100A

Ying Nian Wi

Discrete

Continuou

Movie

STATS 100A: RANDOM VARIABLES

Ying Nian Wu

Department of Statistics University of California, Los Angeles

Some pictures are taken from the internet. Credits belong to original authors.

Random variables

100A

Discusto

Continuous

Movie

Connection to events:

Randomly sample a person ω from a population Ω . $X(\omega)$: gender of ω , $\Omega \to \{0,1\}$. $Y(\omega)$: height of ω , $\Omega \to \mathbb{R}^+$. $A = \{\omega : X(\omega) = 1\}$. P(A) = P(X = 1). Discrete. $B = \{\omega : Y(\omega) > 6\}$. P(B) = P(Y > 6). Continuous. We shall study random variables more systematically.

Discrete random variables

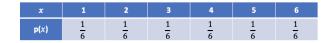
Roll a die

100A

Ying Nian Wu

Discrete

Movie



$$p(x) = P(X = x).$$

Capital letter: random variable Lower case: particular value, running variable

 $X \sim p(x).$

Probability distribution

100A

Discrete

Continuous

Movie

Biased die:

Randomly throw a point into [0, 1], which bin (1, 2, ..., 6) it falls into?

Throw 1 million points, what is the proportion of points in each bin? Or how often the points fall into each bin?

Probability distribution

100A

Ying Nian Wı

Discrete

Continuou

Movie

x	1	2	3	4	5	6
p(x)	0.1	0.2	0.1	0.2	0.1	0.3
	10%	20%	10%	20%	10%	30%

$$p(x) = P(X = x).$$

 $\begin{array}{l} p(x)\text{: how often } X=x.\\ p(x)\text{: probability mass function, probability distribution, law}\\ \sum_x p(x)=1.\\ P(X\in\{5,6\})=p(5)+p(6).\\ P(X\in[a,b])=\sum_{x\in[a,b]}p(x). \end{array}$

Expectation

100A

Ying Nian Wi

Biased die

 $\mathbf{p}(x)$

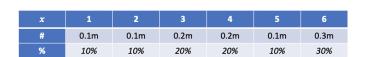
0.1

0.1

Discrete

Continuous

Movie



0.2

4

0.2

0.1

 $average = \frac{(1 \times 0.1m + 2 \times 0.1m + 3 \times 0.2m + 4 \times 0.2m + 5 \times 0.1m + 6 \times 0.3m)}{1m}$

$$\mathbb{E}(X) = \sum_{x} x p(x).$$

6

0.3

Expectation

Continuous

Movie

Biased die

x	1	2	3	4	5	6
p(x)	0.1	0.1	0.2	0.2	0.1	0.3

x	1	2	3	4	5	6
#	0.1m	0.1m	0.2m	0.2m	0.1m	0.3m
%	10%	10%	20%	20%	10%	30%

$$average = \frac{(1 \times 0.1m + 2 \times 0.1m + 3 \times 0.2m + 4 \times 0.2m + 5 \times 0.1m + 6 \times 0.3m)}{1m}$$

x	1	2	3	4	5	6	x
payoff	-\$30	-\$20	\$0	\$20	\$30	\$100	h(<i>x</i>)
	h(1)	h(2)	h(3)	h(4)	h(5)	h(6)	

 $longrun\ average = (-\$30) \times 0.1 + (-\$20) \times 0.1 + (\$0) \times 0.2 + (\$20) \times 0.2 + (\$30) \times 0.1 + (\$100) \times 0.3$

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$

Utility

100A

Ying Nian Wu

Discrete

Continuous

Movie

Utility, reward, value

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$

Offer 1					
x	\$100				
p(<i>x</i>)	1				

$$E(X) = (\$100) \times 1 = \$100$$

Offer 2						
x	\$0	\$200				
p(<i>x</i>)	1/2	1/2				

$$E(X) = (\$0) \times \frac{1}{2} + (\$200) \times \frac{1}{2} = \$100$$

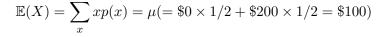
x: face value	\$0	\$100	\$200
h(x): perceived value	\$0	\$100	\$150

Offer 1: $E(h(X)) = (\$100) \times 1 = \100 \leftarrow Risk Averse

Offer 2: $E(h(X)) = (\$0) \times \frac{1}{2} + (\$150) \times \frac{1}{2} = \75 \leftarrow Risk Taking

100A Ying Nian Wi

Discrete Continuous Movie



$$Var(X) = \mathbb{E}[(X - \mu)^2] = \sum_x (x - \mu)^2 p(x) = \sigma^2$$

= $(\$0 - \$100)^2 \times 1/2 + (\$200 - \$100)^2 \times 1/2$
= $\$^2 10,000.$

Long run average of squared deviation from the mean.

$$SD(X) = \sqrt{\operatorname{Var}(X)} = \sigma(=\$100).$$

Extent of variation from the mean.

100A

Ying Nian Wu

Discrete

Continuous

Movie

x	1	2	3	4	5	6	x
payoff	-\$30	-\$20	\$0	\$20	\$30	\$100	h(<i>x</i>)
	h(1)	h(2)	h(3)	h(4)	h(5)	h(6)	

 $longrun\ average = (-\$30) \times 0.1 + (-\$20) \times 0.1 + (\$0) \times 0.2 + (\$20) \times 0.2 + (\$30) \times 0.1 + (\$100) \times 0.3$

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$
$$\operatorname{Var}[h(X)] = \mathbb{E}[(h(X) - \mathbb{E}(h(X)))^{2}].$$

100A Ying Nian W

Discrete Continuous

$$\label{eq:Var} \begin{split} \mathrm{Var}(X) &= \mathbb{E}[(X-\mu)^2] = \sum_x (x-\mu)^2 p(x) = \sigma^2.\\ \text{Long run average of squared deviation from the mean.}\\ \text{Sampling } p(x) \to x_1,...,x_i,...,x_n \end{split}$$

(e.g., rolling a die \rightarrow 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

 $\mathbb{E}(X) = \sum_{x} xp(x) = \mu.$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \to \operatorname{Var}(X) = \sigma^{2}$$

100A

Ying Nian Wi

Discrete

Continuous

$$\mathbb{E}(h(X)) = \sum_{x} h(x)p(x).$$
$$Y = aX + b.$$

$$\mathbb{E}(Y) = \mathbb{E}(aX + b)$$
$$= \sum_{x} (ax + b)p(x)$$
$$= \sum_{x} axp(x) + \sum_{x} bp(x)$$
$$= a \sum_{x} xp(x) + b \sum_{x} p(x)$$
$$= a\mathbb{E}(X) + b.$$

100A

Discrete Continuous Movie

Sampling
$$p(x) \to x_1, ..., x_i, ..., x_n$$

(e.g., rolling a die \to 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

$$y_i = ax_i + b.$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \frac{1}{n} \sum_{i=1}^{n} x_i + b = a\bar{x} + b.$$

