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STATS 100A: RANDOM VARIABLES

Ying Nian Wu

Department of Statistics
University of California, Los Angeles

Some pictures are taken from the internet.
Credits belong to original authors.
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Random variables

Connection to events:
Randomly sample a person ω from a population Ω.
X(ω): gender of ω, Ω→ {0, 1}.
Y (ω): height of ω, Ω→ R+.
A = {ω : X(ω) = 1}. P (A) = P (X = 1). Discrete.
B = {ω : Y (ω) > 6}. P (B) = P (Y > 6). Continuous.
We shall study random variables more systematically.
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Discrete random variables

Roll a die

p(x) = P (X = x).

Capital letter: random variable
Lower case: particular value, running variable

X ∼ p(x).
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Probability distribution

Biased die:
Randomly throw a point into [0, 1], which bin (1, 2, ..., 6) it
falls into?
Throw 1 million points, what is the proportion of points in each
bin? Or how often the points fall into each bin?
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Probability distribution

Biased die:

p(x) = P (X = x).

p(x): how often X = x.
p(x): probability mass function, probability distribution, law∑

x p(x) = 1.
P (X ∈ {5, 6}) = p(5) + p(6).
P (X ∈ [a, b]) =

∑
x∈[a,b] p(x).
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Expectation

Biased die

E(X) =
∑
x

xp(x).
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Expectation

Biased die

E(h(X)) =
∑
x

h(x)p(x).
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Utility

Utility, reward, value

E(h(X)) =
∑
x

h(x)p(x).
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Variance

E(X) =
∑
x

xp(x) = µ(= $0× 1/2 + $200× 1/2 = $100)

Var(X) = E[(X − µ)2] =
∑
x

(x− µ)2p(x) = σ2

= ($0− $100)2 × 1/2 + ($200− $100)2 × 1/2

= $210, 000.

Long run average of squared deviation from the mean.

SD(X) =
√

Var(X) = σ(= $100).

Extent of variation from the mean.
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Variance

E(h(X)) =
∑
x

h(x)p(x).

Var[h(X)] = E[(h(X)− E(h(X)))2].
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Variance

E(X) =
∑
x

xp(x) = µ.

Var(X) = E[(X − µ)2] =
∑
x

(x− µ)2p(x) = σ2.

Long run average of squared deviation from the mean.
Sampling p(x)→ x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

s2 =
1

n

n∑
i=1

(xi − x̄)2 → Var(X) = σ2
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Linear transformation

E(h(X)) =
∑
x

h(x)p(x).

Y = aX + b.

E(Y ) = E(aX + b)

=
∑
x

(ax+ b)p(x)

=
∑
x

axp(x) +
∑
x

bp(x)

= a
∑
x

xp(x) + b
∑
x

p(x)

= aE(X) + b.
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Linear transformation

Sampling p(x)→ x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

yi = axi + b.

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

ȳ =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.
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Linear transformation

Var(h(X)) = E[(h(X)− E(h(X)))2].

Var(Y ) = E[(Y − E(Y ))2].

E(Y ) = aE(X) + b.

Var(aX + b) = E[((aX + b)− E(aX + b))2]

= E[(aX + b− (aE(X) + b))2]

= E[(a(X − E(X)))2]

= a2E[(X − E(X))2] = a2Var(X).
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Linear transformation

Sampling p(x)→ x1, ..., xi, ..., xn
(e.g., rolling a die → 2, 1, 6, 5, 3, 2, 5, 4, 3, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

yi = axi + b.

ȳ =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.

1

n

n∑
i=1

(yi− ȳ)2 =
1

n

n∑
i=1

(axi+b−(ax̄+b))2 =
1

n

n∑
i=1

a2(xi−x̄)2.
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Variance

µ = E(X).

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E(X2)− 2µE(X) + µ2

= E(X2)− µ2 = E(X2)− [E(X)]2.

E[h(X) + g(X)] =
∑
x

[h(x) + g(x)]p(x)

=
∑
x

h(x)p(x) +
∑
x

g(x)p(x)

= E[h(X)] + E[g(X)].
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Transformation

h(x) = ax+ b.

E[h(X)] = E(aX + b) = aE(X) + b = h(E(X)).

Var(X) = E(X2)− [E(X)]2.

h(x) = x2.

E[h(X)] = E(X2);

h(E(X)) = [E(X)]2.
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Convex function

Upper envelop and supporting lines

g(x) ≥ a0x+ b0; g(x0) = a0x0 + b0.

Supporting line at x0 touches g(x) at x0, but below g(x) at
other places.
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Jensen inequality

P (X = a) = P (X = b) = 1/2.
E(X) = (a+ b)/2, g(E(X)) = g((a+ b/2).
E(g(X)) = (g(a) + g(b))/2.
E(g(X)) ≥ g(E(X)).

x0 = E(X).
g(x0) = a0x0 + b0 (supporting line at x0)
g(x) ≥ a0x+ b0.
E(g(X)) ≥ E(a0X+b0) = a0E(X)+b0 = a0x0+b0 = g(E(X)).
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Entropy
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Coin flippings
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Coding
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Coding
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Bernoulli

Flip a coin (probability of head is p)
Z ∼ Bernoulli(p)
Z ∈ {0, 1}, P (Z = 1) = p and P (Z = 0) = 1− p.

