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STATS 100A: Advanced

Ying Nian Wu

Department of Statistics
University of California, Los Angeles

Some pictures are taken from the internet.
Credits belong to original authors.
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Stochastic processes

Particle decay

T : time until decay.
T ∼ Exponential(λ).
P (T ∈ (t, t+∆t)) = f(t)∆t = λe−λt∆t.
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Make a movie

Divide the time into small intervals of length ∆t (e.g., 1/24
second, or 1/100 second).

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Show a picture at 0, ∆t, 2∆t, ...
Give an illusion of continuous time process as ∆t → 0.
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Bank account

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Divide [0, t] into n small intervals, ∆t = t/n.
Interest rate = r.
Time 0: $1.
Time ∆t: $(1 + r∆t).
Time 2∆t: $(1 + r∆t)2.
Time 3∆t: $(1 + r∆t)3.
...
Time t = n∆t: $(1 + r∆t)n.(

1 + r
t

n

)n

→ ert,

as n → ∞ or ∆t → 0.
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Exponential

Bank account

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Divide [0, t] into n small intervals, ∆t = t/n.
Interest rate = r. (

1 +
1

n

)n

→ e.

1 +
1

n

.
= e1/n.

1 + ∆x
.
= e∆x.(

1 + r
t

n

)n

→ ert.

(1 + r∆t)t/∆t .
=

(
er∆t

)t/∆t
= ert.
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Poisson process

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
p = λ∆t (e.g., ∆t = 1 hour. λ = once every 10 year.
λ∆t = 1/3650× 1/24).
Geometric waiting time

P (T ∈ (t, t+∆t)) = (1− λ∆t)t/∆tλ∆t

.
=

(
e−λ∆t

)t/∆t
λ∆t = e−λtλ∆t.
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Exponential distribution

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
p = λ∆t (e.g., ∆t = .001 second. λ = once every minute.
λ∆t = 1/60× .001).
Exponential waiting time

P (T ∈ (t, t+∆t))

∆t
= λe−λt.

P (T > t) = (1− λ∆t)t/∆t .
= (e−λ∆t)t/∆t = e−λt.
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Exponential = geometric

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 
1 million particles decay in different period. Each small period
is a bin.
Geometric waiting time
We can write T = T̃∆t, where T̃ ∼ Geometric(p = λ∆t).
Then

E(T ) = E(T̃ )∆t =
1

p
∆t =

1

λ∆t
∆t = 1/λ.
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Poisson distribution

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
Let X be the number of heads within [0, t], then
X ∼ Binomial(n = t/∆t, p = λ∆t).

P (X = k) =

(
n

k

)
pk(1− p)n−k → (λt)k

k!
e−λt.

E(X) = np = (t/∆t)(λ∆t) = λt.
λ = E(X)/t, rate or intensity.
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Poisson distribution

P (X = k) =
n(n− 1)...(n− k + 1)

k!
pk(1− p)n−k

=
t/∆t(t/∆t− 1)...(t/∆t− k + 1)

k!

× (λ∆t)k(1− λ∆t)t/∆t−k

=
t(t−∆t)(t− 2∆t)...(t− (k − 1)∆t)

k!

× λk(1− λ∆t)t/∆t(1− λ∆t)−k

→ tk

k!
λk(e−λ∆t)t/∆t =

(λt)k

k!
e−λt.
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Diffusion or Brownian motion

Dust particle in water
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Recall random walk

Either go forward or backward by flipping a fair coin.

Number of heads Y ∼ Binomial(n, 1/2), then random walk
ends up at X,

X = Y − (n− Y ) = 2Y − n.

X = ϵ1 + ϵ2 + ...+ ϵn.

ϵi = 1 or −1 with probability 1/2 each.
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Discretize time and space

(1) Time: Divide [0, t] into n intervals, ∆t = t/n (time unit).
(2) Space: Within each small time interval, move forward or
backward by ∆x (space unit).
P (ϵi = 1) = P (ϵi = −1) = 1/2. ϵi are independent.

X =

n∑
i=1

ϵi∆x = (Y − (n− Y ))∆x = (2Y − n)∆x.

E(X) =

n∑
i=1

E(ϵi)∆x = E(2Y − n)∆x = 0.
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Diffusion or Brownian motion

Var(X) =

n∑
i=1

Var(ϵi)∆x2 = n∆x2 =
t

∆t
∆x2.

