STATS 100A: BASICS & EXAMPLES

Ying Nian Wu

Department of Statistics
University of California, Los Angeles

Some pictures are taken from the internet.

”' ” | Credits belong to original authors.




Sample space

Experiment — outcome — number
Example 1: Roll a die

Sample Point

\Sampte Space

Sample space 2: The set of all the outcomes (or sample
points, elements).
Randomly sample an outcome from the sample space.



Experiment — outcome — number
Example 1: Roll a die

ﬂamplc I’\uinE Event A (has two Sump[c Paints)

Sample Space
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Sample space 2: The set of all the outcomes.

Event A:

(1) A statement about the outcome, e.g., bigger than 4.
(2) A subset of sample space, e.g., {5,6}.



Counting equally likely possibilities

Experiment — outcome — number
Example 1: Roll a die

Sample l’\uinf: Event A (has two Sample Points)

& Sample Space
e
L\_/”\_.J L_ahe &)

Assume the die is fair so that all the outcomes are
equally likely.
Probability: defined on event:

4] 2 1
PA)y =122 2
A=10"6"3

|A| counts the size of A, i.e., the number of elements in A.



Random variable

Experiment — outcome — number
Example 1: Roll a die
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Basics
Sample Point Event A (has two Sample Points)

Sample Space
RO OB OD

k . .
VAN L UL

Random variable: Let X be the number:

1
P(X >4)=-.
3
An event is a math statement about the random variable.
We can either use events or use random variables.
In Parts 2 and 3, we will focus on random variables.



Conditional probability

Experiment — outcome — number
Example 1: Roll a die
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Basics

Samplc l’\uinf: Event A (has two Sump[c Paints)

& Sample Space
R
L;/”\JJ (N2

Conditional probability: Let B be the event that the number
is 6. Given that A happens, what is the probability of B?

1

P(B|A) = -.

(Bl4) = 5

As if we randomly sample a number from A.
As if A is the sample space.



Conditional probability

Experiment — outcome — number
Example 1: Roll a die

Sample l’\uinf: Event A (has two Sample Points)

Sample Space

RO
* e e
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Random variable

1
P(X=6X>4)= .



Relations

Example 1: Roll a die

Sample l’\uinf: Event A (has two Sample Points)

Sample Space

SRR
e al

L‘ = .l L) || LU )
QAL BAR B

Complement
Statement: Not A
Subset: A¢={1,2,3,4}.



Relations

Example 1: Roll a die

A=1{1,23}
B = {3,4,5}
AUB = {1,2,3,4,5}

Venn diagram
Union

Statement: A or B.
Subset: AU B.



Relations

Example 1: Roll a die

A =1{1,2,3,4}
B ={3,4,5,6}
ANB = {3,4}

Intersection
Statement: 4 and B.
Subset: AN B.



Sample space is population

Experiment — outcome — number
Example 2: Sample a random person from a population of 100
Population people, 50 males and 50 females. 30 males are taller than 6 ft,
10 females are taller than 6 ft.

The sample space (2 is the population.

male female

taller than 6 ft 10

30

shorter than 6 ft

50 50



Events as sub-populations

Experiment — outcome — number
Example 2: Let A be the event that the person is male. Let B
Population be the event that the person is taller than 6 feet (or simply the
person is tall). A is the sub-population of males, and B is the
sup-population of tall people.

male female

taller than 6 ft 10
30

shorter than 6 ft

50 50



Probability is population proportion

Experiment — outcome — number
Example 2: A male, B tall.

Population male female
taller than 6 ft 10
30
shorter than 6 ft
50 50
| Al 50
P(A) = = = — =50%.
(4) Q] ~ 100 ¢
IB| 30+ 10
(B) Ie) 100 ¢

Probability = population proportion.



Conditional probability is proportion of

sub-population

Experiment — outcome — number
A Example 2: A male, B tall.

male female
Population taller than 6 ft 10
30
shorter than 6 ft
50 50
|[AnB| 30
P(A|B) = = — ="75%.
Among tall people, what is the proportion of males?
|[ANB| 30
P(B|A) = = — =60%.
B == = 50 ’

Among males, what is the proportion of tall people?
Conditional probability = proportion within
sub-population.



Random variable as a function of outcome

Link between event and random variable.
Example 2: A male, B tall.