E(Z) = 0× (1− p) + 1× p = p.

Var(Z) = (0− p)2 × (1− p) + (1− p)2 × p
= p(1− p)[p+ (1− p)] = p(1− p).

E(Z2) = p.

Var(Z) = E(Z2)− E(Z)2 = p− p2 = p(1− p).
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Binomial

Flip a coin (probability of head is p) n times independently.
X = number of heads.
X ∼ Binomial(n, p)

P (X = k) =

(
n

k

)
pk(1− p)n−k.

(
n
k

)
is the number of sequences with exactly k heads.

pk(1− p)n−k is the probability of each sequence with exactly k
heads.
e.g., n = 3,
P (X = 2) = P (HHT ) + P (HTH) + P (THH) = 3p2(1− p).
p = 1/2, we have P (X = k) =

(
n
k

)
/2n.
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Binomial

(p+ q)n =

n∑
k=0

(
n

k

)
pkqn−k.

Let a = p, b = q = 1− p. Randomly throw a point into unit
cube.
Each rectangular piece corresponds to a particular sequence.
Each color corresponds to a particular number of heads.
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Binomial

Let a = p, b = q = 1− p.
n = 2, P (X = 2) = P (HH) = p2.
P (X = 0) = P (TT ) = (1− p)2.
P (X = 1) = P (HT ) + P (TH) = 2p(1− p).
n = 3, P (X = 3) = P (HHH) = p3.
P (X = 2) = P (HHT ) + P (HTH) + P (THH) = 3p2(1− p).
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Binomial

X = Z1 + Z2 + ...+ Zn,

where Zi ∼ Bernoulli(p) independently.

E(X) =

n∑
i=1

E(Zi) = np.

Due to independence of Zi, i = 1, ..., n,

Var(X) =

n∑
i=1

Var(Zi) = np(1− p).
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Binomial

X/n is the frequency of heads.

E(X/n) = E(X)/n = p.

Var(X/n) = Var(X)/n2 = p(1− p)/n.
Var(X/n)→ 0 as n→∞.

X/n→ p, in probability

Law of large number
Probability = long run frequency
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Law of large number

Probability = long run frequency
Flip a fair coin independently → 2n sequences, Ω.

Aε = {ω : X(ω)/n ∈ (1/2− ε, 1/2 + ε)},

the set of sequences whose frequencies of heads are close to
1/2.

P (X/n ∈ (1/2− ε, 1/2 + ε)) =
|Aε|
|Ω| → 1.

Almost all the sequences have frequencies of heads close to
1/2.

e.g., n = 1 million. Almost all the 21 million sequences have
frequencies of heads to be within [.49, .51].
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Law of large number

e.g., n = 1 million. Almost all the 21 million sequences have
frequencies of heads to be within [.49, .51].

P (X/1m ∈ [.49, .51]) = P (X ∈ [.49m, .51m])

=

.51m∑
k=.49m

(
1m

k

)
/21m.
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Binomial

E(X) =

n∑
k=0

kP (X = k)

=

n∑
k=0

k
n!

k!(n− k)!
pk(1− p)n−k

=

n∑
k=1

np
(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

=

n′∑
k′=0

np

(
n′

k′

)
pk

′
(1− p)n′−k′ = np.

k′ = k − 1; n′ = n− 1.
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Binomial

E(X(X − 1)) =

n∑
k=0

k(k − 1)P (X = k)

=

n∑
k=0

k(k − 1)
n!

k!(n− k)!
pk(1− p)n−k

=

n∑
k=2

n(n− 1)p2 (n− 2)!

(k − 2)!(n− k)!
pk−2(1− p)n−k

=

n′∑
k′=0

n(n− 1)p2

(
n′

k′

)
pk

′
(1− p)n′−k′

= n(n− 1)p2.

k′ = k − 2; n′ = n− 2.
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Binomial

E(X) = np.

E(X(X − 1)) = E(X2)− E(X) = n(n− 1)p2.

Var(X) = E(X2)− E(X)2

= n(n− 1)p2 + np− (np)2

= np− np2 = np(1− p).
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Binomial

A box with R red balls and B blue balls. N = R+B balls in
total.
Randomly pick a ball. P (red) = R/N = p.
Randomly pick n balls sequentially (with replacement, put the
picked ball back). Let X = number of red balls.
The distribution of X:
X ∼ Binomial(n, p = R/N).
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Binomial

Randomly throw n points into the unit square. Let m be the
number of points falling below the curve.

The distribution of m is:
m ∼ Binomial(n, p = π/4).
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Geometric

T ∼ Geometric(p)
T is the number of flips to get the first head, if we flip a coin
independently and the probability of getting a head in each flip
is p.