Var(X) = Var((2Y − n)∆x) = 4Var(Y )∆x2 = n∆x2.

∆x2/∆t = σ2; ∆x = σ
√
∆t; Var(X) = σ2t.

velocity = ∆x/∆t = σ/
√
∆t → ∞.

Einstein, σ related to the size of molecules.
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Diffusion or Brownian motion

Brownian motion:

Xt+∆t = Xt + σ
√
∆tϵt,

where E(ϵt) = 0, Var(ϵt) = 1, and ϵt are iid.
Nowhere differentiable.
σ: volatility of stock price, basis for option pricing.
A drop of milk (millions of particles) diffuses in coffee.
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Normal approximation

Central limit theorem
P (ϵi = 1) = P (ϵi = −1) = 1/2. ϵi are independent.

X =

n∑
i=1

ϵi∆x = (2Y − n)∆x ∼ N(0, σ2t),

as n → 0.
Sum of independent random variables ∼ Normal
distribution.
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Normal approximation

X ∼ Binomial(n, 1/2). µ = E(X) = n/2,
σ2 = Var(X) = n/4, σ = SD(X) =

√
n/2.

Let

Z =
X − µ

σ
=

X − n/2√
n/2

,

then E(Z) = 0, Var(Z) = 1, no matter what n is.
Z takes discrete values, with spacing ∆z = 1/σ = 2/

√
n.

P (Z ∈ (a, b)) =
∑

z∈(a,b)

p(z)
.
=

∑
z∈(a,b)

f(z)∆z →
∫ b

a
f(z)dz,

where f(z) = 1√
2π
e−z2/2 is the density of N(0, 1).

p(z)/∆z → f(z).
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Proof

Step 1:

p(0)
.
=

1√
2π

∆z.

Step 2:
p(z)

p(0)

.
= e−z2/2.

X = µ+ Zσ = n/2 + Z
√
n/2.

p(0) = P (X = n/2).

p(z)

p(0)
=

P (X = n/2 + z
√
n/2)

P (X = n/2)
=

P (X = n/2 + d)

P (X = n/2)
.
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Proof

P (X = k) =

(
n
k

)
2n

=
n!

k!(n− k)!2n
,

For big n,
n! ∼

√
2πnnne−n,

P (X = n/2) ∼ n!

(n/2)!22n

∼
√
2πnnne−n

(
√

2π(n/2)(n/2)n/2)22n

∼ 1√
2π

2√
n
.
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Proof

Let k = µ+ zσ = n/2 + z
√
n/2 = n/2 + d.

P (X = n/2 + d)

P (X = n/2)
=

(
n

n/2+d

)(
n

n/2

)
=

n!/[(n/2 + d)!(n/2− d)!]

n!/[(n/2)!(n/2)!]

=
(n/2)!(n/2)!

(n/2 + d)!(n/2− d)!

=
(n/2)(n/2− 1)...(n/2− (d− 1))

(n/2 + 1)(n/2 + 2)...(n/2 + d)

=
1(1− 2/n)(1− 2× 2/n)...(1− (d− 1)× 2/n)

(1 + 2/n)(1 + 2× 2/n)...(1 + d× 2/n)

=
(1− δ)(1− 2δ)...(1− (d− 1)δ)

(1 + δ)(1 + 2δ)...(1 + dδ)
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Proof

→ e−δe−2δ...e−(d−1)δ

eδe2δ...edδ

=
e−(1+2+...+(d−1))δ

e(1+2+...+d)δ

=
e−d(d−1)δ/2

ed(d+1)δ/2

= e−[d(d−1)/2+d(d+1)/2]δ = e−d2δ

= e−(z
√
n/2)2(2/n) = e−

z2

2 ,

where δ = 2/n, and d = z
√
n/2.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., n = 100, p = 1/2. X ∼ N(50, 25).
P (X ∈ [50− 2× 5, 50 + 2× 5]) = P (X ∈ [40, 60]) = 95%.

Recall
∑60

k=40

(
100
k

)
/2100 → integral.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., Polling n = 100, p = .2. X/n ∼ N(.2, .042).
P (X/n ∈ [.2− 2× .04, .2 + 2× .04]) = P (X/n ∈ [.12, .28]) =
95%.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., Monte Carlo n = 10000, p = π/4.
4m/n ∼ N(π, π(4− π)/10000).