Let w € Q be a person. Let X (w) be the gender of w, so that
X(w) =1if wis male, and X (w) = 0 if w is female. Let Y (w)
be the height of w. Then

Population

A={w: X(w)=1}, B={w:Y(w) > 6}.

PA)=P{{w: X(w)=1}) = P(X =1).

P(B) = P({w: Y(w) > 6)) = P(Y > 6).
P(B|A) = P(Y > 6|X = 1), P(A|B) = P(X = 1]V > 6).



Axiom 0

e Equally likely scenario
A real population of people, under purely random sampling
or imagined population of equally likely possibilities

Population

P(A) = “‘él.

Axiom 0.
Can always translate a problem into equally likely setting.



Conditional probability

100A

EAN  Equally likely scenario

Population

ANB

_|ANB| |ANnB|/|Q] P(ANB)

PAIB) =25 = TBa ~  P®)

Physical: sample from B. B defines condition.
Mental: know that B happened, as if sample from B.
Axiom 4 or definition of conditional probability.




Sample space is region
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Region

(0,0,0) (1,0,0)

(1) X is uniform random number in [0, 1].

(2) (X,Y) are two independent random numbers in [0, 1].

(3) (X,Y, Z) are three independent random numbers in [0, 1].
Q =[0,1] or [0,1]? or [0,1]® = set of points.

Region = population of points (uncountably infinite).



Measure

Random point in a region
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Example 3: throwing point into region

1.0]

Region

0.5
*ry?<1

\

0

(5 0" ¥

X and Y are independent uniform random numbers in [0, 1].
(X,Y) is a random point in = [0,1]2.

A={(z,y):2” +y* <1},

py=Al_™

7ﬁ74'

|A| is the size of A, e.g., area (length, volume).



Random variables

Example 3: throwing point into region

1.0] Xyl

05 0 \
Region Xyl \

o 05 10

X and Y are independent uniform random numbers in [0, 1].
(X,Y) is a random point in = [0,1]2.
A={(z,y): 2® +y*> < 1}.

P(X?+Y?<1)=7/4

P(X?*+Y?*=1)=0.

Capital letters for random variables.



Measuring by counting
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Region

Discretization — finite population of tiny squares.
Area = number of tiny squares X area of each tiny square.
Inner measure: fill inside by tiny squares — upper limit.
Outer measure: cover outside by tiny squares — lower limit.
Measurable: inner measure = outer measure.

The collection of all measurable sets, o-algebra.

Integral: area under curve.



Axioms

100A
Probability as measure, i.e., count, length, area, volume ...

Axiom 0: P(A) = % in equally likely scenario.
Axiom 1: P(Q) = 1.
Axiom 2: P(A) > 0.
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Region

Q

@0

Axiom 3: Additivity: If AN B = ¢ (empty), then

P(AUB) = P(A) + P(B).

Axiom 4: P(A|B) = p;;é;})g), assuming P(B) > 0.



Counting repetitions

Region ‘

Throw n points into ). m of them fall into A.

Al m
PA) =+~ —.
(4) o =%
As n — oo, ™t — P(A) in probability.
P(A) can be interpreted as long run frequency.



Fluctuations

Repeat random sampling n times independently.
Throw n points into ). m of them fall into A.
Among all equally likely possibilities, 99.999% are like below,

where m/n is close to P(A).

Region

.00000001% are like below, where m/n are far from P(A).

Can prove P(|™* — P(A)| > €) — 0 for any fixed ¢ > 0.



Monte Carlo

Example 3: 7

Region

Throw n points into €). m of them fall into A.

Al © m
PlA) = — = —~ —.
(4) ] 4 n
Monte Carlo method:
. 4m
T=—:
n

As n — oo, b — P(A) in probability.
P(A) can be interpreted as long run frequency.



Sampling from population

Deterministic method
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L—1—

Region

Sl

Go over all the n = 100 = 10? tiny squares, count inner or
outer measure, i.e., how many (m) fall into A.
3-dimensional? n = 103 tiny cubes.

4-dimensional? n = 10 tiny cells.

10000-dimensional? n = 10°%90 tiny cells.

Monte Carlo: sample n = 1000 points in the hyper-cube.
Count how many (m) fall into A.



