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Population

Distribution Recall Example 2 in Part 1: Sample a random person from a
population of 100 people, 50 males and 50 females. 30 males
are taller than 6 ft, 10 females are taller than 6 ft.

male female

taller than 6 ft 10
30

shorter than 6 ft

50 50



Population proportion

Example 2: A male, B tall.

male female

Distribution 10
taller than 6 ft

30

shorter than 6 ft

50 50

| Al 50
_|B] 30410
Q100
|AnB| 30
1Q _100_30%'

Probability = population proportion.

P(B) = 40%.

P(ANnB) =



Population proportion

Experiment — outcome — number
A Example 2: A male, B tall.

Distribution male female
taller than 6 ft 10
30
shorter than 6 ft
50 50
|[AnB| _ 30
A|B =175
PAIB) = == = {5 =T5%
Among tall people, what is the proportion of males?
|[AnB| 30
BlA = 60%
P(BIA) = == = 55 = 60%

Among males, what is the proportion of tall people?
Conditional probability = proportion within
sub-population.



Joint distribution

Example 2: X € { male, female}, Y € { tall, short}.

Distribution

p(x,y) ZP(XZZ',Y:y)

male female
taller than 6 ft 10
30
shorter than 6 ft
50 50

p(m,t) = .3;p(m,s) = .2;p(f,t) = .1;p(f,s) = .4



Marginal distribution

Example 2: X € { male, female}, Y € { tall, short}.

p(z,y) = P(X = 2,Y =y).

male female
taller than 6 ft 10
30
shorter than 6 ft
50 50



Conditional distribution

Example 2: X € { male, female}, Y € { tall, short}.

Distribution . . .
p(z,y) = P(X = 2,Y =y).
male female
taller than 6 ft 10
30
shorter than 6 ft
50 50

P(X =z|Y =y) = p(z[y
PY =y|X =z) =p(ylz

I
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Chain rule: p(z,y) = p(x)p(y|x) = p(y)p(z|y).



Rule of total probability

Example 2: X € { male, female}, Y € { tall, short}.

Distribution

p($ay) :P(sz,yzy)

male female
taller than 6 ft 10
30
shorter than 6 ft
50 50

= play) = Zp p(y|z).



Bayes rule

Example 2: X € { male, female}, Y € { tall, short}.

Distribution

p($ay) :P(X:x,Y:y)

male female
10
taller than 6 ft %0 X
Inference ( l Causal
shorter than 6 ft
50 50 Y
_plzy) _ pl@)p(y|z)
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Independence

100A

Ying Nian Wu P(A|B) == P(A)
Distribution P(A m B) = P(A)P(B)

X € { male, female}, Y € { college, not}

0

M F
College 20 20
degree

B AnB
No college

degree

50 50 - A "

p(ylz) = p(y)



Reasoning
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Distribution Recall Example 6: Rare disease example
1% of population has a rare disease.

A random person goes through a test.

If the person has disease, 90% chance test positive.

If the person does not have disease, 90% chance test negative.
If tested positive, what is the chance he or she has disease?

P(D) = 1%.
P(+|D) = 90%, P(—|N) = 90%.
P(D|+) =7

X e{D,N}. Y e{+,-}.



Distribution

N

9 99

- &
Inference Causal
Y

10 (1%) 990 (99%)

p(w,y): p(@)p(ylz)
ply) 2 p(plyla’)

p(zly) =

p(x): prior belief. p(x|y): posterior belief.
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Distribution

Marginal Probability
x P(x,y) Py(x)=PX =x)

Py(y)



Continuous

Distribution

6w 1o
68.2%
95.4%

1 o 32 3 o
S 1 2 3
| | | | | | |
-3-2-10 1 2 3 o mol¥ l'-- z3 2 1 01 2 3

99.7%

P(X € (z,z+ Ax)) = f(x)Ax.
f(x) = P(X € (z,x + Ax))/Ax.



Two continuous random variables

X = height, Y = weight.

Distribution

Distribution of Height

Height (inches)




Two continuous random variables

Distribution

X = height, Y = weight.

Relationship between Height and Weight Relationship between Height and Weight
o 5 — Vs e ne o
fl Rerenin

Weight (pounds)

Weight (pounds)

5 ®

Height (inches) Height (inches)




Two continuous random variables

Distribution X = height, Y

weight.

Relationship between Height and Weight (sample of 500 females)
Femates

180

Weight (pounds)

© @ &
Height (inches)



Two continuous random variables

X = husband, Y = wife.

Heightdistribution of husbands and wives

Distribution

U.S., 2009
14
w Husbands (Median: 5' 117)
12 mWives (Median: 5'5")
o 10
=
e
@
=]
]
@
=4
g6
g
s
-
2
0

48
50-51
52.53
54-55
2 66-67
a
>
8283

B ea-69




continuous random variables

Distributi .
S husband, Y = wife.