P (T = k) = (1− p)k−1p.

e.g., T = 1, H
T = 2, TH.
T = 3, TTH.
T = 4, TTTH.
Waiting time.
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Geometric

T ∼ Geometric(p)

E(T ) =

∞∑
k=1

kP (T = k)

=

∞∑
k=1

kqk−1p = p

∞∑
k=1

d

dq
qk

= p
d

dq

∞∑
k=1

qk = p
d

dq

(
1

1− q − 1

)
= p

1

(1− q)2
=

1

p
.
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Geometric

(1− a)(1 + a+ ...+ am) = 1 + a+ ...+ am

−(a+ a2 + ...+ am + am+1)

= 1− am+1.

1 + a+ ...+ am =
1− am+1

1− a .

If |a| < 1,
am+1 → 0, as m→∞.
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Continuous random variable

Recall discrete (e.g., gender)

P (X = x) = p(x).

Continuous (e.g., height)

P (X ∈ (x, x+ ∆x))
.
= f(x)∆x,

e.g., (6 ft, 6 ft 1 inch).

f(x) = lim
∆x→0

P (X ∈ (x, x+ ∆x))

∆x
.

f(x): probability density function
X ∼ f(x).
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Probability density function
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Probability density function

Recall discrete
P (X = x) = p(x).

P (X ∈ [a, b]) =
∑
x∈[a,b]

p(x).

Continuous

P (X ∈ (x, x+ ∆x))
.
= f(x)∆x,

P (X ∈ [a, b]) =
∑
x∈[a,b]

P (X ∈ (x, x+ ∆x))

.
=

b∑
a

f(x)∆x
.
=

∫ b

a
f(x)dx.
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Cumulative density function
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Area and slope

Cumulative Density Function :

F C x ) = Pf II Ex ) = fax fix )dx

¥,,
^ I

raw score percentile

IFFX FCX )

O

f ( x ) = F' ( x ) = Iim Flxtsx ) - F C x )
sx→o

d

iii. iii. .

X xtsx

SX sx

= f ( x ) DX = fcx )
sx

11119119

WEEK 8- LECTURE I
mmmm

Calculus : derivative

y=FCx )

F
'

C x )

II
,

dI
,

¥ Fix )

dye F' L x )dx

DFCX )= F' L x ) dx

ydlflx ) gdy
F C × ) =

11 m FCxtsx)-t# =
Ilm bF# =

Iimsysx→osx SHO Sx SHO sx

NY tax ↳ DX
" " "

Ilm : DX
SHO

X Xtsx
> X

Integral

£ bftxsdx-s.info?fa.ngflx)sx
"
bins "

F (x) =

∫ x

−∞
f(x)dx.

F ′(x) =
dF (x)

dx
=

d

dx
F (x) = f(x).

dF (x) = F ′(x)dx = f(x)dx
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Integral

∫ b

a
f(x)dx = F (b)− F (a).
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cdf vs pdf
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Expectation

Recall discrete :

A how often X -
- X

E c X ) = § xp ( X -
- x ) = § xp Cx )

th
X Xtsx

Continuous :

p how often X E ( X
,

Xt DX )
E ( X ) = § xp ( XE ( x

,
xtsx ) ) = § xfcx ) SX ⇒ fxfcxsdx

( Sum over bins )

ECI ) = fxfcx )dx

Echl # D= § hlx ) PCXE C x
,

xtsx ) )

( bins )

~
hcx )

-

Varix ) =E( C x - Effi) ) =/ C x -

u
)2fCx)dx=E(X

'

) - ECX)
'

Count Large Population :

{ X ( w )
,

we r } or large sample X
, ,Xz ,

- . . ,Xn~fCx )

Scatter Plot :

.  .  -
.

- -- .  -  - - -

9 ×

Density
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Expectation

E(X) =
∑
x

xP (X ∈ (x, x+ ∆x))

.
=

∑
x

xf(x)∆x
.
=

∫
xf(x)dx.

E(h(X)) =
∑
x

h(x)f(x)∆x
.
=

∫
h(x)f(x)dx.

Let Xi ∼ f(x) independently for i = 1, ..., n. Then

1

n

n∑
i=1

Xi → E(X).
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Population or large sample
11114119

WEEK 7- LECTURE 2
mmmm

Continuous R
.
V

.

II - fcx ) prob . density fxn

A large population XL w ) WES

A large sample X
, Xz . .  - Xn large n

t
×I  I  I  L - - l  I - n  \  I  \ -

I million points

f ( x ) = # of points in millions In ( X
,

Xt DX )
Sx

= PCXECX , xtsx ) )

÷-

,

.

"
-

-

.

"
"  -

.  -

, .

Continuous : P ( X E ( X
,

Xtsx ) ) = fcx ) sx

vs .
Discrete : P(X=x ) =p C x )

e.g., population density at LA = f(LA) = proportion of people
in LA/area of LA.
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Population or large sample

11114119

WEEK 7- LECTURE 2
mmmm

Continuous R
.
V

.

II - fcx ) prob . density fxn

A large population XL w ) WES

A large sample X
, Xz . .  - Xn large n

t
×I  I  I  L - - l  I - n  \  I  \ -

I million points

f ( x ) = # of points in millions In ( X
,

Xt DX )
Sx

= PCXECX , xtsx ) )

÷-

,

.