Buffon needle

Example 3: 7, buffon needle

N
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S
Region
Lazzarini threw n = 3408 times.
P(A) = m
Monte Carlo method:
.35
T 113

Too accurate. m is random.

For fixed n, m is random. m/n fluctuates around P(A).

As n — oo, b — P(A) in probability, law of large number.
P(A) can be interpreted as long run frequency, how often A
happens in the long run.



Region

X and Y are independent uniform random numbers in [0, 1].
(X,Y) is a random point in = [0, 1]%.
A={(z,y) : x < 1/2}.

A

P(A) = P(X <1/2) = 15, = 1/2



Counting repetitions

Example 3: throwing point into region

Region

X and Y are independent uniform random numbers in [0, 1].
(X,Y) is a random point in = [0,1]2.
B ={(z,y) :x+y <1}

P(B):P(X+Y<1):||%‘:1/2.



Conditional probability

Example 3: throwing point into region

Region

_|AnB| 1/2-1/8
Bl 12
P(X <1/2|X+Y <1).

P(A|B)

= 3/4.

(1) randomly throw a point into B, as if B is the sample space.
Then what is the probability the point falls into A?



Region

_|AnB| 1/2-1/8
Bl 12
PX <1/21X+Y <1).
(2) Consider throwing a lot of points into €.
How often A happens? How often B happens?

When B happens, how often A happens?
Among all the points in B, what is the fraction belongs to A?

P(A|B) = 3/4.



Coin flipping

PN Experiment — outcome — number
Example 4: Coin flipping
(4.1) Flip a coin — head or tail — 1 or 0

(4.2) Flip a coin twice — (head, head), or (head, tail), or (tail,
head) or (tail, tail) — 11 or 10 or 01 or 00

List: .
Tree Diagram:
HH HT TH TT H |HH
H <
Table: < T | HT
H | TH
H T
T
H HH HT
T T
T TH T

The sample space is {HH, HT, TH, TT}



Sample space

VIR Experiment — outcome — number
Example 4: Coin flipping
(4.3) Flip a coin n times — 2™ binary sequences.

start

H T
| 1
e —
H T " T
| | | |
T T — T
H T H T H T H T

AN N N N P P N N
H T H T H T H T H T H T H T H T
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ TTHH TTHT TTTH TTTT
Sample space €: all 2" sequences.
Each w € Q is a sequence.
Randomly pick a sequence from 2" sequences.
Zi(w) = 1 if i-th flip is head; Z;(w) = 0 if i-th flip is tail.



Example 4: Coin flipping
Zi(w) = 1 if i-th flip is head; Z;(w) = 0 if i-th flip is tail.

HHHH, THHH, HTHT, TTHT,
HHHT, HHTT, THHT, THTT,
HHTH, TTHH, HTTH, HTTT,
HTHH, THTH, TTTH, TTTT

Flip a fair coin 4 times independently, let A be the event that

there are 2 heads.
Randomly pick a sequence from 16 sequences.

Al 6 3

A=Aw: Z1(w) + Zo(w) + Z3(w) + Zs(w) = 2}.



Number of heads

Example 4: Coin flipping
Zi(w) = 1 if i-th flip is head; Z;(w) = 0 if i-th flip is tail.

HH HH ahea
HHHT 3hea
HT HH 2hea
HH T H 3hea
T H HH3hea
HHTT 2hea
HT HT 2hea

@R EEFEEES

Let X (w) be the number of heads in the sequence w.
X(w) = Z1(w) + Z2(w) + Z3(w) + Zs(w).
P(Ap) = P{w: X(w) = k}) = P(X = k) = px.
(b, k =0,1,2,3,4) = (1,4,6,4,1)/16.



Probability

Example 4: Coin flipping

HHHH, THHH, HTHT, TTHT,
HHHT, HHTT, THHT, THTT,
HHTH, TTHH, HTTH, HTTT,
HTHH, THTH, TTTH, TTTT

|Ag| = 6.