70 N
.60 7
EY < 65
£ £
o 40 £ .
g 2
2 £60
z 2 .
20 3 g - N
; 554 B

X ! 60 65 70 75
Husband's age (in years) Husband's height (in inches)



Distribution

P(X € (z,2+ Ax),Y € (y,y + Ay) = f(z,y)AzAy.
f(z,y) = P(X € (z,2+ Az),Y € (y,y + Ay)/AzAy.



Distribution

P(X € (z,x+ Ax)) = f(x)Ax.

P(X € (z,2+Ax)) = ZP(X € (z,24+Ax),Y € (y,y+Ay)).
y

f(z)Az = Z f(z,y)AzAy.

f@) = Y fe)dy = [ 1)y



Distribution

)
B p(xIY={-2-2.3])

P(X € (z,x 4+ Ax)|Y € (y,y + Ay)) = f(z|y)Az.

P(X € (z,x 4+ Az)|Y € (y,y + Ay)) = P(XPTY()S;))G 0)

_ [z, y)AzAy
Jely)fe= fy)Ay

_ f(z,y)
f(zly) = )
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Distribution

Wu

Conditional density

Pl Joint Probability 103 Conditional Probability
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Density

Distribution

Percent Body Fat (BF)

El
Bodv Mass Index (BMI



Distribution




Density
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Distribution £L‘ .‘1) XAy

Y’I‘ |\| )’" PY(3)=21_|V(X,\J)
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Distribution

Y =pX +e e~ N0,1-p?),

€ is independent of X. Given X =z, Y = px +e.



Distribution

The distribution of points within a vertical slice at x.
E(Y|X =xz) = E(px + €) = pz.

Regression towards the mean, e.g., son's height given father’s
height.

Var(Y|X = z) = Var(pz + ¢) = Var(e) = 1 — p*.

[Y|X = 2] ~ N(pz,1 - p?).



Bivariate Normal

Distribution

Ix(@) fyx(ylz)

— \/%exp <—$22> MGXP <_(2y(1_—ngj>
1 1

= ———exXp|————~
N p[ 2(1 - p?)

symmetric in (z,y)

(2 +y° — 2pwy)] :



Expectation

Correlation

~ f(xay)' then

E(h(X,Y)) = / / Wz, 9) f (z, y)dzdy.



Correlation

Population average or long run average of h(X,Y).

n

1 1
=~ MY = =) h(wy)nf (@ y)Ardy
=1 cells

— //h(a;,y)f(z,y)da;dy.



Variance

Correlation

Let up = E(R(X,Y)), then

Var(h(X,Y)) = E[(h(X,Y) — up)?]-



Covariance

Correlation

Let ux = E(X), py = E(Y), we define the covariance
Cov(X,Y) =E[(X — px)(Y — py)].

It is defined for both discrete and continuous random variables.



Covariance

Correlation




Covariance
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Correlation

Positive Negative No
Relationship Relationship Relationship
1 n
Cov(X,Y) == (X; — X)(V; - Y).
n
=1

1L (X (Y; —¥) > 0.

_ _) _
I, IvV: (X; —X)(Y; -Y) <0.



Covariance

Correlation

Cov(X,Y)

Clearly, Cov(X, X)

E
E

(X = px)(Y — py)]

XY — pxY — Xpy + pxpy]
E(XY) — puxE(Y) — pyE(X) + pxpy
E(XY) — pxpy

E(XY) — E(X)E(Y).

[
[

= Var(X) and Cov(Y,Y) = Var(Y).



Linearity

Cov(aX + b,cY +d)
= E[(aX +b—E(aX +0))(cY +d—E(cY +d))]
= Ela(X —E(X))e(Y —E(Y))] = acCov(X,Y).

Covariance depends on units (meter/foot, kilogram/pound).

Cov(X+Y,Z) =E[(X+Y —-E(X +Y))(Z - E(2))]
= E[(X -E(X)+Y —E(Y))(Z - E(2))]
E[(X - E(X))(Z - E(2))] + E[(Y - E(Y))(Z - E(2))]
= Cov(X,Z)+ Cov(Y, Z).



Correlation

Perfect +ve High +ve Low +ve Low -ve High -ve Perfect -ve
X Correlation Correlation Correlation Correlation Correlation Correlation
Correlation
¥ 0.9 +0.5 0.5 -0.9 1

Standardize: X — (X — pux)/ox, Y = (Y — uy)/oy.