"
-

-

.

"
"  -

.  -

, .

Continuous : P ( X E ( X
,

Xtsx ) ) = fcx ) sx

vs .
Discrete : P(X=x ) =p C x )
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Area under curve

f ( × ) =

# Of points C in millions )
Sx

T if Xi =p,§
,

X . number of points in (×iXn)
-

f C x ) . DX

= fxfcx )dx

= E ( x )

-
-

-
n

,

/ I

/
,

- '

.

/ r I
'

,

/ i

- ,

I
- .

'

:

,

'
-

s
'

.

.
.

in
.

.

-

'÷
.

.
.

Thought Experiment :

! p ?.IE?nYItaheex-
coordinate

Probability Model :

Un Uniform [ 0,17 f↳
Tn Exp ( T )

11114119

WEEK 7- LECTURE 2
mmmm

Continuous R
.
V

.

II - fcx ) prob . density fxn

A large population XL w ) WES

A large sample X
, Xz . .  - Xn large n

t
×I  I  I  L - - l  I - n  \  I  \ -

I million points

f ( x ) = # of points in millions In ( X
,

Xt DX )
Sx

= PCXECX , xtsx ) )

÷-

,

.

"
-

-

.

"
"  -

.  -

, .

Continuous : P ( X E ( X
,

Xtsx ) ) = fcx ) sx

vs .
Discrete : P(X=x ) =p C x )
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Population or large sample

Recall discrete :

A how often X -
- X

E c X ) = § xp ( X -
- x ) = § xp Cx )

th
X Xtsx

Continuous :

p how often X E ( X
,

Xt DX )
E ( X ) = § xp ( XE ( x

,
xtsx ) ) = § xfcx ) SX ⇒ fxfcxsdx

( Sum over bins )

ECI ) = fxfcx )dx

Echl # D= § hlx ) PCXE C x
,

xtsx ) )

( bins )

~
hcx )

-

Varix ) =E( C x - Effi) ) =/ C x -

u
)2fCx)dx=E(X

'

) - ECX)
'

Count Large Population :

{ X ( w )
,

we r } or large sample X
, ,Xz ,

- . . ,Xn~fCx )

Scatter Plot :

.  .  -
.

- -- .  -  - - -

9 ×

Density

f ( × ) =

# Of points C in millions )
Sx

T if Xi =p,§
,

X . number of points in (×iXn)
-

f C x ) . DX

= fxfcx )dx

= E ( x )

-
-

-
n

,

/ I

/
,

- '

.

/ r I
'

,

/ i

- ,

I
- .

'

:

,

'
-

s
'

.

.
.

in
.

.

-

'÷
.

.
.
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Population or large sample

P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = P (X ∈ (x, x+ ∆x))/∆x.
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Population or large sample

P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = P (X ∈ (x, x+ ∆x))/∆x.
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Population or large sample

P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = P (X ∈ (x, x+ ∆x))/∆x.
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Population or large sample

P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = P (X ∈ (x, x+ ∆x))/∆x.
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Population or large sample

P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = P (X ∈ (x, x+ ∆x))/∆x.
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Uniform
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Uniform

U ∼ Uniform[0, 1], i.e., the density of U is
f(u) = 1 for u ∈ [0, 1],
f(u) = 0 otherwise.

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

u

y

P (U ∈ (u, u+ ∆u)) = f(u)∆u = ∆u.
Imagine 1 million points distributed uniformly in [0, 1].
Number of points in (u, u+ ∆u) is ∆u million.
e.g., Number of points in (.3, .31) is .01 million.
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Uniform

F (u) = P (U ≤ u) =


0 0 < u
u 0 ≤ u ≤ 1
1 u > 1

F (u): proportion of points below u.

E(U) =

∫ 1

0
uf(u)du =

1

2
.

E(U2) =

∫ 1

0
u2f(u)du =

1

3
.

Var(U) = E(U2)− (E(U))2 =
1

3
− 1

4
=

1

12
.
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Pseudo-random number generator

Start from an integer X0, and iterate

Xt+1 = aXt + b mod M.

Output Ut = Xt/M . e.g., a = 75, b = 0, and M = 231 − 1.
mod: divide and take the remainder, e.g., 7 = 2 mod 5.
e.g., a = 7, b = 1, M = 5, X0 = 1, then
X1 = 1× 7 + 1 mod 5 = 3.
X2 = 3× 7 + 1 mod 5 = 2.
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Exponential

0 1 2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

t

y

T ∼ Exponential(λ),
f(t) = λe−λt for t ≥ 0,
f(t) = 0 for t < 0.
P (T ∈ (t, t+ ∆t)) = λe−λt∆t.
Imagine 1 million particles, mark the times when they decay.
1 million points on real line. Their distribution is exponential.
Number of points in (t, t+ ∆t) is λe−λt∆t million.
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Exponential

0 1 2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

t

y

F (t) =

∫ t

0
f(t)dt =

∫ t

0
λe−λtdt

= −e−λt|t0 = 1− e−λt.