6] = (3 = 45

4 positions, choose 2 of them to be heads, and the rest are
tails.
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Multiplication: table

Ordered pair: roll a die twice

1 2 3 4 5 6
(1,1) | (1,2) | (1,3) | (1,4) | (1,5} | (1,6)
(2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6)
(3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6)
(4,1) | 4,2) | (43) | (44) | 4,5) | (4,6)
(51) | (52) | (53) | (54) | (55) | (56)
(6,1) | (8,2) | (6,3) | (6,4) | (6,5 | (6,6)

G| B W N

Experiment 1 has ny outcomes. For each outcome of
experiment 1, experiment 2 has no outcomes. The number of
all possible pairs is n1 x no.



Multiplication: tree

Multiplication
Ordered pair: flip a coin and roll a die

Coin Dice Outcomes
1 oemmeeee- (H, 1)
2 - (H 2)

Head 3 - (H 3)
4 eeeeeees (H, 4)
5 - (H 3)
& -mommmeoee- (H, &)
1 e (T, 13
2 s (T, 2)

i i JE (T, 3)
R (T, 4)
R (T, 5)



Multiplication: tree

Multiplication
Ordered triplet

SHoES PANTS  SHIRT

o



Sample space of sequences: coin

Flip a fair coin n times independently.
Sample space €2,: all possible sequences of heads and tails.

Ying Nian Wu

start

-
H T
I I
T ———
H T H T
I | |
T T T T
H T H T H T H T
| I |

N P Py P Py P P P
H T H T H T H T H T H T H T H T
NN AN N N NN N N
HHHH HHHT HHTH HHTT HTHH HTHT HTTH HTTT THHH THHT THTH THTT TTHH TTHT TTTH TTTT

|Q,] = 2™
anﬁlxﬂlx...lezQ?.
Q1: base sample space of flipping the fair coin once.

Q,,: hyper sample space of flipping n times independently.
Population of sequences.



Sample space of sequences: die
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Roll a fair die n times independently.
Sample space (,,: all possible sequences of numbers.

1 2 3 4 5 6
(1Y) ] @2 | @3 | L4 | @5 | (L6)
(20) ] 22) | 23) | 24 | 25 | (26)
30| 62| 63| B4 ]| 65|36
(31 | 42) | @3) | @4 | 45 | (46)
(50 | 52) | (53) | 54 | (55 | (56)
(6,1) | 6,2) | (63) | 64 | (65 | (66)

a|lo|p|lw|n ek

|9, = 6.

anﬁlelx...xm:Q?.

Q1: base sample space of rolling the fair die once.

Q,,: hyper sample space of rolling n times independently.
Population of sequences.



Sample space of sequences: population

Randomly sample a person from a population of N (e.g., 300

BRI million) people.
Repeat random sampling n (e.g., 1000) times independently.
Sample space (,,: all possible sequences of people.

Population and Sample

|| = N™ (e.g., 300m19%0),
Qn:leﬁlx...lez(l’f.

Q1: base sample space, the population of people.

Q.,: hyper sample space, the hyper-population of sequences.
Population of sequences.



Sample space of sequences: region

Randomly sample a point from a region.
Repeat the above n times independently.
Sample space €2,: all possible sequences of points.

Qn:leﬁlx...lezQ?.

Q1: base sample space, unit square [0,1]2.

Q,: hyper sample space, unit hyper-cube [0, 1]%".
(T1,Y1,T2,Y2, .., Tny Yn): @ poInt in Q.
Population of sequences.




Population of sequences

Equally likely outcomes in €21 + independent repetitions
= equally likely sequences in €2,,.

m: number of times A happens.

m fluctuates over all sequences.

Among all equally likely possibilities, 99.999% are like below,
where m/n is close to P(A).




Convergence in probability, concentration of

measure, law of large number

All sequences in €2, are equally likely.
Among all equally likely possibilities, 99.999% are like below,
where m/n is close to P(A).

Can prove P(|™ — P(A)| <.01) = 1 as n — oo.

A representative sequence: |m(sequence)/n — P(A)| < .01.

A non-representative sequence: |m/n — P(A)| > .01.

Among all possible sequences, the proportion of representative
sequences — 1 as n — oo.

(1) Population setting: count the number of sequences.

(2) Region setting: measure the volume of set of sequences.



Permutation

{
1 | 1 |
24233414‘[3241412131312
. |

41413243!4|]|4241f211131221
|

¢

[}
123456 9 10 1112 1314 1516 17 18 16 20 21 22 23 24

n different cards. Choose k of them. Order matters. Number
of different sequences:

Pn,k: = n(n — 1)(7’L —k+ 1) P4’2 =4x3=12
P, ,=nl

How many different ways to permute things.