100A

Ying Nian Wu

Process

Transformation

Entropy

25/49

Conditional independence

Markov: [future | present, past], [child | parent, grandparent]
p(y|x, z) = p(y|z)

Shared cause: [siblings | parent]
p(x, y|z) = p(x|z)p(y|z)
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Markov decision process

state st, action at, reward rt.

Dynamics: p(st+1 | st, at).
Policy: π(at | st).
Reward: p(rt|st, at, st+1).
Return: Rt = rt + γrt+1 + γ2rt+2 + ....
Value: V (s) = E[Rt | st = s], Q(s, a) = E[Rt | st = s, at = a].
Reinforcement learning: find π to optimize V (s0).
Imagine 1 million people playing out.
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Bayes net

a: Been to Asia; s: Smoking; t: Tuberculosis; l: Lung cancer;
b: Bronchitis; d: Short of breath (Dyspnea); x: X-ray.

p(a, s, t, l, b, d, x) = p(a)p(s)p(t|a)p(l|s)p(b|s)p(d|t, l)p(x|b, l),

p(l|a, s, d, x) = p(l, a, s, d, x)

p(a, s, d, x)
,

p(l, a, s, d, x) =
∑
t,b

p(a, s, t, l, b, d, x),

p(a, s, d, x) =
∑
l

p(l, a, s, d, x).

Efficient calculation: message passing / belief propagation.
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Linear transformation

Change of variable
X ∼ f(x), Y = aX + b (a > 0). Y ∼ g(y).

y = ax+ b, x = (y − b)/a.

P (X ∈ (x, x+∆x)) = P (Y ∈ (y, y +∆y)).

f(x)∆x = g(y)∆y.

g(y) = f(x)
∆x

∆y
= f((y − b)/a))/a.

Space warping, stretching or squeezing.
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Non-linear transformation

X ∼ f(x), Y = r(X), monotone. Y ∼ g(y).

y = r(x), x = r−1(y).

P (X ∈ (x, x+∆x)) = P (Y ∈ (y, y +∆y)).

f(x)∆x = g(y)∆y.

∆y/∆x = r′(x).

Locally linear, space warping.
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Space warping

Squeezing or stretching the bins → changes the density and
histogram.
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Non-linear transformation

X ∼ f(x), Y = r(X), monotone. Y ∼ g(y).

y = r(x), x = r−1(y).

Order preserving mapping:

P (X ≤ x) = P (Y ≤ y).

F (x) = G(y).
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Inversion method

U ∼ Unif[0, 1].
P (U ≤ u) = P (X ≤ x).
u = F (x), x = F−1(u).
Population: {x1, x2, ..., xN} (ordered).
Sample i ∼ Uniform{1, 2, ..., N}, return xi.
P (X ≤ xi) = i/N = F (xi).
U = i/N ∼ Uniform[0, 1], xi = F−1(U).
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Inversion method

U ∼ Unif[0, 1]. X = F−1(U). Then f(x) = F ′(x) is the pdf
of X.

P (U ∈ (u, u+∆u)) = P (X ∈ (x, x+∆x)).

∆u = f(x)∆x.

f(x) =
∆u

∆x
= F ′(x).
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Inversion method

Suppose we want to generate X ∼ Exponential(1).
F (x) = 1− e−x.
F (x) = u, i.e., 1− e−x = u, e−x = 1− u. x = − log(1− u).
Generate U ∼ Unif[0, 1]. Return X = − log(1− U).



100A

Ying Nian Wu

Process

Transformation

Entropy

35/49

Polar method
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Polar method

X ∼ N(0, 1), f(x) = 1√
2π

exp
(
−x2

2

)
.

Y ∼ N(0, 1), f(y) = 1√
2π

exp
(
−y2

2

)
.

X and Y are independent.

P (X ∈ (x, x+∆x), Y ∈ (y, y +∆y))

= P (X ∈ (x, x+∆x))× P (Y ∈ (y, y +∆y)).

f(x, y)∆x∆y = f(x)∆x× f(y)∆y.

f(x, y) =
1

2π
exp

(
−x2 + y2

2

)
.
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Polar method

x = r cos θ, y = r sin θ.
Area of ring R ∈ (r, r +∆r)) = 2πr∆r.
Count proportion of points in the ring = density × area.

