100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

STATS 100A: BASICS & EXAMPLES

Ying Nian Wu

Department of Statistics University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$\begin{array}{l} \mbox{Experiment} \rightarrow \mbox{outcome} \rightarrow \mbox{number} \\ \mbox{Example 1}: \ \mbox{Roll a die} \end{array}$

Sample space Ω : The set of all the outcomes (or sample points, elements).

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$\begin{array}{l} \text{Experiment} \rightarrow \text{outcome} \rightarrow \text{number} \\ \text{Example 1: Roll a die} \end{array}$

Sample space Ω : The set of all the outcomes. **Event** *A*:

- (1) A statement about the outcome, e.g., bigger than 4.
- (2) A subset of sample space, e.g., $\{5, 6\}$.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$\begin{array}{l} \mbox{Experiment} \rightarrow \mbox{outcome} \rightarrow \mbox{number} \\ \mbox{Example 1: Roll a die} \end{array}$

Probability: defined on event:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{2}{6} = \frac{1}{3}$$

Assume the die is fair so that all the outcomes are **equally likely**. |A| counts the size of A, i.e., the number of elements in A.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$\begin{array}{l} \mbox{Experiment} \rightarrow \mbox{outcome} \rightarrow \mbox{number} \\ \mbox{Example 1: Roll a die} \end{array}$

Random variable: Let X be the number:

$$P(X > 4) = \frac{1}{3}.$$

An event is a math statement about the random variable.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$\begin{array}{l} \mbox{Experiment} \rightarrow \mbox{outcome} \rightarrow \mbox{number} \\ \mbox{Example 1: Roll a die} \end{array}$

Conditional probability: Let B be the event that the number is 6. Given that A happens, what is the probability of B?

$$P(B|A) = \frac{1}{2}.$$

As if we randomly sample a number from A. As if A is the sample space.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$\begin{array}{l} \mbox{Experiment} \rightarrow \mbox{outcome} \rightarrow \mbox{number} \\ \mbox{Example 1: Roll a die} \end{array}$

Random variable

$$P(X = 6|X > 4) = \frac{1}{2}.$$

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Example 1: Roll a die

Complement

 $\begin{array}{l} \mbox{Statement: Not A} \\ \mbox{Subset: $A^c = \{1,2,3,4\}.$} \end{array}$

Example 1: Roll a die

100A

Ying Nian Wı

Basics

Population

- Area
- Coin
- Random wall
- Reasoning

Union Statement: A or B. Subset: $A \cup B$.

Example 1: Roll a die

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random wall

Reasoning

Intersection Statement: A and B. Subset: $A \cap B$.

100A

Ying Nian Wı

Basics

Population

Area

Coin

Random walk

Reasoning

$\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

Example 2: Sample a random person from a population of 100 people, 50 males and 50 females. 30 males are taller than 6 ft, 10 females are taller than 6 ft. The sample space Ω is the whole population.

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

$\textbf{Experiment} \rightarrow \textbf{outcome} \rightarrow \textbf{number}$

Example 2: Let A be the event that the person is male. Let B be the event that the person is taller than 6 feet (or simply the person is tall). A is the sub-population of males, and B is the sup-population of tall people.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Experiment \rightarrow **outcome** \rightarrow **number Example 2**: *A* male, *B* tall.

$$P(B) = \frac{|\Omega|}{|\Omega|} = \frac{30 + 10}{100} = 40\%.$$

Probability = population proportion.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Experiment \rightarrow **outcome** \rightarrow **number Example 2**: *A* male, *B* tall.

Among tall people, what is the proportion of males?

$$P(B|A) = \frac{|A \cap B|}{|A|} = \frac{30}{50} = 60\%.$$

Among males, what is the proportion of tall people? Conditional probability = proportion within sub-population.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Example 2: A male, B tall.

Let $\omega \in \Omega$ be a person. Let $X(\omega)$ be the gender of ω , so that $X(\omega) = 1$ if ω is male, and $X(\omega) = 0$ if ω is female. Let $Y(\omega)$ be the height of ω . Then

$$\begin{split} A &= \{\omega : X(\omega) = 1\}, \ B = \{\omega : Y(\omega) > 6\}.\\ P(A) &= P(\{\omega : X(\omega) = 1\}) = P(X = 1).\\ P(B) &= P(\{\omega : Y(\omega) > 6\}) = P(Y > 6).\\ P(B|A) &= P(Y > 6|X = 1), \ P(A|B) = P(X = 1|Y > 6). \end{split}$$

Link between event and random variable.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$$P(A) = \frac{|A|}{|\Omega|}.$$

Axiom 0.