Combination

n different balls. Choose k of them. Order does NOT matters.
Number of different combinations:

<n) _ Pur n(n—1)..(n—k+1) n!

k)~ R k! TR —k)




Combination

“¥¥* o T

¥ % e 72 22 (27 2R
fET 1T T R T TR T T -
fET TR T T O ERTOT TR

Each combination corresponds to k! permutations.

<n> P _n(n—1)..(n—k+1) n!

k K ! T Kln— k)




Coin flipping

Example 4: Coin flipping

A={w: x(w) =2}

AN AN AN

HHHH, THHH, HTHT, TTHT, VAN ;
HHHT, HHTT, THHT, THTT, oIo

HHTH, TTHH, HTTH, HTTT, HEEE w-1
HTHH, THTH, TTTH, TTTT '

4] = (1) = 52 =5
Do not confuse order of picking blanks with order of coin
flippings.

In general, flip a fair coin n times independently,

P(Ay) = P({w: X(w) = k}) = P(X = k) = &



Survey sampling

Population of N people, M males.
Repeat random sampling n times independently

Ying Nian Wu

Population and Sample

kﬂ ;3 }o

H-eeed BRI

kol

— N™ equally likely sequences.

For a sequence w, X (w) = number of males in w.

A, = {w : X(w) = m}: sequences with m males.

|Ap| = () M™(N — M)"™™. n blanks. Choose m blanks for
males, the rest n — m blanks for females. Each male blank has
M choices. Each female blank has N — M choices.



Survey sampling

Population of N people. M males.
Sample a person, p = M /N = Prob(male).

 pixt =y Am]
P(An) = P(X =m) = (5"

N'!Z

()=

Most sequences are representative, X/n ~ M/N = p.



Binomial distribution, probability mass function

Flip a coin n times independently, p = probability of head.
n €T n—x
) = Px =a) = (") p
rz=0,1,...,n.

p(x): probability mass function, probability distribution.

Population and Sample

Sample

Population

Survey sampling, poll before election, p = M/N.
Monte Carlo, p = /4.



ssssss

Among all N™ sequences in the hyper-population of sequences

Q,,, let
A:{w: ‘X(w)—p‘ S.Ol}.
n

consist of representative sequences.

= o,

Q
€20 z€[n(p—.01),n(p+.01)]

(z € [49,51] (n = 100), [490, 510] (n = 1000), ...)
X/n — p in probability.
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Sample

Right: Population proportion, P(A) = %, normalized

measure, subjective belief or common sense of uncertainty.
Wrong: Long run frequency, P(A) = lim,,_, % under
independent repetitions of the same experiments.

Limit does not always exist nor is the same for any sequence of
repetitions. Independence not defined.

Right: Hyper-population of sequences of repetitions.
Uniform + Independence: all sequences are equally likely.
Proportion of representative sequences within hyper-population
—1asn — oco.



Special case: flip fair coin

p=1/2,or N =2.

HHHH, THHH, HTHT, TTHT,
HHHT, HHTT, THHT, THTT,
HHTH, TTHH, HTTH, HTTT,
HTHH, THTH, TTTH, TTTT

(z)
p(x) = 2% x=0,1,...,n.
Among all 2™ sequences, let
A= {w Xw) _ 1‘ < .01}.
n 2

consist of representative sequences.

P(A) = > G, 1,
z€[n(p—.01),n(p+.01)]
(z € [49,51] (n = 100), [490, 510] (n = 1000), ...)
X/n — 1/2 in probability.




Random walk based on coin flipping

Either go forward or backward by flipping a fair coin.
Walk n steps.

H H dhea
H T 3hea
H H 3hea
T H 3 hea
H H 3hea
T T 2hea
H T 2hea
T H 2hea
H T 2hea
T H 2hea
H H 2hea
T T 1hea
T T 1hea
H T 1hea

sfep n=1
n=2

n=3

T H 1hea
T T 0hea

4H4-d4AT-A4A4ATITTATTTIT

d4d4HdzHd-d4zxAATTTATT
FERERFFREEFTREFRFE

Number of heads X = z, then random walk ends up at
Y=y=xz—(n—z)=2x—n,x=(y+n)/2.

