Delta y)).$
 $f(x, y)\Delta x\Delta y = f(x)\Delta x \times f(y)\Delta y.$
 $f(x, y) = \frac{1}{2\pi} \exp\left(-\frac{x^2 + y^2}{2}\right).$

Process

Transformation Entropy

 $x = r \cos \theta$, $y = r \sin \theta$. Area of ring $R \in (r, r + \Delta r)) = 2\pi r \Delta r$. Count proportion of points in the ring = density × area.

$$P(R \in (r, r + \Delta r)) = \frac{1}{2\pi} \exp\left(-\frac{r^2}{2}\right) 2\pi r \Delta r$$
$$= \exp\left(-\frac{r^2}{2}\right) r \Delta r = \exp\left(-\frac{r^2}{2}\right) d\frac{r^2}{2}.$$

37/49

Process

Transformation Entropy

 $x = r \cos \theta$, $y = r \sin \theta$. Let $t = r^2/2$. $\Delta t = r \Delta r$.

$$P(T \in (t, t + \Delta t)) = P(R \in (r, r + \Delta r)).$$

$$f(t)\Delta t = \exp\left(-\frac{r^2}{2}\right)r\Delta r = \exp(-t)\Delta t.$$

 $T \sim \text{Exponential}(1).$

Non-linear transformation

100A

Ying Nian Wi

Process

Transformation Entropy

 $X \sim f(x), Y = r(X). Y \sim g(y).$

X consists of iid Gaussian N(0, 1) noises.

r is learned from training examples by neural network (deep learning).

Function

100A

Ying Nian Wi

Process

Transformation Entropy

(1) Linear

$$h(x) = ax + b.$$

$$\mathbb{E}[h(X)] = \mathbb{E}(aX + b) = a\mathbb{E}(X) + b = h(\mathbb{E}(X)).$$
(2) Square

$$h(x) = x^{2}.$$

$$\mathbb{E}[h(X)] = \mathbb{E}(X^{2});$$

$$h(\mathbb{E}(X)) = [\mathbb{E}(X)]^{2}.$$

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 \ge 0.$$

Statistics Zicla Question: expectation of function vs function of expectation?

Convex function

100A

Ying Nian Wi

Process

Transformation

Entropy

Supporting line at x_0 touches h(x) at x_0 , but below h(x) at other places.

Jensen inequality

$$\mu = \mathbb{E}(X).$$

$$h(\mu) = a\mu + b.$$

$$h(x) \ge ax + b.$$

$$\mathbb{E}(h(X)) \ge \mathbb{E}(aX+b)$$

= $a\mathbb{E}(X) + b$
= $a\mu + b = h(\mu) = h(\mathbb{E}(X)).$

Jensen inequality

Ying Nian W

Process

Transformation

Entropy

$$\frac{1}{n}\sum_{i=1}^{n}h(x_i) \ge \frac{1}{n}\sum_{i=1}^{n}(ax_i+b)$$
$$= a\frac{1}{n}\sum_{i=1}^{n}x_i+b$$
$$= a\bar{x}+b = h(\bar{x}).$$

100A

Utility

Ying Nian V Process

Transformation Entropy

$$\begin{split} \mu &= \mathbb{E}(X).\\ \text{Offer 1: Get }\$\mu \text{ with }100\% \text{ probability.}\\ \text{Offer 2: Get }\$X \sim f(x), \text{ with }\mathbb{E}(X) = \mu.\\ \text{Utility} &= \text{perceived value of }\$x = h(x).\\ \text{Convex: }\mathbb{E}[h(X)] \geq h(\mu). \text{ Prefer Offer 2, risk taking.}\\ \text{Concave: }\mathbb{E}[h(X)] \leq h(\mu). \text{ Prefer Offer 1, risk averse.}\\ \text{e.g., }h(x) &= -x^2, \text{ variance. } \text{Var}(X) = \mathbb{E}(X^2) - \mu^2. \end{split}$$

Entropy

100A

Ying Nian Wi

Process

Transformation

Entropy

Entropy = expected number of coin flips

$$\mathbb{H}(p) = \mathbb{E}_p[-\log_2 p(X)] = \sum_x (-\log_2 p(x))p(x)$$
$$= 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 3 \times \frac{1}{8} = 1.75 \text{ flips.}$$

46/49

Prefix code

100A

Ying Nian Wu

Process

Transformation

Entropy

x	A	В	C	D
p(x)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$
$-\log_2 p(x)$	1	2	3	3
coin	Н	TH	TTH	TTT
bit	1	01	001	000

e.g, 101100101000 = abacbd

Shortest code: sequence of coin flips, completely random sequence, cannot be compressed.

code length of $x = l(x) = -\log_2 p(x)$. entropy = expected code length: $\mathbb{H}(p) = \mathbb{E}[l(x)]$.

Kullback-Leibler divergence

100A

Ying Nian Wi

Process

Transformation

Entropy

Coding by
$$q(x)$$
:

$$\mathbb{E}_p[-\log_2 q(X)] = \sum_x (-\log_2 q(x))p(x)$$

$$= 3 \times \frac{1}{2} + 3 \times \frac{1}{4} + 2 \times \frac{1}{8} + 1 \times \frac{1}{8} = \frac{21}{8} \text{ flips.}$$

Redundancy: Kullback-Leibler divergence.

$$\mathbb{D}_{\mathrm{KL}}(p||q) = \mathbb{E}_p[-\log q(X)] - \mathbb{E}_p[-\log p(X)]$$
$$= \mathbb{E}_p\left[\log \frac{p(X)}{q(X)}\right] = \sum_x \left(\log \frac{p(x)}{q(x)}\right) p(x) \ge 0.$$

Jensen inequality

100A

Ying Nian Wi

Process

Transformation

Entropy

$$\mathbb{E}_p\left[\frac{q(X)}{p(X)}\right] = \sum_x \left(\frac{q(x)}{p(x)}\right) p(x) = \sum_x q(x) = 1.$$

$$\mathbb{D}_{\mathrm{KL}}(p\|q) = \mathbb{E}_p\left[-\log\frac{q(X)}{p(X)}\right] \ge -\log\mathbb{E}_p\left[\frac{q(X)}{p(X)}\right] = 0.$$