F (t): proportion of points below t
Half-life: F (thalf) = P (T ≤ thalf) = 1/2.
1 million particles, by half life, half million will have decayed.



100A

Ying Nian Wu

Discrete

Continuous

Movie

64/111

Exponential

E(T ) =

∫ ∞
0

tλe−λtdt

= −
∫ ∞

0
tde−λt

= −(te−λt|∞0 −
∫ ∞

0
e−λtdt)

= −(0− 0 +
1

λ
e−λt|∞0 ) =

1

λ
.
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Integral by parts

d

dx
u(x)v(x) = u′(x)v(x) + u(x)v′(x).

duv = udv + vdu.∫
[u′(x)v(x) + u(x)v′(x)]dx = u(x)v(x).∫

u(x)v′(x)dx = u(x)v(x)−
∫
v(x)u′(x)dx.∫

udv = uv −
∫
vdu.
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Integral by parts

∫
udv = uv −

∫
vdu.∫

u(x)v′(x)dx = u(x)v(x)−
∫
v(x)u′(x)dx.

du(x)

dx
=

d

dx
u(x) = u′(x); du(x) = u′(x)dx.
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Normal or Gaussian

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z

2/2.

∫ 2

−2
f(z)dz = 95%.
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Normal or Gaussian

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z

2/2.

E(Z) =

∫ ∞
−∞

z
1√
2π
e−

z2

2 dz

= − 1√
2π
e−

z2

2 |∞−∞
= 0.

The density is symmetric around 0.
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Normal or Gaussian

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z

2/2.

E(Z2) =

∫ ∞
−∞

z2 1√
2π
e−

z2

2 dz

=
1√
2π

∫ ∞
−∞

(−z)de− z2

2

=
1√
2π

(−ze− z2

2 |∞−∞ −
∫ ∞
−∞

e−
z2

2 d(−z))

=

∫ ∞
−∞

1√
2π
e−

z2

2 dz = 1.

Var(Z) = E(Z2)− (E(Z))2 = 1.
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Variance

For X ∼ f(x), let µ = E(X).

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E(X2)− 2µE(X) + µ2

= E(X2)− (E(X))2.

E[r(X) + s(X)] =

∫
[r(x) + s(x)]f(x)dx

=

∫
r(x)f(x)dx+

∫
s(x)f(x)dx

= E[r(X)] + E[s(X)].
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Linear transformation

For X ∼ f(x). Let Y = aX + b.

E(Y ) = E(aX + b) =

∫
(ax+ b)f(x)dx

= a

∫
xf(x)dx+ b

∫
f(x)dx

= aE(X) + b.

Var(Y ) = Var(aX + b) = E[((aX + b)− E(aX + b))2]

= E[(aX + b− (aE(X) + b))2]

= E[a2(X − E(X))2]

= a2E[(X − E(X))2] = a2Var(X).
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Large sample

Sampling f(x)→ x1, ..., xi, ..., xn
(e.g., random number generator → .22, .31, .92, .45, ...)

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

s2 =
1

n

n∑
i=1

(xi − x̄)2 → Var(X) = σ2
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Linear transformation

Sampling f(x)→ x1, ..., xi, ..., xn
(e.g., random number generator → .22, .31, .92, .45, ...)

yi = axi + b.

x̄ =
1

n

n∑
i=1

xi → E(X) = µ.

ȳ =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

(axi + b) = a
1

n

n∑
i=1

xi + b = ax̄+ b.

1

n

n∑
i=1

(yi− ȳ)2 =
1

n

n∑
i=1

(axi+b−(ax̄+b))2 =
1

n

n∑
i=1

a2(xi−x̄)2.
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Linear transformation

X ∼ f(x), Y = aX + b (a > 0). Y ∼ g(y).

y
= f Cx ) 7¥ fi l × ) } ⇒

safe = If ¥#
x = gcz ) sjxz = g

' L Z )

y
-

- f ( g Cz ) ) ftx ) g
'
Cz 's

IIT = f
'

( g Cz ) ) g
' C z )

d¥f(g Cz) ) = f
'

( g Cz , ) g
' Cz )

II ~

f¥¥tensityof X

y = h ( It ) -¥9!
ensue , of Y

Y = a X t b
,

a > O

y -

y = ax t b

i Itsy

y
← greater density

× sx xtsx 2X

I

y.ba
y =  axtb

* small slope → squeezing pts together
⇒ t density

T
by e- smaller density * large slope → stretching out pts
I ⇒ tr density

+ sx - I

y = ax+ b, x = (y − b)/a.
P (X ∈ (x, x+ ∆x)) = P (Y ∈ (y, y + ∆y)).

f(x)∆x = g(y)∆y.

g(y) = f(x)
∆x

∆y
= f((y − b)/a))/a.
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Normal or Gaussian

Let Z ∼ N(0, 1), i.e., the density of Z is

f(z) =
1√
2π
e−z

2/2.

Let X = µ+ σZ. Z = (X − µ)/σ. Then

E(X) = E(µ+ σZ) = µ+ σE(Z) = µ.