() = P(Y = g) = P(X = 1) = px(a) = \&) — \wrtmy2).



Random walk

Either go forward or backward by flipping a fair coin.

Number of heads X = z, then random walk ends up at
Y=y=xz—(n—z)=2x—n,x=(y+n)/2.



Pascal triangle

Example 4: Coin flipping
Pascal triangle

1
N /

1
1\/\/1
\/\/\/

1
\/\/\/\/

n=0
n=1
n=2
n=3

=4
n=5

H H H H 4heads
H H H T 3heads
H T H H 3heads
H H T H 3heads
T H H H 3heads



Galton board

Example 4: Coin flipping

&
oy
o oy
oooogco
s w
© o o,0 o ©
© o oy,0 o o ©
o o 0,0 © 0o O O
o 0o oy0 o o 0 o o
6 © © oy0 0 0 ©° o ©
© 0o o 06,0 0 0 © 0 0o O
& B9 & w0 o Ri'e @ e s
o

All 2" paths are equally likely (population of trajectories)
Number of paths that end up in z-th bin = (").

X: destination. p(z) = P(X =z) = (})/2".
Drop 1 million balls, how often the balls fall into x-th bin.



Transition probability

Either go forward or backward

Xe =21+ 2y + ... + Zs.
Zy =1 or —1 with probability 1/2 each.

Xir1=Xp + Zya-

P(Xt+1 :a:—|—1|Xt :$) :P(Xt+l =X — 1|Xt ZSL‘) = ]./2



Markov chain

Example 5: Random walk over three states

~

y

With probability 1/2, stay. With probability 1/4, go to either
states.
Kij = P(Xt+1 = _]|Xt = 1,)

AM Markov property: past history before X; does not matter.



Population migration

Example 5: Random walk over three states

Ying Nian Wu -

Markov _/ o _/

With probability 1/2, stay. With probability 1/4, go to either of
the other two states.

Kij = P(Xi41 = j|Xi = 1).

Forward conditional probability, from cause to effect.
Imagine 1 million people migrating. At each step, for each

QM state, half of the people stay, 1/4 go to each of the other two
states. 1 million trajectories.



Markov

With probability 1/2, stay. With probability 1/4, go to either of
the other two states.

Kij = P(Xy1 = j| X, = ).

1/2 1/4 1/4
K= |1/4 1/2 1/4
QM 1/4 1/4 1/2



Markov

gl

Marginal probability

Example 5: Random walk over three states
,@: _‘@

With probability 1/2, stay. With probability 1/4, go to either of
the other two states.

Kij = P(Xiq1 = j| Xy =19).

Imagine 1 million people migrating. p(t)

(2

people (in million) in state ¢ at time ¢.

", p3, ).

is the number of

p® —



Markov

P = P(X; = i)
(1)

Imagine 1 million people migrating. p;

people (in million) in state ¢ at time ¢.

QM p® = (" p pMy.

is the number of



Population migration

Example 5: Random walk over three states

Markov

Number of people in state j at time ¢t + 1 = sum number of
people in state ¢ at time ¢ x fraction of those in ¢ who go to j.



@=(2,22) p@=2, 2, 5 z,%, 3
p® =(1,0,0) P ( 3 (8 i 16) m=(; )

Lsdsds

Markov Stationary
distribution

p§t+1) _ sz(t) Ky,

(t) — ;.

7Tj: E WiKij‘
%

Stationary distribution, arrow of time.



Matrix multiplication

Example 5: Random walk over three states

Markov

ENENENIT FNTNEN

p§t+1) _ Zplgt) Ky,

l | p(t) = p(O)Kt — 7.



Diagonalization and eigen-analysis

ENTSN ENTREN NN I\

Markov

Diagonalization and eigen-analysis: K = PDP~!, D diagonal,
eigenvalues.

Kt=prDP 'PDP .. .PDP ' = PD!PL.

p(t) = p(O)Kt — 7.

QM Largest eigenvalue = 1, 1t = 1.
Second largest eigenvalue < 1, e.g., .99 — 0.



t
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ﬂ'j: E 7T1‘Kij.
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m;: proportion of people who are in page .
Popularity of ¢ depends on the popularities of pages linked to 7.