100A

Ying Nian Wu

Discrete

Continuc

$$Var(h(X)) = \mathbb{E}[(h(X) - \mathbb{E}(h(X)))^2].$$
$$Var(Y) = \mathbb{E}[(Y - \mathbb{E}(Y))^2].$$
$$\mathbb{E}(Y) = a\mathbb{E}(X) + b.$$

$$Var(aX + b) = \mathbb{E}[((aX + b) - \mathbb{E}(aX + b))^2]$$
$$= \mathbb{E}[(aX + b - (a\mathbb{E}(X) + b))^2]$$
$$= \mathbb{E}[(a(X - \mathbb{E}(X)))^2]$$
$$= a^2\mathbb{E}[(X - \mathbb{E}(X))^2] = a^2Var(X).$$

Sampling $p(x) \rightarrow x_1, ..., x_i, ..., x_n$

100A

Ying Nian Wu

Discrete Continuou (e.g., rolling a die \rightarrow 2, 1, 6, 5, 3, 2, 5, 4, 3, ...) $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \rightarrow \mathbb{E}(X) = \mu.$

$$y_i = ax_i + b.$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \frac{1}{n} \sum_{i=1}^{n} x_i + b = a\bar{x} + b.$$

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\bar{y})^{2} = \frac{1}{n}\sum_{i=1}^{n}(ax_{i}+b-(a\bar{x}+b))^{2} = \frac{1}{n}\sum_{i=1}^{n}a^{2}(x_{i}-\bar{x})^{2}.$$

100A

Ying Nian Wu

Discrete

Continuous

$$\mu = \mathbb{E}(X).$$

$$Var(X) = \mathbb{E}[(X - \mu)^{2}]$$

= $\mathbb{E}[X^{2} - 2\mu X + \mu^{2}]$
= $\mathbb{E}(X^{2}) - 2\mu \mathbb{E}(X) + \mu^{2}$
= $\mathbb{E}(X^{2}) - \mu^{2} = \mathbb{E}(X^{2}) - [\mathbb{E}(X)]^{2}.$

$$\begin{split} \mathbb{E}[h(X) + g(X)] &= \sum_{x} [h(x) + g(x)] p(x) \\ &= \sum_{x} h(x) p(x) + \sum_{x} g(x) p(x) \\ &= \mathbb{E}[h(X)] + \mathbb{E}[g(X)]. \end{split}$$

Transformation

Discrete

$$h(x) = ax + b.$$

$$\mathbb{E}[h(X)] = \mathbb{E}(aX + b) = a\mathbb{E}(X) + b = h(\mathbb{E}(X)).$$

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2.$$
$$h(x) = x^2.$$
$$\mathbb{E}[h(X)] = \mathbb{E}(X^2);$$
$$h(\mathbb{E}(X)) = [\mathbb{E}(X)]^2.$$

•

Convex function

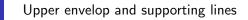
100A

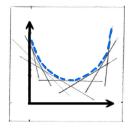
Ying Nian Wı

Discrete

Continuou

Movie





$$g(x) \ge a_0 x + b_0; \ g(x_0) = a_0 x_0 + b_0.$$

Supporting line at x_0 touches g(x) at x_0 , but below g(x) at other places.

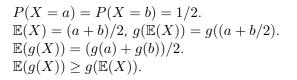
Jensen inequality

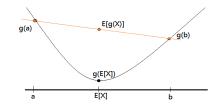
100A

Ying Nian Wu

Discrete

Continuous





$$\begin{split} &x_0 = \mathbb{E}(X). \\ &g(x_0) = a_0 x_0 + b_0 \text{ (supporting line at } x_0\text{)} \\ &g(x) \ge a_0 x + b_0. \\ &\mathbb{E}(g(X)) \ge \mathbb{E}(a_0 X + b_0) = a_0 \mathbb{E}(X) + b_0 = a_0 x_0 + b_0 = g(\mathbb{E}(X)). \end{split}$$

Entropy

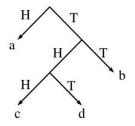
100A

Ying Nian Wu

Discrete

Continuous

1	а	b	С	d
Pr	1/2	1/4	1/8	1/8
flips	H	TT	THH	THT



Coin flippings

100A

Ying Nian Wu

Discrete

Continuous

Ω	a	b	С	d
Pr	1/2	1/4	1/8	1/8
$-\log p$	1	2	3	3
$(X) = \frac{1}{2}$	$\times 1 + \frac{1}{4} \times$	$\left(2+\frac{1}{8}\right)$	$\times 3 + \frac{1}{8} \times$	$3 = \frac{7}{4}$ flij
	а	b	С	d
Pr		<i>b</i> 1/4	-	<i>d</i> 1/8

Coding

100A

Ying Nian Wu

Discrete

Continuous

Movie

Prefix code

	a	b	С	d	
Pr	1/2	1/4	1/8	1/8	
code	1	00	011	010	

100101100010→abacbd

$$\mathbf{E}[l(X)] = \sum_{x} l(x) p(x) = 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 3 \times \frac{1}{8} = \frac{7}{4} \text{ bits}$$

Coding

100A

Ying Nian Wu

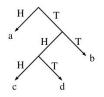
Discrete

Continuous

Movie

Optimal code

	a	b	С	d	
Pr	1/2	1/4	1/8	1/8	
code	1	00	011	010	



100101100010→abacbd

Sequence of coin flipping A completely random sequence Cannot be further compressed

 $l(x) = -\log p(x)$

 $\mathbf{E}[l(X)] = H(p)$

e.g., two words I, probability

Bernoulli

100A

Ying Nian Wu

Discrete

Continuou

Flip a coin (probability of head is p)

$$Z \sim \text{Bernoulli}(p)$$

 $Z \in \{0, 1\}, P(Z = 1) = p \text{ and } P(Z = 0) = 1 - p.$
 $\mathbb{E}(Z) = 0 \times (1 - p) + 1 \times p = p.$
 $\text{Var}(Z) = (0 - p)^2 \times (1 - p) + (1 - p)^2 \times p$
 $= p(1 - p)[p + (1 - p)] = p(1 - p).$
 $\mathbb{E}(Z^2) = p.$
 $\text{Var}(Z) = \mathbb{E}(Z^2) - \mathbb{E}(Z)^2 = p - p^2 = p(1 - p).$

100A

Ying Nian Wu

Discrete Continuous Movie Flip a coin (probability of head is p) n times independently. X = number of heads.

 $X \sim \operatorname{Binomial}(n, p)$

$$P(X = k) = {\binom{n}{k}} p^k (1-p)^{n-k}.$$

 $\binom{n}{k}$ is the number of sequences with exactly k heads. $p^k(1-p)^{n-k}$ is the probability of each sequence with exactly k heads.

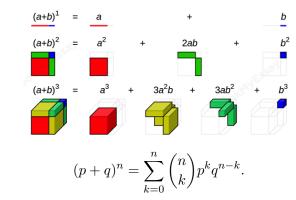
e.g., n = 3, $P(X = 2) = P(HHT) + P(HTH) + P(THH) = 3p^2(1 - p)$. p = 1/2, we have $P(X = k) = \binom{n}{k}/2^n$.

Ying Nian Wu

Discrete

Continuou

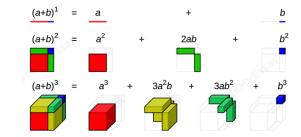
Movie



Let a = p, b = q = 1 - p. Randomly throw a point into unit cube.

Each rectangular piece corresponds to a particular sequence. Each color corresponds to a particular number of heads.