Can always translate a problem into equally likely setting.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Equally likely scenario

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{|A \cap B|/|\Omega|}{|B|/|\Omega|} = \frac{P(A \cap B)}{P(B)}.$$

As if B is the sample space. Axiom 4 Or definition of conditional probability.

- (1) X is uniform random number in [0, 1].
- (2) (X, Y) are two independent random numbers in [0, 1].
 (3) (X, Y, Z) are three independent random numbers in [0, 1].
 - 18/

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Random point Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1]. (X, Y) is a random point in $\Omega = [0, 1]^2$. $A = \{(x, y) : x^2 + y^2 \le 1\}.$ $P(A) = \frac{|A|}{|\Omega|} = \frac{\pi}{4}.$

100A

Basics

Population

Area

Coin

Random walk

Reasoning

Example 3: throwing point into region

X and Y are independent uniform random numbers in [0, 1]. (X,Y) is a random point in $\Omega = [0,1]^2$. $A = \{(x,y) : x^2 + y^2 \le 1\}.$ $P(X^2 + Y^2 \le 1) = \pi/4.$

$$P(X^2 + Y^2 = 1) = 0.$$

Capital letters for random variables.

Measure

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

Inner measure: fill inside by small squares \rightarrow upper limit. **Outer measure**: cover outside by small squares \rightarrow lower limit. **Measurable**: inner measure = outer measure. The collection of all measurable sets, σ -algebra. **Integral**: area under curve.

Axioms

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

Axiom 1: $P(\Omega) = 1$. Axiom 2: $P(A) \ge 0$.

Axiom 3: If $A \cap B = \phi$ (empty), then

$$P(A \cup B) = P(A) + P(B).$$

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Throw n points into Ω . m of them fall into A.

$$P(A) \approx \frac{m}{n}.$$

Monte Carlo method:

$$\hat{\pi} = \frac{4m}{n}.$$

Statistics recta For fixed n, m is random. As $n \to \infty$, $\frac{m}{n} \to P(A)$ in probability. P(A) can be interpreted as long run frequency.

Monte Carlo

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Deterministic method

Go over all the $n = 100 = 10^2$ square cells, count inner or outer measure, i.e., how many (m) fall into A. 3-dimensional? $n = 10^3$ cubic cells. 4-dimensional? $n = 10^4$ cells. 10000-dimensional? $n = 10^{10000}$ cells. **Monte Carlo**: sample n = 1000 points in the hyper-cube. Count how many (m) fall into A.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Example 3: π , buffon needle

Lazzarini threw n = 3408 times.

$$P(A) \approx \frac{m}{n}.$$

Monte Carlo method:

$$\hat{\pi} = \frac{355}{113}$$

Too accurate. m is random.

For fixed n, m is random. m/n fluctuates around P(A). As $n \to \infty, \frac{m}{n} \to P(A)$ in probability, law of large number. P(A) can be interpreted as long run frequency, how often A happens in the long run.

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

X and Y are independent uniform random numbers in [0, 1]. (X,Y) is a random point in $\Omega = [0,1]^2.$ $A = \{(x,y) : x < 1/2\}.$

$$P(A) = P(X < 1/2) = \frac{|A|}{|\Omega|} = 1/2.$$

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

X and Y are independent uniform random numbers in [0, 1]. (X,Y) is a random point in $\Omega=[0,1]^2.$ $B=\{(x,y):x+y<1\}.$

$$P(B) = P(X + Y < 1) = \frac{|B|}{|\Omega|} = 1/2.$$

100A

- Ying Nian Wu
- Basics
- Population
- Area
- Coin
- Random walk
- Reasoning

Example 3: throwing point into region

$$\begin{split} P(A|B) &= \frac{|A \cap B|}{|B|} = \frac{1/2 - 1/8}{1/2} = 3/4. \\ P(X < 1/2|X + Y < 1). \end{split}$$

Consider throwing a lot of points into Ω . How often A happens? How often B happens? When B happens, how often A happens? Among all the points in B, what is the fraction belongs to $A_{26/73}^{2}$

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Experiment \rightarrow outcome \rightarrow number EXAMPLE 4: Coin flipping

(4.1) Flip a coin \rightarrow head or tail \rightarrow 1 or 0 (4.2) Flip a coin twice \rightarrow (head, head), or (head, tail), or (tail, head) or (tail, tail) \rightarrow 11 or 10 or 01 or 00

The sample space is {HH, HT, TH, TT}

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Experiment \rightarrow outcome \rightarrow number Experiment 4: Coin flipping

(4.3) Flip a coin n times $\rightarrow 2^n$ binary sequences.