Conditional

100A

Ying Nian Wu

P(ANB)
P(A|B) = ———=
Markov ( | ) P(B)
(1) Counting population: Randomly sample from subpopulation

B (e.g., males).

(2) Counting repetitions: When B happens, how often A
happens.

Regular prob is conditional prob: P(A) = P(A|Q).

Fixed condition (within the same subpopulation B), conditional
prob behaves like regular prob.

e.g., P(A°)=1— P(A);, P(A°|B) =1— P(A|B).



Chain rule

100A

/\B D

ANB DY
o © ..

Ying Nian Wu

ES

P(ANB)= P(B)P(A|B).
Markov
(1) Counting population: Population proportion of tall males =

proportion of males x proportion of tall among males.

(2) Counting repetitions: B happens 1/2 times. When B
happens, A happens 3/4 times. How often A and B happen
together?

Generalize to chain of multiple events:

P(ANBNC) = P(ANB)P(C|ANB) = P(A)P(B|A)P(C|A, B).



Chain rule:
Hartov P(Xip1=7N Xy =1i) = P(Xy = i) P( X1 = 7| Xy = i)
=K.
Rule of total probability:
P(Xpy1=j) =Y P(Xpy1 =jNX;=1i).

7

=3 Ky

)

Add up probabilities of alternative chains of events.



100A

Ying Nian Wu

Markov t + 1

Marginal: p(z) = P(X¢ = 2), pr41(y) = P(Xig1 = y).
Conditional: Forward p(y|z) = P(Xiy1 = y|X: = ).

x: cause, y: effect. p(y|z): cause — effect, given or learned.
Joint: p(z,y) = P(X; = 2, X141 = v).

Chain rule: p(z,y) = pi(z)p(y|z).

Rule of total probability:

pe+1(y) = 22, p(x,y) = X, pe(x)p(ylz).
Add up probabilities of alternative chains of events.




Disease and symptom

Ying Nian Wu

Example 6: Rare disease example
1% of population has a rare disease.
A random person goes through a test.

If the person has disease, 90% chance test positive.

Reasoning If the person does not have disease, 90% chance test negative.
If tested positive, what is the chance he or she has disease?
P(D) =1%.

Forward: P(+|D) = 90%, P(—|N) = 90%.
Backward: P(D|+) =7

gl



Cause and effect

Example 6: Rare disease example
P(D) =1%.

Forward: from cause to effect.
P(+|D) =90%, P(—|N) = 90%.
Backward: from effect to cause.
P(D|+) =?

o
=z

Reasoning 1

~negative

10(1%) 990 (99%)

P(DI+) = 5755 = 13-
P(alarm | fire) vs P(fire | alarm).



Chain rule, rule of total probability, Bayes rule

Example 6: Rare disease example
P(D) =1%.
P(+|D) =90%, P(—|N) = 90%.

D N
1

— ~negative

Reasoning

10 (1%) 990 (99%)

P(DN+) = P(D)P(+|D) = 1% x 90%.
P(NN+)=P(N)P(+|N) =99% x 10%.
, P(+)=P(DnN+)+P(NN+)=1% x 90% + 99% x 10%.
éM{!Z P(D+) = 2P0 — 00— L



100A

Ying Nian Wu

pw\w\

p(z) u
X
Inf C |
Reasoning "ere"ceC } e cause ﬁl':| t
errec

Marginal: prior p(x) = P(X = z), marginal p(y) = P(Y =y).

Conditional: forward generation p(y|z) = P(Y = y|X = x)
backward inference p(z|y) = P(X = z|Y =y).

Chain rule: joint p(z,y) = p(z)p(y|z).

Rule of total probability: marginal

p(y) =X . p(z,y) = >, p(@)p(y|z).




Bayes rule

Y
* ]
% »)
0 »(@) QV
7 \ e D
ANnB eoe
e lel cause L
e . effect
Reasoning P A ﬁ B
p(ap) = LA0B)

P(B)
Bayes rule: backward inference, back tracing, posterior

P X =2xzY =y)

plzly) = P(X = z|Y =y) = P =)

p(z.y) _ p)p(ylz)
ply) Y p)plyle)




Cause, effect and conditioning

Conditional:
(1) Forward: cause — effect, physical, given. fire — alarm.
(2) Backward: effect — cause, mental, inferred. alarm — fire.
Bayes network, directed acyclic graph, graphic model

Ying Nian Wu

Been to Asia

il

Reasoning

(E—

Tuberculosis Bronchitis

\ )

[Lungcmr ]
— .