Discrete Continuou Mauia



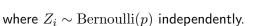
Let
$$a = p$$
, $b = q = 1 - p$.
 $n = 2$, $P(X = 2) = P(HH) = p^2$.
 $P(X = 0) = P(TT) = (1 - p)^2$.
 $P(X = 1) = P(HT) + P(TH) = 2p(1 - p)$.
 $n = 3$, $P(X = 3) = P(HHH) = p^3$.
 $P(X = 2) = P(HHT) + P(HTH) + P(THH) = 3p^2(1 - p)$.

100A

Discrete

Continuou

Movie



$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(Z_i) = np.$$

 $X = Z_1 + Z_2 + \dots + Z_n$.

Due to independence of Z_i , i = 1, ..., n,

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(Z_i) = np(1-p).$$

V

Ying Nian Wı

Discrete Continuous Movie

X/n is the frequency of heads.

$$\mathbb{E}(X/n) = \mathbb{E}(X)/n = p.$$

$$\operatorname{Var}(X/n) = \operatorname{Var}(X)/n^2 = p(1-p)/n.$$

$$\operatorname{Var}(X/n) \to 0 \text{ as } n \to \infty.$$

$$X/n \to p, \text{ in probability}$$

Law of large number Probability = long run frequency

Law of large number

100A

Ying Nian Wu

Discrete Continuous Movie

Probability = long run frequency Flip a fair coin independently $\rightarrow 2^n$ sequences, Ω .

$$A_{\epsilon} = \{\omega : X(\omega)/n \in (1/2 - \epsilon, 1/2 + \epsilon)\},\$$

the set of sequences whose frequencies of heads are close to 1/2.

$$P(X/n \in (1/2 - \epsilon, 1/2 + \epsilon)) = \frac{|A_{\epsilon}|}{|\Omega|} \to 1.$$

Almost all the sequences have frequencies of heads close to $1/2. \label{eq:loss}$

e.g., n = 1 million. Almost all the 2^1 million sequences have frequencies of heads to be within [.49, .51].

Law of large number

100A

Ying Nian Wu

Discrete

Continuou

Movie

e.g., n = 1 million. Almost all the 2^1 million sequences have frequencies of heads to be within [.49, .51].

$$P(X/1m \in [.49, .51]) = P(X \in [.49m, .51m])$$
$$= \sum_{k=.49m}^{.51m} {\binom{1m}{k}}/{2^{1m}}.$$

 \sim

100A

Ying Nian Wu

Discrete

Continuous

$$\mathbb{E}(X) = \sum_{k=0}^{n} kP(X = k)$$

= $\sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$
= $\sum_{k=1}^{n} np \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$
= $\sum_{k'=0}^{n'} np \binom{n'}{k'} p^{k'} (1-p)^{n'-k'} = np.$
 $k' = k - 1; n' = n - 1$

100A

Ying Nian Wu

Discrete

Continuou

Movie

 $\mathbb{E}(X(X-1)) = \sum k(k-1)P(X=k)$ $=\sum_{k=1}^{n}k(k-1)\frac{n!}{k!(n-k)!}p^{k}(1-p)^{n-k}$ $=\sum_{n=1}^{n}n(n-1)p^{2}\frac{(n-2)!}{(k-2)!(n-k)!}p^{k-2}(1-p)^{n-k}$ $= \sum_{k=1}^{n} n(n-1)p^{2} \binom{n'}{k'} p^{k'} (1-p)^{n'-k'}$ k'=0 $= n(n-1)p^{2}$. k' = k - 2; n' = n - 2

33/111

100A

Ying Nian Wu

Discrete

Continuous

$$\mathbb{E}(X) = np.$$

$$\mathbb{E}(X(X-1)) = \mathbb{E}(X^2) - \mathbb{E}(X) = n(n-1)p^2.$$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$
$$= n(n-1)p^2 + np - (np)^2$$
$$= np - np^2 = np(1-p).$$

100A Ying Nian W

Discrete

Continuous

Movie

A box with R red balls and B blue balls. ${\cal N}=R+B$ balls in total.

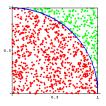
Randomly pick a ball. P(red) = R/N = p.

Randomly pick n balls sequentially (with replacement, put the picked ball back). Let X = number of red balls. The distribution of X:

 $X \sim \text{Binomial}(n, p = R/N).$

100A Ying Nian W

Discrete Continuous Movie Randomly throw n points into the unit square. Let m be the number of points falling below the curve.



The distribution of m is: $m \sim \text{Binomial}(n, p = \pi/4).$

Geometric

100A Ying Nian W

Discrete Continuous Movie

$T \sim \operatorname{Geometric}(p)$

T is the number of flips to get the first head, if we flip a coin independently and the probability of getting a head in each flip is p.

$$P(T = k) = (1 - p)^{k-1}p.$$

e.g., T = 1, HT = 2, TH. T = 3, TTH. T = 4, TTTH. Waiting time.

Geometric

100A

Ying Nian Wu

$T \sim \text{Geometric}(p)$

Discrete Continuou

Movie

$$\begin{split} \mathbb{E}(T) &= \sum_{k=1}^{\infty} k P(T=k) \\ &= \sum_{k=1}^{\infty} k q^{k-1} p = p \sum_{k=1}^{\infty} \frac{d}{dq} q^k \\ &= p \frac{d}{dq} \sum_{k=1}^{\infty} q^k = p \frac{d}{dq} \left(\frac{1}{1-q} - 1 \right) \\ &= p \frac{1}{(1-q)^2} = \frac{1}{p}. \end{split}$$

Geometric

1004

Discrete

Continuous

Movie

$$(1-a)(1+a+\ldots+a^m) = 1+a+\ldots+a_m -(a+a^2+\ldots+a^m+a^{m+1}) = 1-a^{m+1}.$$

$$1+a+\ldots+a^m = \frac{1-a^{m+1}}{1-a}.$$

 $|{\rm ff}\;|a|<1,$

 $a^{m+1} \to 0, \ as \ m \to \infty.$

Continuous random variable

Recall discrete (e.g., gender)

100A

Ying Nian Wu

Discrete

Continuous

Continuous (e.g., height)

$$P(X \in (x, x + \Delta x)) \doteq f(x)\Delta x,$$

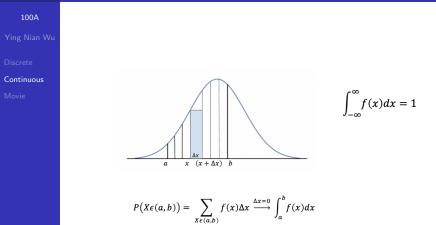
P(X = x) = p(x).

e.g., (6 ft, 6 ft 1 inch).

$$f(x) = \lim_{\Delta x \to 0} \frac{P(X \in (x, x + \Delta x))}{\Delta x}.$$

f(x): probability density function $X \sim f(x).$

Probability density function



Probability density function

100A

Ying Nian Wu

Discrete

Continuous

Movie

Recall discrete

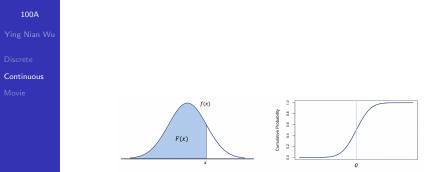
$$P(X = x) = p(x).$$
$$P(X \in [a, b]) = \sum_{x \in [a, b]} p(x).$$