Var(X) = Var(µ+ σZ) = σ2Var(Z) = σ2.

f(z)∆z = g(x)∆x.

g(x) = f(z)
∆z

∆x
= f((x− µ)/σ)/σ

=
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
.
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Normal or Gaussian

Let Z ∼ N(0, 1). Let X = µ+ σZ. Z = (X − µ)/σ.
X ∼ N(µ, σ2),

f(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
.

(we now use f(x) to denote the density of X.)

P (µ− 2σ ≤ X ≤ µ+ 2σ) = P (−2 ≤ Z ≤ 2) = 95%.
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Uniform and Exponential

Let U ∼ Unif(0, 1). Let
X = a+ (b− a)U ∈ [a, b] ∼ Unif[a, b]. U = (X − a)/(b− a).

f(u)∆u = g(x)∆x.

∆u = g(x)∆x,

g(x) = ∆u/∆x = 1/(b− a), x ∈ [a, b].

Let T ∼ Exp(1). Let X = T/λ. T = λX.

f(t)∆t = g(x)∆x.

exp(−t)∆t = g(x)∆x.

g(x) = λ exp(−λx), x ≥ 0.
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Non-linear transformation

X ∼ f(x), Y = r(X). Y ∼ g(y).

y = r(x), x = r−1(y).

P (X ∈ (x, x+ ∆x)) = P (Y ∈ (y, y + ∆y)).

f(x)∆x = g(y)∆y.

∆y/∆x = r′(x).

Locally linear.
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Inversion method
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Inversion method

F (x) is a cdf. x = F−1(u) means that x is the solution to the
equation F (x) = u.
U ∼ Unif[0, 1]. X = F−1(U). Then F (x) is the cdf of X.

P (U ∈ (u, u+ ∆u)) = P (X ∈ (x, x+ ∆x)).

∆u = f(x)∆x.

f(x) =
∆u

∆x
= F ′(x).
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Inversion method

Suppose we want to generate X ∼ Exponential(1).
F (x) = 1− e−x.
F (x) = u, i.e., 1− e−x = u, e−x = 1− u. x = − log(1− u).
Generate U ∼ Unif[0, 1]. Return X = − log(1− U).
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Polar method
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Polar method

X ∼ N(0, 1), f(x) = 1√
2π

exp
(
−x2

2

)
.

Y ∼ N(0, 1), f(y) = 1√
2π

exp
(
−y2

2

)
.

X and Y are independent.

P (X ∈ (x, x+ ∆x), Y ∈ (y, y + ∆y))

= P (X ∈ (x, x+ ∆x))× P (Y ∈ (y, y + ∆y)).

f(x, y)∆x∆y = f(x)∆x× f(y)∆y.

f(x, y) =
1

2π
exp

(
−x

2 + y2

2

)
.
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Polar method

x = r cos θ, y = r sin θ.
Area of ring R ∈ (r, r + ∆r)) = 2πr∆r.
Count proportion of points in the ring = density × area.

P (R ∈ (r, r + ∆r)) =
1

2π
exp

(
−r

2

2

)
2πr∆r

= exp

(
−r

2

2

)
r∆r = exp

(
−r

2

2

)
d
r2

2
.
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Polar method

x = r cos θ, y = r sin θ.
Let t = r2/2. ∆t = r∆t.

P (T ∈ (t, t+ ∆t)) = P (R ∈ (r, r + ∆r)).

f(t)∆t = exp

(
−r

2

2

)
r∆r = exp(−t)∆t.

T ∼ Exponential(1).
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Polar method

T = − log(1− U1).
R =

√
2T .

θ = 2πU2.
X = R cos θ, Y = R sin θ.
(U1, U2)→ (X,Y ).
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Non-linear transformation

X ∼ f(x), Y = r(X). Y ∼ g(y).
X consists of iid Gaussian N(0, 1) noises.
r is learned from training examples by neural network (deep
learning).

Figure 5: Linear interpolation in latent space between real images

(a) Smiling (b) Pale Skin

(c) Blond Hair (d) Narrow Eyes

(e) Young (f) Male

Figure 6: Manipulation of attributes of a face. Each row is made by interpolating the latent code of an
image along a vector corresponding to the attribute, with the middle image being the original image

6 Qualitative Experiments

We now study the qualitative aspects of the model on high-resolution datasets. We choose the
CelebA-HQ dataset (Karras et al., 2017), which consists of 30000 high resolution images from the
CelebA dataset, and train the same architecture as above but now for images at a resolution of 2562,
K = 32 and L = 6. To improve visual quality at the cost of slight decrease in color fidelity, we train
our models on 5-bit images. We aim to study if our model can scale to high resolutions, produce
realistic samples, and produce a meaningful latent space. Due to device memory constraints, at these
resolutions we work with minibatch size 1 per PU, and use gradient checkpointing (Salimans and
Bulatov, 2017). In the future, we could use a constant amount of memory independent of depth by
utilizing the reversibility of the model (Gomez et al., 2017).