Short of Xera
breath v

Conditional independence:

I " ! (1) Sibling nodes are independent given parent node.

/

(2) Child node is independent of grandparents given parent.



Independence

P(A|B) =
Reasoning

P(AN B) = P(B)P(A|B).

Independence
P(A|B) = P(A).

P(AN B) = P(A)P(B).

A and B have nothing to do with each other.



Independence

Definition 1:

P(A|B) = P(A).
p(ylz) = p(y).

Definition 2:
P(AN B) = P(A)P(B).
Reasoning p(':L" y) = p(x)p(y)
0
M F
e | m |
B AnB
No college
degree
AM 50 50 A




Population of sequences

Population and Sample

Ying Nian Wu

Sample a person from population € of N people uniformly.
Reasoning Repeat n times independently.

Q, = { all N™ possible sequences }.

equally likely outcomes in €}y + independent repetitions

= equally likely sequences in €2,,.

Let w = (a1, az,...,an) € Q,, each a; € Q.

P(w) = P(a1)P(as)...P(ap) = % X % X . X & = 7.

Coin flipping: €1 = { head, tail }.
QM Die rolling: Q; = {1,2, ..., 6}.

Uniform random number ©; = [0, 1].



Conditional independence

Markov chain: C - B —+ A Z—-X =Y.

P(A|B,C) = P(A|B).
Reasoning p(ylx, z) = p(y|x).
Future is independent of the past given present.

Immediate cause (parent), remote cause (grandparent).
Meta rule: Insert same condition in a definition or equation.

gl



Conditional independence

Shared cause: C < B — A.

X Y
P(ANC|B) = P(A|B)P(C|B).
p(x,y|z) = p(z]2)p(y|2).

Children given parent.
Meta rule: Insert same condition in a definition or equation.

gl



a: Been to Asia; s: Smoking; t: Tuberculosis; I: Lung cancer;
b: Bronchitis; d: Short of breath (Dyspnea); z: X-ray.

Rl pla, s, t,1,b,d,x) = p(a)p(s)p(t|a)p(l|s)p(b|s)p(d|t, )p(x|b, 1),
p(l7 a’ 57 d’ x)
l d =~ 77 7
p( |a’ S’ ,x) p(a7 S? d’ z‘) ’

p(l,a,s,d, x) —Zpast,l,bd,x),
p(a,s,d,x) Zplasda:

Efficient calculatlon: message passing / belief propagation.



Generative Pre-trained Transformer (GPT)

A sourceTarget
D embedding

Reasoning

x = (x1,...,z7,) (e.g., “Can you write a poem?")
y = (y1,..,yr,) (e.g., “Certainly. Below is the poem...")

T,
pylz) = [1;21 p(yely<t, ).
Learn from training data (z

1o NG 1o ) G) (i
=3 togpe(y V2 = =373 logpe(uy” [y, = 7).
i=1 =1 t

AM memorize and generalize (interpolation).

@) () j=1,...,n) by maximizing



Denoising Diffusion Probability Model

Po(Xe-1]x¢)
Og @ @z —~Cp

(x,lx, 1)

xo: clean image.
T = x4_1 + e, e small noise

Forward noising q(x¢|xi—1), t =1,...,T. xp: big noise.
Backward denoising p(z—1|zy).

Reasoning

Learn from training data (x(()l),i =1,...,n) by maximizing

n 1
- ZZlogpg a:t 1|xt ).

=1 t=T

A“I "!!l memorize and generalize (interpolation).



Take home message

vl  As long as you can count
Count the population (of equally likely outcomes)

Count the repetitions (sequence of outcomes, fluctuation)
Population of sequences of repetitions (equally likely sequences)
Population of trajectories (random walk)

Two things

Reasoning (1) Intuition, visualization and motivation

(2) Precise notation and formula

Accomplished

Most of the important concepts via intuitive examples

Next

Systematic and more in-depth treatments

Random variables and probability functions, expectation
QM Continuous random variables, continuous time processes
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