Continuous

$$P(X \in (x, x + \Delta x)) \doteq f(x)\Delta x,$$

$$\begin{split} P(X \in [a,b]) &= \sum_{x \in [a,b]} P(X \in (x,x+\Delta x)) \\ &\doteq \sum_{a}^{b} f(x) \Delta x \doteq \int_{a}^{b} f(x) dx. \end{split}$$

Cumulative density function



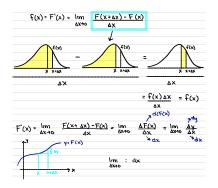
100A

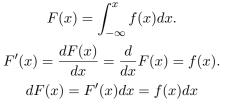
Area and slope

Discrete

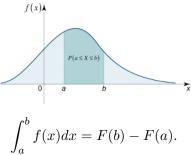
Continuous

Movie

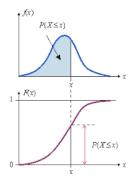




Integral



cdf vs pdf



Expectation

Recall discrete:

100A

Ying Nian Wi

Discrete

Continuous

Movie

 $E(X) = \sum_{x}^{1} \times p(X = x) = \sum_{x}^{1} \times p(x)$ Continuous: $E(X) = \sum_{x}^{1} \times p(X \in (x, x + \Delta x))$ $= \sum_{x}^{1} \times f(x) \Delta x \xrightarrow{\Delta x}{\circ} \int x f(x) dx$ (Sum over burs)

$$E(X) = \int x f(x) dx$$

$$E(h(X)) = \sum_{x} h(x) P(X \in (x, x + \Delta x))$$
(bors)
$$\sum_{x} h(x) = \sum_{x} h(x) P(X \in (x, x + \Delta x))$$

$$F(X) = \sum_{x} h(x) = \sum_{x} h(x) P(X \in (x, x + \Delta x))$$

Expectation

100A

Ying Nian Wi

Discrete

Continuous

$$\mathbb{E}(X) = \sum_{x} x P(X \in (x, x + \Delta x))$$
$$\doteq \sum_{x} x f(x) \Delta x \doteq \int x f(x) dx.$$

$$\mathbb{E}(h(X)) = \sum_{x} h(x)f(x)\Delta x \doteq \int h(x)f(x)dx.$$

Let $X_i \sim f(x)$ independently for i = 1, ..., n. Then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\to\mathbb{E}(X).$$

Population or large sample

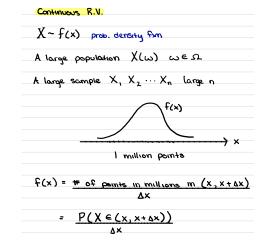
100A

Ying Nian Wi

Discrete

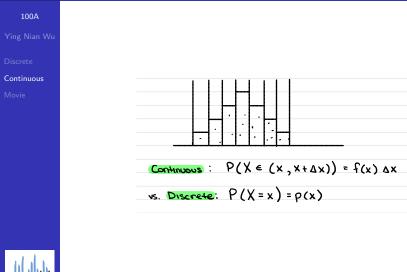
Continuous

Movie

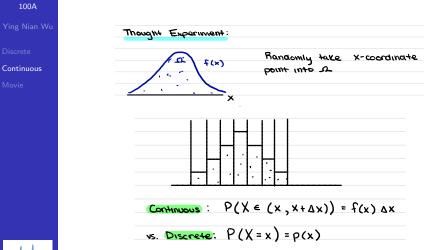


e.g., population density at LA = f(LA) = proportion of people in LA/area of LA.

Population or large sample



Area under curve



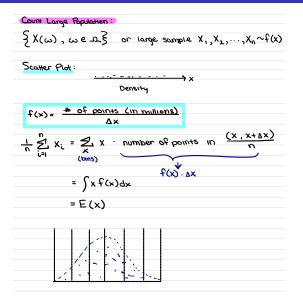
Population or large sample

Ying Nian Wu

Discrete

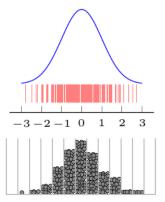
Continuous

Movie



100A

Population or large sample



 $P(X \in (x, x + \Delta x)) = f(x)\Delta x.$ $f(x) = P(X \in (x, x + \Delta x))/\Delta x.$

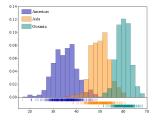
Population or large sample

Ying Nian Wi

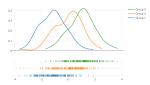
Discrete

Continuous

Movie



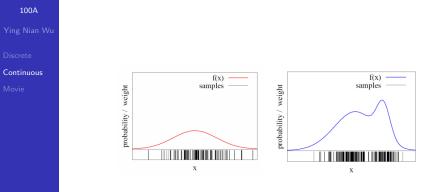
Curve and Rug Plot



 $P(X \in (x, x + \Delta x)) = f(x)\Delta x.$ $f(x) = P(X \in (x, x + \Delta x))/\Delta x.$

54/111

Population or large sample



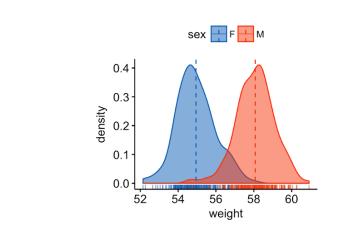
$$P(X \in (x, x + \Delta x)) = f(x)\Delta x.$$

$$f(x) = P(X \in (x, x + \Delta x))/\Delta x.$$

100A

Continuous

Population or large sample



 $P(X \in (x, x + \Delta x)) = f(x)\Delta x.$ $f(x) = P(X \in (x, x + \Delta x))/\Delta x.$

Population or large sample

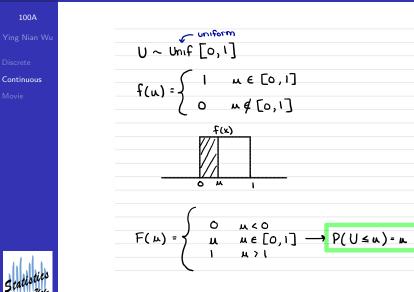
Discrete

Continuous Movie

$$P(X \in (x, x + \Delta x)) = f(x)\Delta x.$$

$$f(x) = P(X \in (x, x + \Delta x))/\Delta x.$$

Uniform



58/1

Uniform

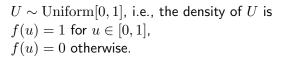
100A

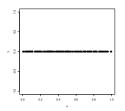
Ying Nian Wu

Discrete

Continuous

Movie





$$\begin{split} P(U \in (u, u + \Delta u)) &= f(u)\Delta u = \Delta u. \\ \text{Imagine 1 million points distributed uniformly in [0, 1].} \\ \text{Number of points in } (u, u + \Delta u) \text{ is } \Delta u \text{ million.} \\ \text{e.g., Number of points in } (.3, .31) \text{ is } .01 \text{ million.} \end{split}$$

59/111

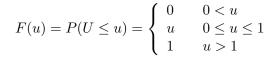
Uniform

100A

Ying Nian Wi

Discrete

Continuous



F(u): proportion of points below u.

$$\mathbb{E}(U) = \int_0^1 uf(u)du = \frac{1}{2}.$$
$$\mathbb{E}(U^2) = \int_0^1 u^2 f(u)du = \frac{1}{3}.$$
$$\operatorname{Var}(U) = \mathbb{E}(U^2) - (\mathbb{E}(U))^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Pseudo-random number generator

100A

Ying Nian Wu

Discrete

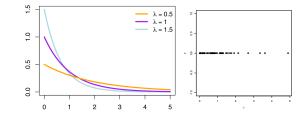
Continuous Movie Start from an integer X_0 , and iterate

$$X_{t+1} = aX_t + b \mod M.$$

Output $U_t = X_t/M$. e.g., $a = 7^5$, b = 0, and $M = 2^{31} - 1$. mod: divide and take the remainder, e.g., $7 = 2 \mod 5$. e.g., a = 7, b = 1, M = 5, $X_0 = 1$, then $X_1 = 1 \times 7 + 1 \mod 5 = 3$. $X_2 = 3 \times 7 + 1 \mod 5 = 2$.