Sample space Ω : all 2^n sequences. Each $\omega \in \Omega$ is a sequence. $Z_i(\omega) = 1$ if *i*-th flip is head; $Z_i(\omega) = 0$ if *i*-th flip is tail.

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk Reasoning

Experiment 4: Coin flipping $Z_i(\omega) = 1$ if *i*-th flip is head; $Z_i(\omega) = 0$ if *i*-th flip is tail.

НННН, ТННН, НТНТ, ТТНТ, НННТ, ННТТ, ТННТ, ТНТТ, ННТН, ТТНН, НТТН, НТТТ, НТНН, ТНТН, ТТТН, ТТТТ,

Flip a fair coin 4 times independently, let A be the event that there are 2 heads.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{6}{2^4} = \frac{3}{8}.$$
$$A = \{\omega : Z_1(\omega) + Z_2(\omega) + Z_3(\omega) + Z_4(\omega) = 2\}.$$

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk Reasoning

Experiment 4: Coin flipping $Z_i(\omega) = 1$ if *i*-th flip is head; $Z_i(\omega) = 0$ if *i*-th flip is tail.

H H H H 4 heads HHHT 3 heads H H 3 heads T H 3 heads H H 3 heads HHTT 2 heads HTHT 2 heads HTTH2heads THHT2heads THTH 2 heads T T H H 2 heads H T T T 1 heads THTT1heads T T H T 1heads T T T H 1heads T T T T 0 heads

Let $X(\omega)$ be the number of heads in the sequence ω .

$$X(\omega) = Z_1(\omega) + Z_2(\omega) + Z_3(\omega) + Z_4(\omega).$$

$$P(A_k) = P(\{\omega : X(\omega) = k\}) = P(X = k) = p_k.$$
$$(p_k, k = 0, 1, 2, 3, 4) = (1, 4, 6, 4, 1)/16.$$

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk Reasoning

Experiment 4: Coin flipping

НННН, ТННН, НТНТ, ТТНТ, НННТ, ННТТ, ТННТ, ТНТТ, ННТН, ТТНН, НТТН, НТТТ, НТНН, ТНТН, ТТТН, ТТТТ

$$\begin{split} |A_2| &= 6. \\ |A_2| &= {4 \choose 2} = \frac{4 \times 3}{2}. \\ \text{4 positions, choose 2 of them to be heads, and the rest are tails.} \end{split}$$

Multiplication

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk Reasoning

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	<mark>(4,5)</mark>	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Experiment 1 has n_1 outcomes. For each outcome of experiment 1, experiment 2 has n_2 outcomes. The number of all possible pairs is $n_1 \times n_2$.

Multiplication

100A

Ying Nian Wi

Coin

Multiplication Ordered pair: roll a die twice

Multiplication

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

Multiplication

Ordered triplet

Permutation

Basics

Population

Area

Coin

Random walk Reasoning

n different cards. Choose k of them. Order matters. Number of different sequences:

$$P_{n,k} = n(n-1)...(n-k+1).$$
 $P_{4,2} = 4 \times 3 = 12.$
 $P_{n,n} = n!.$

How many different ways to permute things.

Combination

100A

Basics

Population

Area

Coin

Random walk

n different balls. Choose k of them. Order does NOT matters. Number of different combinations:

$$\binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$
$$\binom{4}{2} = \frac{4\times3}{2} = 6.$$

Combination

Ying Nian Wi

Basics

Population

Area

Coin

Random walk Reasoning

Each combination corresponds to k! permutations.

$$\binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$
$$\binom{4}{2} = \frac{4\times3}{2} = 6.$$