X—pux Y—py\ Cov(X,Y)
COV< ’ ) ~ /Var(X)y/Var(Y)

= Corr(X,Y).

ox oy



Perfect +ve High +ve Low +ve Low -ve High -ve Perfect -ve

i (o O Correlation Correlation Correlation Correlation Correlation Correlation
Correlation ‘ ‘ N ‘ . ‘ - ',' ‘ .
I +0.9 +0.5 -0.5 -0.9 -1
XY
Corr(X,Y) = Cov(X, ¥)
\/Var X)y/Var(Y)
1 _ _
XY)=— X,i—-X)Y;,-Y).
Cov(X,Y) - ;( ) )
Var(X) = 1 3 00x - %07 varr) = L3 - vy
ar = — i 5 I = - i .
nia ’ i
X; —
Corr(X,Y) iz O —Y)

¢zlyx X2\ /S -V



Correlation

Perfect +ve High +ve Low +ve Low -ve High -ve Perfect -ve
Correlation Correlation Correlation Correlation Correlation Correlation

Correlation

-




Correlation

Perfect +ve High +ve Low +ve Low -ve High -ve Perfect -ve
Correlation Correlation Correlation Correlation Correlation Correlation

Correlation

-

Centralize: X; =X, - X; Y, =Y, - Y.
Z?:l Xszl

VI, X2y, v
(X, Y)

= — L =cos#.
XY

Corr(X,Y) =




Correlation and regression

Correlation
Scatter Plot - 2 dimension

= — y Vector Plot — n dimension
£ A € y=pzx
2 H g (&, 77) ¥
= o o
X Yi € e
]
: : : 1 % a—
BX

Xn In én



Correlation

random error for X,

Y

observed value for ¥, |-~

predicted value for ¥; F------
.

Regression line:

An observed value

of y when x = x, Straight line

§=BotPBix

Error term ——>

Estimated value
of y whenx =xo

One unit change in x

Y- intercept

Xo= Aspecific value of the
independent variable x

Y -Y =61 (X - X).
V=8X+ (Y - BiX) = B1X + b




Correlation and regression

Correlation




Correlation and regression

Correlation




Correlation and regression

Correlation




Independence

E[(X — px)(Y — py)]
= > > (z—px)(y — py)p(z.y)
x Yy

_ Z Z(x — px)(y — py)px (@)py (y)
= > (@—px)px (@) _(y = py)py (¥)

T Yy

= (Z wpx (z) — ux> (Z ypy (y) — uy) =0.



Correlation

Correlation = -0.81

Correlation = 0.81

Correlation
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Correlation

X ~un€ (-1 ,1)
yox

Correlation

Let X be a uniform distribution over [~1,1]. Let Y = X2,
Then X and Y are not independent.

However, E(XY) = E(X3) =0, and E(X) = 0. Thus
Cov(X,Y) = E(XY) — E(X)E(Y) = 0.




Bivariate normal

L

Correlation

X ~N(0,1),
Y =pX +€ e~ N(0,1—p?),

EY)=E(pX +¢) =0.
€ and X are independent.
Var(Y) = Var(pX + ¢€) = p*Var(X) + Var(e) = 1.
Cov(X,Y) = E(XY) = E[X (pX +¢)] = pE(X?)+E(X¢) = p.
E(Xe) =E(X)E(e) = 0.



Variance of sum

Correlation

Var(X +Y) = E[(X +Y) — pux+v)’]
= E[(X — px) + (Y — py))?]

= E[(X —px)?+ (Y — py)? +2(X — pux)(Y — py)]

= E[(X — pux)’| + E[(Y — py)?] + 2E[(X — px)(Y — py)]
= Var(X) + Var(Y) + 2Cov(X,Y).

If X and Y are independent, then Cov(X,Y) =0, and

Var(X +Y) = Var(X) + Var(Y).



Variance of sum

Limiting




Variance of sum

x +y = const. y x+y = const.

Limiting Cov>0 Cov <0
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Average
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Average

a Overall b Non-STEM
Limiting
1
| 1 1
| 1 |
1 1 1
1 I
' Grades Grades

+ On average girls grades better,
« Girls grades more consistent,
« Fewer top scoring girls

+ On average girls grades much better,
+ Girls grades similarly variable,
+ More top scoring girls

c STEM - Girls

-Boys

Grades

+ On average girls grades slightly better,
« Girls grades much more consistent,
+ Many fewer top scoring girls



Xi~ f(z),i=1,...,n, iid: independent and identically
distributed.

Limiting

E(X;) = p; Var(X;) =0 i=1,..,n.
n

E(S) =E()_ Xi) = > E(X;) =np.
i=1

i=1
Var(S) = Var(z Xi) = ZVar(Xi) = no’.
i=1 i=1

E(X) = EE;S’) = u.
Var(.S) _ n;cQ o?

Var(X) = > 3 -




Law of large number

o _ E(5)
Limiting E(X) = T = K.
2 2
Var(x) = Y8 1007
n n n

X — p, in probability.
P(IX —pu|l <€) =1, Ve > 0.