Exponential

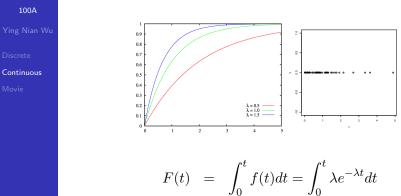
Continuous Movie

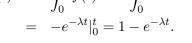


$$\begin{split} T &\sim \text{Exponential}(\lambda), \\ f(t) &= \lambda e^{-\lambda t} \text{ for } t \geq 0, \\ f(t) &= 0 \text{ for } t < 0. \\ P(T \in (t, t + \Delta t)) &= \lambda e^{-\lambda t} \Delta t \end{split}$$

Imagine 1 million particles, mark the times when they decay. 1 million points on real line. Their distribution is exponential. Number of points in $(t, t + \Delta t)$ is $\lambda e^{-\lambda t} \Delta t$ million.

Exponential





F(t): proportion of points below tHalf-life: $F(t_{half}) = P(T \le t_{half}) = 1/2$. 1 million particles, by half life, half million will have decayed.

63/111

Exponential

100A

Ying Nian Wι

Discrete

Continuous

Movie

$$\mathbb{E}(T) = \int_0^\infty t\lambda e^{-\lambda t} dt$$

= $-\int_0^\infty t de^{-\lambda t}$
= $-(te^{-\lambda t}|_0^\infty - \int_0^\infty e^{-\lambda t} dt)$
= $-(0 - 0 + \frac{1}{\lambda}e^{-\lambda t}|_0^\infty) = \frac{1}{\lambda}$

•

Integral by parts

Ying Nian V

Discrete

Continuous

Movie

Δv	$u \Delta v$	$\Delta u \Delta v$
V	μv	<i>υ</i> Δ <i>u</i>
	и	Δu

$$\frac{d}{dx}u(x)v(x) = u'(x)v(x) + u(x)v'(x).$$

$$duv = udv + vdu.$$

$$\int [u'(x)v(x) + u(x)v'(x)]dx = u(x)v(x).$$

$$fu(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx.$$

$$\int udv = uv - \int vdu.$$

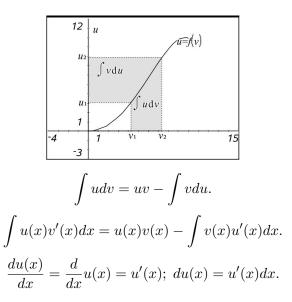
Integral by parts

100A

Discrete

Continuous

Movie



66/111

Normal or Gaussian

100A

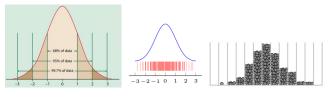
Ying Nian Wi

Discrete

Continuous

Let $Z \sim {\rm N}(0,1),$ i.e., the density of Z is

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$



$$\int_{-2}^{2} f(z)dz = 95\%.$$

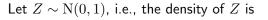
Normal or Gaussian

100A

Ying Nian Wi

Discrete

Continuous



$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

$$\mathbb{E}(Z) = \int_{-\infty}^{\infty} z \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$
$$= -\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \Big|_{-\infty}^{\infty}$$
$$= 0.$$

The density is symmetric around 0.

Normal or Gaussian

100A

Ying Nian Wu

Discrete

Continuous

Movie

Let $Z\sim {\rm N}(0,1),$ i.e., the density of Z is $f(z)=\frac{1}{\sqrt{2\pi}}e^{-z^2/2}.$

$$\mathbb{E}(Z^2) = \int_{-\infty}^{\infty} z^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

= $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-z) de^{-\frac{z^2}{2}}$
= $\frac{1}{\sqrt{2\pi}} (-ze^{-\frac{z^2}{2}}|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} d(-z))$
= $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 1.$
Var $(Z) = \mathbb{E}(Z^2) - (\mathbb{E}(Z))^2 = 1.$

69/111

Variance

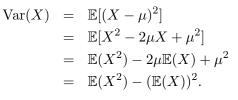
100A

Ying Nian Wu

For $X \sim f(x)$, let $\mu = \mathbb{E}(X)$.

Discrete

Continuous



$$\mathbb{E}[r(X) + s(X)] = \int [r(x) + s(x)]f(x)dx$$

= $\int r(x)f(x)dx + \int s(x)f(x)dx$
= $\mathbb{E}[r(X)] + \mathbb{E}[s(X)].$

Linear transformation

100A

Ying Nian Wu

Discrete

Continuous

For
$$X \sim f(x)$$
. Let $Y = aX + b$.

$$\mathbb{E}(Y) = \mathbb{E}(aX+b) = \int (ax+b)f(x)dx$$
$$= a\int xf(x)dx + b\int f(x)dx$$
$$= a\mathbb{E}(X) + b.$$

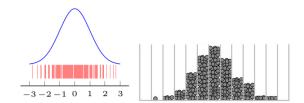
$$\operatorname{Var}(Y) = \operatorname{Var}(aX + b) = \mathbb{E}[((aX + b) - \mathbb{E}(aX + b))^2]$$
$$= \mathbb{E}[(aX + b - (a\mathbb{E}(X) + b))^2]$$
$$= \mathbb{E}[a^2(X - \mathbb{E}(X))^2]$$
$$= a^2\mathbb{E}[(X - \mathbb{E}(X))^2] = a^2\operatorname{Var}(X).$$

Large sample

Ying Nian W

Discrete

Continuous Movie



Sampling $f(x) \rightarrow x_1, ..., x_i, ..., x_n$ (e.g., random number generator $\rightarrow .22, .31, .92, .45, ...$)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \to \operatorname{Var}(X) = \sigma^{2}$$

Linear transformation

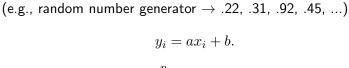
Sampling $f(x) \rightarrow x_1, ..., x_i, ..., x_n$

100A

Ying Nian Wu

Discrete

Continuous Movie



$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mathbb{E}(X) = \mu.$$

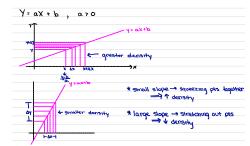
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a \frac{1}{n} \sum_{i=1}^{n} x_i + b = a\bar{x} + b.$$