P (R ∈ (r, r +∆r)) =
1

2π
exp

(
−r2

2

)
2πr∆r

= exp

(
−r2

2

)
r∆r = exp

(
−r2

2

)
d
r2

2
.
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Polar method

x = r cos θ, y = r sin θ.
Let t = r2/2. ∆t = r∆r.

P (T ∈ (t, t+∆t)) = P (R ∈ (r, r +∆r)).

f(t)∆t = exp

(
−r2

2

)
r∆r = exp(−t)∆t.

T ∼ Exponential(1).
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Polar method

T = − log(1− U1).
R =

√
2T .

θ = 2πU2.
X = R cos θ, Y = R sin θ.
(U1, U2) → (X,Y ).
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Non-linear transformation

X ∼ f(x), Y = r(X). Y ∼ g(y).
X consists of iid Gaussian N(0, 1) noises.
r is learned from training examples by neural network (deep
learning).
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Function

(1) Linear
h(x) = ax+ b.

E[h(X)] = E(aX + b) = aE(X) + b = h(E(X)).

(2) Square
h(x) = x2.

E[h(X)] = E(X2);

h(E(X)) = [E(X)]2.

Var(X) = E(X2)− [E(X)]2 ≥ 0.

Question: expectation of function vs function of expectation?
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Convex function

Upper envelop and supporting lines

Supporting line at x0 touches h(x) at x0, but below h(x) at
other places.
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Jensen inequality

µ = E(X).
h(µ) = aµ+ b.
h(x) ≥ ax+ b.

E(h(X)) ≥ E(aX + b)

= aE(X) + b

= aµ+ b = h(µ) = h(E(X)).
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Jensen inequality

1

n

n∑
i=1

h(xi) ≥
1

n

n∑
i=1

(axi + b)

= a
1

n

n∑
i=1

xi + b

= ax̄+ b = h(x̄).
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Utility

µ = E(X).
Offer 1: Get $µ with 100% probability.
Offer 2: Get $X ∼ f(x), with E(X) = µ.
Utility = perceived value of $x = h(x).
Convex: E[h(X)] ≥ h(µ). Prefer Offer 2, risk taking.
Concave: E[h(X)] ≤ h(µ). Prefer Offer 1, risk averse.
e.g., h(x) = −x2, variance. Var(X) = E(X2)− µ2.
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Entropy

x A B C D

p(x) 1
2

1
4

1
8

1
8

− log2 p(x) 1 2 3 3

coin H TH TTH TTT

Entropy = expected number of coin flips

H(p) = Ep[− log2 p(X)] =
∑
x

(− log2 p(x))p(x)

= 1× 1

2
+ 2× 1

4
+ 3× 1

8
+ 3× 1

8
= 1.75 flips.
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Prefix code

x A B C D

p(x) 1
2

1
4

1
8

1
8

− log2 p(x) 1 2 3 3

coin H TH TTH TTT

bit 1 01 001 000

e.g, 101100101000 = abacbd
Shortest code: sequence of coin flips, completely random
sequence, cannot be compressed.
code length of x = l(x) = − log2 p(x).
entropy = expected code length: H(p) = E[l(x)].
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Kullback-Leibler divergence

x A B C D

p(x) 1
2

1
4

1
8

1
8

− log2 p(x) 1 2 3 3

q(x) 1
8

1
8

1
4

1
2

− log2 q(x) 3 3 2 1

Coding by q(x):

Ep[− log2 q(X)] =
∑
x

(− log2 q(x))p(x)

= 3× 1

2
+ 3× 1

4
+ 2× 1

8
+ 1× 1

8
=

21

8
flips.

Redundancy: Kullback-Leibler divergence.

DKL(p∥q) = Ep[− log q(X)]− Ep[− log p(X)]

= Ep

[
log

p(X)

q(X)

]
=

∑
x

(
log

p(x)

q(x)

)
p(x) ≥ 0.
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Jensen inequality

Ep

[
q(X)

p(X)

]
=

∑
x

(
q(x)

p(x)

)
p(x) =

∑
x

q(x) = 1.

DKL(p∥q) = Ep

[
− log

q(X)

p(X)

]
≥ − logEp

[
q(X)

p(X)

]
= 0.
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