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

leasoning

Experiment 4: Coin flipping

НННН, ТННН, НТНТ, ТТНТ, НННТ, ННТТ, ТННТ, ТНТТ, ННТН, ТТНН, НТТН, НТТТ, НТНН, ТНТН, ТТТН, ТТТТ,

$$A_2| = 6.$$

 $A_2| = {4 \choose 2} = \frac{4 \times 3}{2}.$

$$P(A_k) = P(\{\omega : X(\omega) = k\}) = P(X = k) = \binom{n}{k}/2^n.$$

$$X(\omega) = \sum_{i=1}^{n} Z_i(\omega).$$

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk Reasoning

Experiment 4: Coin flipping

$$|A_2| = 6.$$

 $|A_2| = {4 \choose 2} = \frac{4 \times 3}{2}.$

100A

- Ying Nian Wi
- Basics
- Population
- Area
- Coin
- Random walk Reasoning

Experiment 4: Coin flipping Combinations

100A

ring Nian Wu

Basics

- Population
- Area
- Coin
- Random walk Reasoning

Experiment 4: Coin flipping Combinations

Un-ordered sequence in each circle.

100A

Ying Nian Wι

- Basics
- Population
- Area
- Coin
- Random walk Reasoning

1

Experiment 4: Coin flipping Pascal triangle

1	n = 0	нннн <mark>4head</mark> s
		H H H T 3 heads
1 1		H T H H 3 heads
	n = 1	H H T H 3 heads
		T H H H 3 heads
1 2 1		HHTT 2 heads
	n = 2	HTHT 2 heads
		HTTH2heads
1 2 2 1	•	T H H T 2 heads
1 3 3 1	n=3	T H T H 2 heads
		TTHH 2 heads
		H T T T 1 heads
1 4 6 4 1	n = 4	T H T T 1 heads
		TTHT1heads
		TTTH 1 heads
5 10 10 5 1	<i>n</i> = 5	T T T T O heads

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk Reasoning

$(x + x)^0$		нн	н	Т	3 heads
(x+y) =	1	нн	Т	H H	3 heads 3 heads
$(x+y)^1 =$	1r + 1y	тн	Ĥ	H.	3 heads
(нн	т	т	2 heads
$(-1)^{2}$ -		нт	н	Т	2 heads
(x+y) =	$1x^{-} + 2x^{-}y^{-} + 1y^{-}$	ΗТ	т	н	2 heads
/ 3	A 2 B 2 1 2 B 2	тн	н	Т	2 heads
$(x+y)^{2} =$	$1x^{3} + 3x^{4}y^{4} + 3x^{4}y^{4} + 1y^{3}$	тн	Т	н	2 heads
		тт	н	н	2 heads
(4	нт	т	Т	1 heads
(x + y) =	1x' + 4x'y' + 6x'y' + 4x'y' + 1y'	ТН	Т	Т	1 heads
		ТТ	н	т	1 heads
$(x \perp y)^{5} - 1r^{5}$	$5 \pm 5r^4 + 10r^3 + 10r^2 + 10r^2 + 5r^3 + 5r^4 + 1 + 5$	ТТ	т	н	1 heads
(x + y) = 1 x	т <u>л</u> и у т <mark>то</mark> л у т <u>т</u> лу т ту	ТТ	т	Т	0 heads

HHHHHAheads

100A

Ying Nian Wi

- Basics
- Population
- Area
- Coin
- Random walk Reasoning

Experiment 4: Coin flipping Binomial

Random walk

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk Reasoning

Experiment 4: Coin flipping

Order of sequence in each circle does not matter. All 2^n paths are equally likely. Counting the number of paths that end up in k-th bin.

100A

Coin

Galton board

Experiment 4: Coin flipping

All 2^n paths are equally likely. Number of paths that end up in k-th bin = $\binom{n}{k}$. X: destination. $P(X = k) = \binom{n}{k}/2^n$. How often the balls fall into k-th bin.

Random walk

100A

Ying Nian Wu

- Basics
- Population
- Area
- Coin
- Random walk
- Reasoning

Either go forward or backward

H H 4 heads H T 3 heads H H 3 heads н T H 3 heads н H H H 3 heads т HHTT2heads H T H T 2 heads T H 2 heads н т THHT2heads THTH2heads H H 2 heads т т T T 1 heads н т THTT1heads H T 1 heads T H 1 heads т

TTTT0heads

Random walk

Coin

Random walk

Reasoning

Either go forward or backward

$$X_t = Z_1 + Z_2 + \ldots + Z_t.$$

 $Z_k = 1$ or -1 with probability 1/2 each. Number of heads = k, then random walk ends up at m = k - (t - k) = 2k - t, k = (m + t)/2.

$$P(X_t = m) = \binom{t}{(m+t)/2}/2^t$$

Transition probability

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Either go forward or backward

$$X_t = Z_1 + Z_2 + \ldots + Z_t.$$

 $Z_k = 1$ or -1 with probability 1/2 each.