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\bar{y})^2 = \frac{1}{n}\sum_{i=1}^{n}(ax_i+b-(a\bar{x}+b))^2 = \frac{1}{n}\sum_{i=1}^{n}a^2(x_i-\bar{x})^2.$$

100A

Linear transformation

$$X \sim f(x), Y = aX + b \ (a > 0). \ Y \sim g(y).$$



$$y = ax + b, \ x = (y - b)/a.$$

$$P(X \in (x, x + \Delta x)) = P(Y \in (y, y + \Delta y)).$$

$$f(x)\Delta x = g(y)\Delta y.$$

$$g(y) = f(x)\frac{\Delta x}{\Delta y} = f((y - b)/a))/a.$$

Normal or Gaussian

100A

Ying Nian Wu

Discrete

Continuous

Movie

Let
$$Z \sim N(0, 1)$$
, i.e., the density of Z is

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}.$$
Let $X = \mu + \sigma Z$. $Z = (X - \mu)/\sigma$. Then

 $\mathbb{E}(X) = \mathbb{E}(\mu + \sigma Z) = \mu + \sigma \mathbb{E}(Z) = \mu.$ $\operatorname{Var}(X) = \operatorname{Var}(\mu + \sigma Z) = \sigma^2 \operatorname{Var}(Z) = \sigma^2.$ $f(z)\Delta z = g(x)\Delta x.$

$$g(x) = f(z)\frac{\Delta z}{\Delta x}$$

= $f((x-\mu)/\sigma)/\sigma$
= $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$

Normal or Gaussian

100A

Ying Nian Wu

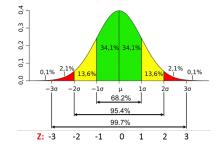
Discrete

Continuous Movie

Let
$$Z\sim {\rm N}(0,1).$$
 Let $X=\mu+\sigma Z.$ $Z=(X-\mu)/\sigma.$ $X\sim {\rm N}(\mu,\sigma^2),$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

(we now use f(x) to denote the density of X.)



 $P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(-2 \le Z \le 2) = 95\%.$

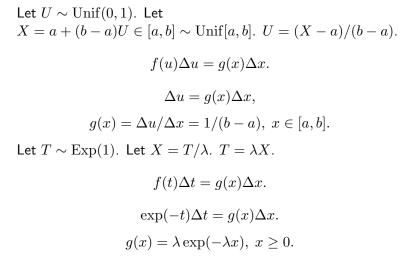
Uniform and Exponential

100A

Ying Nian Wu

Discrete

Continuous Movie

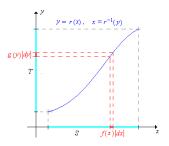


Non-linear transformation

Discrete

Continuous

 $X \sim f(x)$, Y = r(X). $Y \sim g(y)$.



$$y = r(x), \ x = r^{-1}(y).$$

$$P(X \in (x, x + \Delta x)) = P(Y \in (y, y + \Delta y)).$$

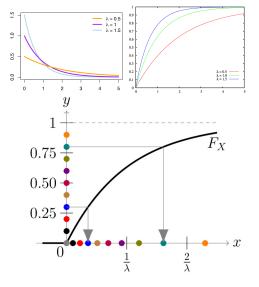
$$f(x)\Delta x = g(y)\Delta y.$$

$$\Delta y/\Delta x = r'(x).$$

Inversion method

Discrete

Continuous Movie



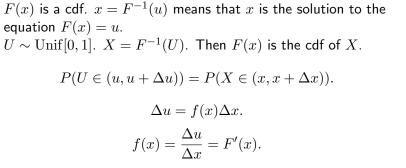
Inversion method

100A

Ying Nian Wu

Discrete

Continuous Movie



Inversion method

100A

Ying Nian Wi

Discrete

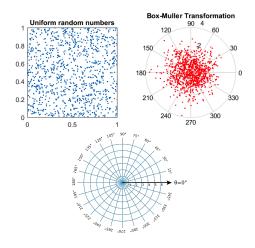
Continuous

Novie

Suppose we want to generate $X \sim \text{Exponential}(1)$. $F(x) = 1 - e^{-x}$. F(x) = u, i.e., $1 - e^{-x} = u$, $e^{-x} = 1 - u$. $x = -\log(1 - u)$. Generate $U \sim \text{Unif}[0, 1]$. Return $X = -\log(1 - U)$.

Continuous

Movie

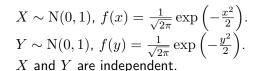


100A

Ying Nian Wi

Discrete

Continuous Movie



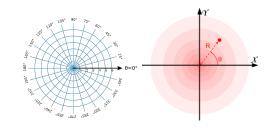
$$P(X \in (x, x + \Delta x), Y \in (y, y + \Delta y))$$

= $P(X \in (x, x + \Delta x)) \times P(Y \in (y, y + \Delta y)).$
 $f(x, y)\Delta x\Delta y = f(x)\Delta x \times f(y)\Delta y.$
 $f(x, y) = \frac{1}{2\pi} \exp\left(-\frac{x^2 + y^2}{2}\right).$

100A Ying Nian W

Discrete

Continuous Movie

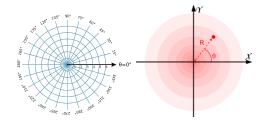


 $x = r \cos \theta$, $y = r \sin \theta$. Area of ring $R \in (r, r + \Delta r)) = 2\pi r \Delta r$. Count proportion of points in the ring = density × area.

$$P(R \in (r, r + \Delta r)) = \frac{1}{2\pi} \exp\left(-\frac{r^2}{2}\right) 2\pi r \Delta r$$
$$= \exp\left(-\frac{r^2}{2}\right) r \Delta r = \exp\left(-\frac{r^2}{2}\right) d\frac{r^2}{2}.$$

Discrete

Continuous Movie

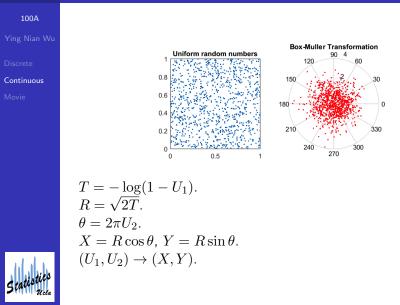


 $x = r \cos \theta$, $y = r \sin \theta$. Let $t = r^2/2$. $\Delta t = r\Delta t$.

$$P(T \in (t, t + \Delta t)) = P(R \in (r, r + \Delta r)).$$

$$f(t)\Delta t = \exp\left(-\frac{r^2}{2}\right)r\Delta r = \exp(-t)\Delta t.$$

 $T \sim \text{Exponential}(1).$



Non-linear transformation

100A

Ying Nian Wi

Discrete

Continuous Movie

 $X \sim f(x), Y = r(X). Y \sim q(y).$

X consists of iid Gaussian $\mathrm{N}(0,1)$ noises.

r is learned from training examples by neural network (deep learning).

Interpolation in x space.

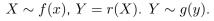
Non-linear transformation

100A

Ying Nian Wı

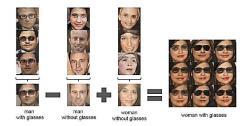
Discrete

Continuous Movie



X consists of iid Gaussian N(0, 1) noises.

r is learned from training examples by neural network (deep learning).



arithmetics in x space.