Consistent with earlier work on likelihood-based generative models (Parmar et al., 2018), we found
that sampling from a reduced-temperature model often results in higher-quality samples. When
sampling with temperature T , we sample from the distribution p✓,T (x) / (p✓(x))T 2

. In case of
additive coupling layers, this can be achieved simply by multiplying the standard deviation of p✓(z)
by a factor of T .

Synthesis and Interpolation. Figure 4 shows the random samples obtained from our model. The
images are extremely high quality for a non-autoregressive likelihood based model. To see how
well we can interpolate, we take a pair of real images, encode them with the encoder, and linearly
interpolate between the latents to obtain samples. The results in Figure 5 show that the image
manifold of the generator distribution is extremely smooth and almost all intermediate samples look
like realistic faces.

Semantic Manipulation. We now consider modifying attributes of an image. To do so, we use the
labels in the CelebA dataset. Each image has a binary label corresponding to presence or absence of
attributes like smiling, blond hair, young, etc. This gives us 30000 binary labels for each attribute.

8

Interpolation in x space.
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Non-linear transformation

X ∼ f(x), Y = r(X). Y ∼ g(y).
X consists of iid Gaussian N(0, 1) noises.
r is learned from training examples by neural network (deep
learning).

arithmetics in x space.
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Quantum mechanics

Particle decay

T : time until decay.
T ∼ Exponential(λ).
P (T ∈ (t, t+ ∆t)) = f(t)∆t = λe−λt∆t.
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Continuous time process

Making a movie
Divide the time into small intervals of length ∆t (e.g., 1/24
second, or 1/100 second).

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Show a picture at 0, ∆t, 2∆t, ...
Give an illusion of continuous time process as ∆t→ 0.
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Continuous time process

Bank account

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Divide [0, t] into n small intervals, ∆t = t/n.
Interest rate = r.
Time 0: $1.
Time ∆t: $(1 + r∆t).
Time 2∆t: $(1 + r∆t)2.
Time 3∆t: $(1 + r∆t)3.
...
Time t = n∆t: $(1 + r∆t)n.(

1 + r
t

n

)n
→ ert,

as n→∞ or ∆t→ 0.
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Continuous time process

Bank account

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Divide [0, t] into n small intervals, ∆t = t/n.
Interest rate = r. (

1 +
1

n

)n
→ e.

1 +
1

n

.
= e1/n.

1 + ∆x
.
= e∆x.(

1 + r
t

n

)n
→ ert.

(1 + r∆t)t/∆t
.
=
(
er∆t

)t/∆t
= ert.
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Poisson process

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
p = λ∆t (e.g., ∆t = 1 hour. λ = once every 10 year.
λ∆t = 1/3650× 1/24).
Geometric waiting time

P (T ∈ (t, t+ ∆t)) = (1− λ∆t)t/∆tλ∆t

.
=

(
e−λ∆t

)t/∆t
λ∆t = e−λtλ∆t.
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Exponential distribution

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
p = λ∆t (e.g., ∆t = .001 second. λ = once every minute.
λ∆t = 1/60× .001).
Exponential waiting time

P (T ∈ (t, t+ ∆t))

∆t
= λe−λt.

P (T > t) = (1− λ∆t)t/∆t
.
= (e−λ∆t)t/∆t = e−λt.
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Exponential = geometric

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 
1 million particles decay in different period. Each small period
is a bin.
Geometric waiting time
We can write T = T̃∆t, where T̃ ∼ Geometric(p = λ∆t).
Then

E(T ) = E(T̃ )∆t =
1

p
∆t =

1

λ∆t
∆t = 1/λ.
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Poisson distribution

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Flip a coin within each interval.
Let X be the number of heads within [0, t], then
X ∼ Binomial(n = t/∆t, p = λ∆t).

P (X = k) =

(
n

k

)
pk(1− p)n−k → (λt)k

k!
e−λt.

E(X) = np = (t/∆t)(λ∆t) = λt.
λ = E(X)/t, rate or intensity.
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Poisson distribution

P (X = k) =
n(n− 1)...(n− k + 1)

k!
pk(1− p)n−k

=
t/∆t(t/∆t− 1)...(t/∆t− k + 1)

k!

× (λ∆t)k(1− λ∆t)t/∆t−k

=
t(t−∆t)(t− 2∆t)...(t− (k − 1)∆t)

k!

× λk(1− λ∆t)t/∆t(1− λ∆t)−k

→ tk

k!
λk(e−λ∆t)t/∆t =

(λt)k

k!
e−λt.
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Diffusion or Brownian motion

Dust particle in water
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Diffusion or Brownian motion

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Divide [0, t] into n intervals, ∆t = t/n.
Within each small interval, move forward or backward by ∆x.
P (Zi = 1) = P (Zi = −1) = 1/2. Zi are independent.

X =

n∑
i=1

Zi∆x,

E(X) =

n∑
i=1

E(Zi)∆x = 0.
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Diffusion or Brownian motion

Merging of Independent Bernoulli Processes 

 
 
 
 
 
 
 
 
 
 yields a Bernoulli process (collisions are counted as one                                       
 arrival) 

14 

Divide [0, t] into n intervals, ∆t = t/n.
Within each small interval, move forward or backward by ∆x.
P (Zi = 1) = P (Zi = −1) = 1/2. Zi are independent.