 $X_{t+1} = X_t + Z_{t+1}.$

$$P(X_{t+1} = x + 1 | X_t = x) = P(X_{t+1} = x - 1 | X_t = x) = 1/2.$$

Markov chain

100A

- Ying Nian Wi
- Basics
- Population
- Area
- Coin
- Random walk
- Reasoning

With probability 1/2, stay. With probability 1/4, go to either states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

Markov property: past history before X_t does not matter.

Population migration

100A

Ying Nian Wu

- Basics
- Population

Area

Coin

Random walk

Reasoning

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

Imagine 1 million people migrating. At each step, for each state, half of the people stay, 1/4 go to each of the other two states.

100A

Transition matrix

Example 5: Random walk over three states

Random walk

Reasoning

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i)$$
$$\mathbf{K} = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{bmatrix}$$

٠

Marginal probability

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk Reasoning

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

 $p_i^{(t)} = P(X_t = i).$

Imagine 1 million people migrating. $p_i^{(t)}$ is the number of people (in million) in state *i* at time *t*.

$$\mathbf{p}^{(t)} = (p_1^{(t)}, p_2^{(t)}, p_3^{(t)}).$$

Population migration

Basics

Population

Area

Coin

Random walk

Reasoning

Example 5: Random walk over three states

$$p_i^{(t)} = P(X_t = i).$$

Imagine 1 million people migrating. $p_i^{(t)}$ is the number of people (in million) in state *i* at time *t*.

$$\mathbf{p}^{(t)} = (p_1^{(t)}, p_2^{(t)}, p_3^{(t)}).$$

100A

Random walk

Population migration

Example 5: Random walk over three states

Number of people in state j at time t + 1 = sum number ofpeople in state i at time $t \times \text{fraction of those in } i$ who go to $j_{5/77}$

Random walk

100A

Ying Nian Wu

- Basics
- Population
- Area
- Coin
- Random walk
- Reasoning

Example 5: Random walk over three states

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$
$$p_i^{(t)} \to \pi_i.$$
$$\pi_j = \sum_i \pi_i K_{ij}.$$

Stationary distribution.

Matrix multiplication

100A

Ying Nian Wi

Random walk

Example 5: Random walk over three states

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$
$$p^{(t+1)} = p^{(t)} K.$$
$$p^{(t)} = p^{(0)} K^t \to \pi.$$

Google pagerank

100A

- Ying Nian Wu
- Basics
- Population
- Area
- Coin
- Random walk
- Reasoning

π_i : proportion of people who are in page *i*. Popularity of *i* depends on the popularities of pages linked to *i*.

Example 5: Random walk over three states

Chain rule and rule of total probability

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Example 5: Random walk over three states

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$
$$P(A \cap B) = P(B)P(A|B).$$

$$P(X_{t+1} = j \cap X_t = i) = P(X_t = i)P(X_{t+1} = j | X_t = i)$$
$$= p_i^{(t)} K_{ij}.$$

$$P(X_{t+1} = j) = \sum_{i} P(X_{t+1} = j \cap X_t = i).$$
$$p_j^{(t+1)} = \sum_{i} p_i^{(t)} K_{ij}.$$

Add up probabilities of alternative chains of events.

Independence

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

Independence

$$P(A|B) = P(A).$$
$$P(A \cap B) = P(A)P(B).$$

 $P(A|B) = \frac{P(A \cap B)}{P(B)}.$

 $P(A \cap B) = P(B)P(A|B).$

 \boldsymbol{A} and \boldsymbol{B} have nothing to do with each other.

Independence

100A

- Ying Nian Wi
- Basics
- Population
- Area
- Coin
- Random walk
- Reasoning

$$P(A|B) = P(A).$$
$$P(A \cap B) = P(A)P(B).$$

Conditional independence

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$$P(A|B,C) = P(A|B).$$

$$P(X_{t+1} = j | X_t = i, X_{t-1}, ..., X_0) = P(X_{t+1} = j | X_t = i).$$

Future is independent of the past given present. Immediate cause (parent), remote cause (grandparent). Shared cause: $C \leftarrow B \rightarrow A$,

$$P(A \cap C|B) = P(A|B)P(C|B).$$

Children given parent.