Quantum mechanics

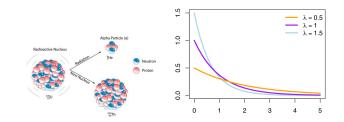
100A

Ying Nian Wi

Discrete

Continuou

Movie



$$\begin{split} T: \text{ time until decay.} \\ T &\sim \operatorname{Exponential}(\lambda). \\ P(T &\in (t, t + \Delta t)) = f(t)\Delta t = \lambda e^{-\lambda t}\Delta t. \end{split}$$

Continuous time process

Ying Nian Wi

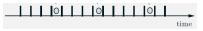
Discrete

Continuous

Movie

Making a movie

Divide the time into small intervals of length Δt (e.g., 1/24 second, or 1/100 second).



Show a picture at 0, Δt , $2\Delta t$, ... Give an illusion of continuous time process as $\Delta t \rightarrow 0$.

Continuous time process

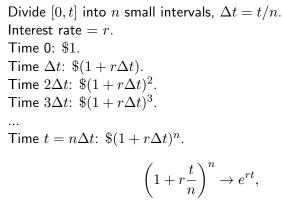
Bank account

100A Ying Nian W

Discrete

Continuous

Movie



time

as $n \to \infty$ or $\Delta t \to 0$.

Continuous time process

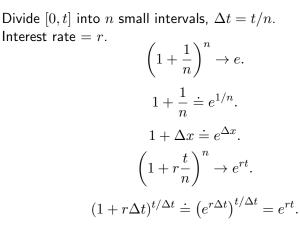
100A

Bank account

Discrete

Continuous

Movie



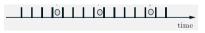
Poisson process

Ying Nian W

Discrete

Continuous

Movie



Flip a coin within each interval. $p = \lambda \Delta t$ (e.g., $\Delta t = 1$ hour. $\lambda =$ once every 10 year. $\lambda \Delta t = 1/3650 \times 1/24$). Geometric waiting time

$$P(T \in (t, t + \Delta t)) = (1 - \lambda \Delta t)^{t/\Delta t} \lambda \Delta t$$

$$\doteq \left(e^{-\lambda \Delta t} \right)^{t/\Delta t} \lambda \Delta t = e^{-\lambda t} \lambda \Delta t.$$

Exponential distribution

100A

Discrete

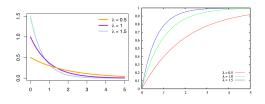
Continuou

Movie

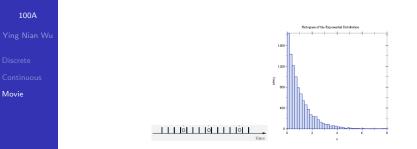
Flip a coin within each interval. $p = \lambda \Delta t$ (e.g., $\Delta t = .001$ second. $\lambda =$ once every minute. $\lambda \Delta t = 1/60 \times .001$). Exponential waiting time

$$\frac{P(T \in (t, t + \Delta t))}{\Delta t} = \lambda e^{-\lambda t}.$$

 $P(T > t) = (1 - \lambda \Delta t)^{t/\Delta t} \doteq (e^{-\lambda \Delta t})^{t/\Delta t} = e^{-\lambda t}.$



Exponential = geometric



1 million particles decay in different period. Each small period is a bin.

Geometric waiting time

We can write $T = \tilde{T}\Delta t$, where $\tilde{T} \sim \text{Geometric}(p = \lambda \Delta t)$. Then

$$\mathbb{E}(T) = \mathbb{E}(\tilde{T})\Delta t = \frac{1}{p}\Delta t = \frac{1}{\lambda\Delta t}\Delta t = 1/\lambda.$$

100A

Movie

Poisson distribution

Flip a coin within each interval. Let X be the number of heads within [0, t], then $X \sim \text{Binomial}(n = t/\Delta t, p = \lambda \Delta t)$.

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \to \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$\begin{split} \mathbb{E}(X) &= np = (t/\Delta t)(\lambda \Delta t) = \lambda t. \\ \lambda &= \mathbb{E}(X)/t, \text{ rate or intensity.} \end{split}$$

Poisson distribution

100A

Ying Nian Wi

Discrete

Continuous

Movie

$$P(X = k) = \frac{n(n-1)...(n-k+1)}{k!} p^k (1-p)^{n-k}$$

$$= \frac{t/\Delta t (t/\Delta t - 1)...(t/\Delta t - k + 1)}{k!}$$

$$\times (\lambda \Delta t)^k (1 - \lambda \Delta t)^{t/\Delta t - k}$$

$$= \frac{t(t - \Delta t)(t - 2\Delta t)...(t - (k-1)\Delta t)}{k!}$$

$$\times \lambda^k (1 - \lambda \Delta t)^{t/\Delta t} (1 - \lambda \Delta t)^{-k}$$

$$\to \frac{t^k}{k!} \lambda^k (e^{-\lambda \Delta t})^{t/\Delta t} = \frac{(\lambda t)^k}{k!} e^{-\lambda t}.$$

Diffusion or Brownian motion

100A

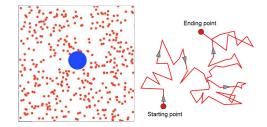
Ying Nian Wi

Discrete

Continuous

Movie

Dust particle in water



100A

Diffusion or Brownian motion

Continuous

Movie

Divide [0, t] into n intervals, $\Delta t = t/n$. Within each small interval, move forward or backward by Δx . $P(Z_i = 1) = P(Z_i = -1) = 1/2$. Z_i are independent.

$$X = \sum_{i=1}^{n} Z_i \Delta x,$$

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(Z_i) \Delta x = 0.$$

Diffusion or Brownian motion

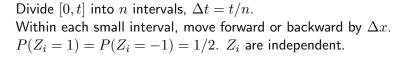
100A

Ying Nian Wu

Discrete

Continuous

Movie

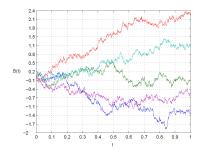


$$X = \sum_{i=1}^{n} Z_i \Delta x,$$

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(Z_i) \Delta x^2 = n \Delta x^2 = \sigma^2 t.$$
$$\Delta x^2 = \sigma^2 t / n = \sigma^2 \Delta t.$$
$$\Delta x = \sigma \sqrt{\Delta t}.$$
$$v = \Delta x / \Delta t = \sigma / \sqrt{\Delta t} \to \infty.$$

Einstein, σ related to the size of molecules.

Diffusion or Brownian motion



X = B(t).Nowhere differentiable.

 $\sigma:$ volatility of stock price, basis for option pricing.

100A

Ying Nian Wu

Discrete

Continuou

Movie

Central limit theorem

 $P(Z_i = 1) = P(Z_i = -1) = 1/2$. Z_i are independent.

$$X = \sum_{i=1}^{n} Z_i \Delta x \sim \mathcal{N}(0, \sigma^2 t),$$

 $\text{ as }n\rightarrow 0.$

Sum of independent random variables \sim Normal distribution.

A drop of milk (millions of particles) diffuses in coffee.