X =

n∑
i=1

Zi∆x,

Var(X) =

n∑
i=1

Var(Zi)∆x
2 = n∆x2 = σ2t.

∆x2 = σ2t/n = σ2∆t.

∆x = σ
√

∆t.

v = ∆x/∆t = σ/
√

∆t→∞.
Einstein, σ related to the size of molecules.
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Diffusion or Brownian motion

X = B(t).
Nowhere differentiable.
σ: volatility of stock price, basis for option pricing.
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Normal approximation

Central limit theorem
P (Zi = 1) = P (Zi = −1) = 1/2. Zi are independent.

X =

n∑
i=1

Zi∆x ∼ N(0, σ2t),

as n→ 0.
Sum of independent random variables ∼ Normal
distribution.
A drop of milk (millions of particles) diffuses in coffee.
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Normal approximation

P (Zi = 1) = P (Zi = −1) = 1/2. Zi are independent.

X =

n∑
i=1

Zi∆x ∼ N(0, σ2t).

Let Y ∼ Binomial(n, 1/2), ∆x = σ
√

∆t = σ
√
t/n.

X = Y∆x− (n− Y )∆x = σ
√
t(Y − n/2)/(

√
n/2).

E(Y ) = n/2,Var(Y ) = n/4, SD(Y ) =
√
n/2.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., n = 100, p = 1/2. X ∼ N(50, 25).
P (X ∈ [50− 2× 5, 50 + 2× 5]) = P (X ∈ [40, 60]) = 95%.

Recall
∑60

k=40

(
100
k

)
/2100 → integral.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., Polling n = 100, p = .2. X/n ∼ N(.2, .042).
P (X/n ∈ [.2− 2× .04, .2 + 2× .04]) = P (X/n ∈ [.12, .28]) =
95%.
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Normal approximation

Let X ∼ Binomial(n, p), sum of independent Bernoulli.
E(X) = np, Var(X) = np(1− p).
E(X/n) = p, Var(X/n) = p(1− p)/n.
Approximately,
X ∼ N(np, np(1− p)).
X/n ∼ N(p, p(1− p)/n).
e.g., Monte Carlo n = 10000, p = π/4.
4m/n ∼ N(π, π(4− π)/10000).
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Normal approximation

X ∼ Binomial(n, 1/2). µ = E(X) = n/2,
σ2 = Var(X) = n/4, σ = SD(X) =

√
n/2.

Let Z = (X − µ)/σ, then E(Z) = 0, Var(Z) = 1, no matter
what n is.
X = µ+ Zσ = n/2 + Z

√
n/2.

P (X = k) =

(
n
k

)
2n

=
n!

k!(n− k)!2n
,
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Normal approximation

For big n,
n! ∼

√
2πnnne−n,

P (X = n/2) ∼ n!

(n/2)!22n

∼
√

2πnnne−n

(
√

2π(n/2)(n/2)n/2)22n

∼ 1√
2π

2√
n
.
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Normal approximation

Let k = µ+ zσ = n/2 + z
√
n/2 = n/2 + d.

P (X = n/2 + d)

P (X = n/2)
=

(
n

n/2+d

)(
n
n/2

)
=

n!/[(n/2 + d)!(n/2− d)!]

n!/[(n/2)!(n/2)!]

=
(n/2)!(n/2)!

(n/2 + d)!(n/2− d)!

=
(n/2)(n/2− 1)...(n/2− (d− 1))

(n/2 + 1)(n/2 + 2)...(n/2 + d)

=
1(1− 2/n)(1− 2× 2/n)...(1− (d− 1)× 2/n)

(1 + 2/n)(1 + 2× 2/n)...(1 + d× 2/n)

=
(1− δ)(1− 2δ)...(1− (d− 1)δ)

(1 + δ)(1 + 2δ)...(1 + dδ)
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Normal approximation

→ e−δe−2δ...e−(d−1)δ

eδe2δ...edδ

=
e−(1+2+...+(d−1))δ

e(1+2+...+d)δ

=
e−d(d−1)δ/2

ed(d+1)δ/2

= e−[d(d−1)/2+d(d+1)/2]δ = e−d
2δ

= e−(z
√
n/2)2(2/n) = e−

z2

2 ,

where δ = 2/n, and d = z
√
n/2.
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Normal approximation

P (X = n/2 + z
√
n/2) = P (X = µ+ zσ)

∼ 1√
2π
e−

z2

2
2√
n

= f(z)∆z,

where f(z) = 1√
2π
e−

z2

2 and ∆z = 2√
n

. Thus with µ = n/2,

σ =
√
n/2, and Z = (X − µ)/σ, we have

P (X ∈ [µ+ aσ, µ+ bσ]) = P (Z ∈ [a, b])

=
∑
z∈[a,b]

f(z)∆z →
∫ b

a
f(z)dz,

where the space between two consecutive values of
z = (k − µ)/σ is 1/σ = 2/

√
n = ∆z.
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