Reasoning

100A

Ying Nian W

Basics

Population

Area

Coin

Random walk

Reasoning

Example 6: Rare disease example

1% of population has a rare disease.

A random person goes through a test.

If the person has disease, 90% chance test positive.

If the person does not have disease, 90% chance test negative. If tested positive, what is the chance he or she has disease? P(D) = 1%. P(+|D) = 90%, P(-|N) = 90%. P(D|+) = ?

Reasoning

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

Example 6: Rare disease example $P(D) = 10^{10}$

$$P(D) = 1\%.$$

 $P(+|D) = 90\%, P(-|N) = 90\%.$
 $P(D|+) = ?$

 $\begin{array}{l} P(D|+) = \frac{9}{9+99} = \frac{1}{12}.\\ P(alarm|fire) \text{ vs } P(fire|alarm). \end{array}$

100A

Ying Nian Wi

Basics

Population

Area

Coin

Random walk

Reasoning

$$\begin{split} P(D \cap +) &= P(D)P(+|D) = 1\% \times 90\%. \\ P(N \cap +) &= P(N)P(+|N) = 99\% \times 10\%. \\ P(+) &= P(D \cap +) + P(N \cap +) = 1\% \times 90\% + 99\% \times 10\%. \\ P(D|+) &= \frac{P(D \cap +)}{P(+)} = \frac{9}{9+99} = \frac{1}{12}. \end{split}$$

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

General formula

 $\begin{array}{l} m \text{ causes: } C_1,...,C_i,...,C_m.\\ n \text{ effects: } E_1,...,E_j,...,E_n.\\ \text{Given:}\\ \text{Prior: } P(C_i), i=1,...,m.\\ \text{Conditional: } P(E_j|C_i), j=1,...,n. \end{array}$

100A

- Ying Nian Wu
- Basics
- Population
- Area
- Coin
- Random walk
- Reasoning

Statistics _{Ucla} Prior: $P(C_i), i = 1, ..., m$. Conditional: $P(E_j|C_i), j = 1, ..., n$.

$$P(C_i|E).$$

$$P(C_i \cap E) = P(C_i)P(E|C_i).$$

$$P(E) = \sum_i P(C_i \cap E) = \sum_i P(C_i)P(E|C_i).$$

$$P(C_i|E) = \frac{P(C_i \cap E)}{P(E)} = \frac{P(C_i)P(E|C_i)}{\sum_{i'} P(C_{i'})P(E|C_{i'})}.$$

100A

Population

Area

Coin

Random walk

Reasoning

$$\begin{split} X &= \mathsf{cause} \in \{1,...,i,...,m\}.\\ Y &= \mathsf{effect} \in \{1,...,j,...,n\}. \end{split}$$

$$\begin{split} P(X = i | Y = j) &= \frac{P(X = i \cap Y = j)}{P(Y = j)} \\ &= \frac{P(X = i)P(Y = j | X = i)}{\sum_{i'} P(X = i')P(Y = j | X = i')}. \end{split}$$

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

$$\begin{split} P(X=i|Y=j) &= \frac{P(X=i \cap Y=j)}{P(Y=j)} \\ &= \frac{P(X=i)P(Y=j|X=i)}{\sum_{i'} P(X=i')P(Y=j|X=i')}. \end{split}$$

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(x)p(y|x)}{\sum_{x'} p(x')p(y|x')}.$$

Reasoning

100A

- Ying Nian Wi
- Basics
- Population
- Area
- Coin
- Random walk
- Reasoning

Bayes network, directed acyclic graph, graphic model

Conditional independence:

Sibling nodes are independent given parent node. Child node is independent of grandparents given parent.

Take home message

100A

Ying Nian Wu

Basics

Population

Area

Coin

Random walk

Reasoning

As long as you can count

Count the number of people

Count the number of points or repetitions

Count the number of sequences

Two things

Intuition and visualization (and motivation) Precise notation and formula

Accomplished

Most of the important concepts via intuitive examples $\ensuremath{\textbf{Next}}$

Systematic and more in-depth treatments