100A

Ying Nian Wu

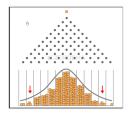
Discrete

Continuous

Movie

$$P(Z_i = 1) = P(Z_i = -1) = 1/2$$
. Z_i are independent.

$$X = \sum_{i=1}^{n} Z_i \Delta x \sim \mathcal{N}(0, \sigma^2 t).$$



Let $Y \sim \text{Binomial}(n, 1/2)$, $\Delta x = \sigma \sqrt{\Delta t} = \sigma \sqrt{t/n}$.

$$X = Y\Delta x - (n - Y)\Delta x = \sigma\sqrt{t}(Y - n/2)/(\sqrt{n}/2).$$
$$\mathbb{E}(Y) = n/2, \operatorname{Var}(Y) = n/4, SD(Y) = \sqrt{n}/2.$$

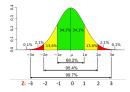
100A

- Ying Nian Wi
- Discrete
- Continuous

Movie

Let
$$X \sim \text{Binomial}(n, p)$$
, sum of independent Bernoulli.
 $\mathbb{E}(X) = np$, $\text{Var}(X) = np(1-p)$.
 $\mathbb{E}(X/n) = p$, $\text{Var}(X/n) = p(1-p)/n$.
Approximately,
 $X \sim \text{N}(np, np(1-p))$.
 $X/n \sim \text{N}(p, p(1-p)/n)$.
e.g., $n = 100, p = 1/2$. $X \sim \text{N}(50, 25)$.
 $P(X \in [50 - 2 \times 5, 50 + 2 \times 5]) = P(X \in [40, 60]) = 95\%$.

 \mathbf{D} : \mathbf{D}



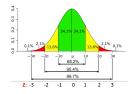
Recall $\sum_{k=40}^{60} {\binom{100}{k}}/{2^{100}} \rightarrow \text{integral}.$

100A

- Ying Nian Wu
- Discrete
- Continuous

Movie

Let
$$X \sim \text{Binomial}(n, p)$$
, sum of independent Bernoulli.
 $\mathbb{E}(X) = np$, $\text{Var}(X) = np(1-p)$.
 $\mathbb{E}(X/n) = p$, $\text{Var}(X/n) = p(1-p)/n$.
Approximately,
 $X \sim \text{N}(np, np(1-p))$.
 $X/n \sim \text{N}(p, p(1-p)/n)$.
e.g., Polling $n = 100, p = .2$. $X/n \sim \text{N}(.2, .04^2)$.
 $P(X/n \in [.2 - 2 \times .04, .2 + 2 \times .04]) = P(X/n \in [.12, .28]) = 95\%$.



100A

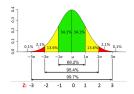
Ying Nian Wu

Discrete

Continuous

Movie

Let $X \sim \text{Binomial}(n, p)$, sum of independent Bernoulli. $\mathbb{E}(X) = np$, Var(X) = np(1-p). $\mathbb{E}(X/n) = p$, Var(X/n) = p(1-p)/n. Approximately, $X \sim \text{N}(np, np(1-p))$. $X/n \sim \text{N}(p, p(1-p)/n)$. e.g., Monte Carlo n = 10000, $p = \pi/4$. $4m/n \sim \text{N}(\pi, \pi(4-\pi)/10000)$.



100/1

Discrete

Continuous

Movie

$$\begin{split} X &\sim \mathrm{Binomial}(n, 1/2). \ \mu = \mathbb{E}(X) = n/2, \\ \sigma^2 &= \mathrm{Var}(X) = n/4, \ \sigma = SD(X) = \sqrt{n}/2. \\ \mathrm{Let} \ Z &= (X - \mu)/\sigma, \ \mathrm{then} \ \mathbb{E}(Z) = 0, \ \mathrm{Var}(Z) = 1, \ \mathrm{no} \ \mathrm{matter} \\ \mathrm{what} \ n \ \mathrm{is.} \\ X &= \mu + Z\sigma = n/2 + Z\sqrt{n}/2. \\ P(X = k) &= \frac{\binom{n}{k}}{2^n} = \frac{n!}{k!(n-k)!2^n}, \end{split}$$

100A

Ying Nian Wi

Discrete

Continuous

Movie

For big n,

$$n! \sim \sqrt{2\pi n} n^n e^{-n},$$

$$P(X = n/2) \sim \frac{n!}{(n/2)!^{2}2^{n}} \\ \sim \frac{\sqrt{2\pi n}n^{n}e^{-n}}{(\sqrt{2\pi(n/2)}(n/2)^{n/2})^{2}2^{n}} \\ \sim \frac{1}{\sqrt{2\pi}}\frac{2}{\sqrt{n}}.$$

Ying Nian V

Let

Discrete

Continuous

Movie

$$\begin{split} k &= \mu + z\sigma = n/2 + z\sqrt{n}/2 = n/2 + d. \\ &\qquad \frac{P(X = n/2 + d)}{P(X = n/2)} = \frac{\binom{n}{n/2 + d}}{\binom{n}{n/2}} \\ &= \frac{n!/[(n/2 + d)!(n/2 - d)!]}{n!/[(n/2)!(n/2)!]} \\ &= \frac{(n/2)!(n/2)!}{(n/2 + d)!(n/2 - d)!} \\ &= \frac{(n/2)(n/2 - 1)...(n/2 - (d - 1)))}{(n/2 + 1)(n/2 + 2)...(n/2 + d)} \\ &= \frac{1(1 - 2/n)(1 - 2 \times 2/n)...(1 - (d - 1) \times 2/n)}{(1 + 2/n)(1 + 2 \times 2/n)...(1 + d \times 2/n)} \\ &= \frac{(1 - \delta)(1 - 2\delta)...(1 - (d - 1)\delta)}{(1 + \delta)(1 + 2\delta)...(1 + d\delta)} \end{split}$$

$$\begin{array}{lll} & \rightarrow & \frac{e^{-\delta}e^{-2\delta}...e^{-(d-1)\delta}}{e^{\delta}e^{2\delta}...e^{d\delta}} \\ = & \frac{e^{-(1+2+...+(d-1))\delta}}{e^{(1+2+...+d)\delta}} \\ = & \frac{e^{-d(d-1)\delta/2}}{e^{d(d+1)\delta/2}} \\ = & e^{-[d(d-1)/2+d(d+1)/2]\delta} = e^{-d^2\delta} \\ = & e^{-(z\sqrt{n}/2)^2(2/n)} = e^{-\frac{z^2}{2}}, \end{array}$$

where $\delta = 2/n$, and $d = z\sqrt{n}/2$.

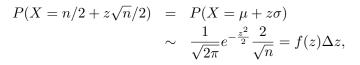
100A

Ying Nian Wu

Discrete

Continuous

Movie



where $f(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$ and $\Delta z = \frac{2}{\sqrt{n}}$. Thus with $\mu = n/2$, $\sigma = \sqrt{n}/2$, and $Z = (X - \mu)/\sigma$, we have

$$\begin{split} P(X \in [\mu + a\sigma, \mu + b\sigma]) &= P(Z \in [a, b]) \\ &= \sum_{z \in [a, b]} f(z) \Delta z \to \int_a^b f(z) dz, \end{split}$$

where the space between two consecutive values of $z=(k-\mu)/\sigma$ is $1/\sigma=2/\sqrt{n}=\Delta z.$