Average — expectation.



Law of large number

Special case:

n
Limiting X = Z Z;, Z; ~ Bernoulli(p) iid.
=1

E(X) = np; Var(X) =np(1 - p).
E(X/n) = p; Var(X/n) = p(1 —p)/n — 0.
X/n — p, in probability.

Frequency — probability.
X/n is average of Z;. Probability is expectation of Z;.



Law of large number

Special case:

Law of Large Numbers
p=05

10
Limiting L

probability
o
S
T

», 05

1 100 200 300 400 SO0 600 70O 800 900 1000
# of trials

Keep flipping a fair coin, frequency — 1/2.
Intuition: most of 2" sequences have frequencies close to

1/2.



Law of large number

Special case: X; ~ Uniform[0,1], iid, i = 1,...,n.

Ying Nian Wu

n
X
g o 2zt Ni — E(X;) =1/2.
n

. P(X —1/2| <€) 1, Ve > 0.

Intuition: (X1, ..., X, ..., X,;) is a random point in = [0, 1],
n-dimensional unit cube.

A={(x1,...,Ti, ..., xy) : |T —1/2] < €} is the central diagonal
piece.

P(A) is the volume of A. P(A) — 1.

No matter how small € is, the volume of the central diagonal
piece is almost the same as the volume of the whole
n-dimensional unit cube €.

Most of the points in 2 belong to A.



Law of large number

Limiting




Statistical physics

Ying Nian Wu

Most of the points in 2 belong to A.
Suppose (z1, ..., X, ..., T ) describes a physical system, e.g.,
P n = 10%* molecules.

It evolves deterministically over time, by traversing with €.
Ergodic: it traverses every point in ) with equal number of
visits in the long run.

Then mostly it will be in A, and thus z = 1/2.

Or at any random moment, (z;, ..., z;, ..., x,) ~ Unif[0, 1] iid,
and thus z — 1/2.

Law of large number is the reason statistical physics makes
sense, even if we assume things move deterministically.



Central limit theorem

6
Limiting ||I
. b

X = Z;, Z; ~ Bernoulli(1/2) iid.
=1

X ~ Binomial(n,1/2). P(X = k) = (QLB

P(X =n/2+ 2yn/2) = P(X/n=1/2+ z/(2v/n))

- \/%exp (—%2> % = f(z)Az.



Central limit theorem

Sum of bernoulli dist. (n=1) Sum of bernoulli dist. (n=4)

0.4 9
z 2z
i /(\ . //(h\
E 3
2 [
& &£
0.0 r 0.04 !
. -1 0 1 0 2 4
Limiting
Sum of bernoulli dist. (n=20) Sum of bernoulli dist. (n=80)
z z
201 2005
s s
& - B = 0.00

o
o

X = Z Zi, Z; ~ Bernoulli(p) iid.
i=1

E(X) = np; Var(X) = np(1 - p).
X ~ Binomial(n,p) ~ N(np,np(1 — p))).



Central limit theorem
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=1

E(X;) = p; Var(X;) =0®, i=1,..,n.
S ~ N(nu,no?).




Central limit theorem
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Central limit theorem

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Limiting

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

sampling distribution

E(X;) = p; Var(X;) =02, i=1,...,n.
S ~N(np,no?). X ~ N(p,0?/n).



Central limit theorem

Ying Nian Wu

Limiting

Universal, regardless of the distribution of each X;.

S ~ N(nu,no?). X ~ N(u,o%/n).



Central limit theorem

Ying Nian Wu

Limiting

Universal, regardless of the distribution of each X;.

S ~ N(nu,no?). X ~ N(u,o%/n).



Quantum mechanics

Quantum coin flipping

A |1>

al a|o)+ A1)
ojo)+ Aty

AY

W
.

Limiting

U= (¥(0)=0a,¥(1) =p8) =al0) + 5|1) is a vector rotating
over time.

When observed, P(0) = |af?. P(1) = |B3|%

|a|? +|B|? = 1. (o and 3 are complex numbers)
Superposition of |0) and |1).

Qubit for quantum computer



Quantum mechanics

Schrodinger’s cat

Ying Nian Wu

AB)+4 )

1 is alive, and 0 is dead.

U= (¥(0)=a,¥(1) =) =al0) + §|1) is a vector rotating
over time.

When observed (measured), P(0) = |a|?. P(1) = |B|%.

|| + |B]? = 1. (o and 3 are complex numbers)
interpretation: Probability is the subjective uncertainty of the
observer before measuring the result. Or frequency that the
observer sees a result in long run repetition.

Heisenberg uncertainty principle



1)
a|0)+A11)

,//ﬁ' ,,,,,,,,,,
/ JA o)+ A1)
/A

Limiting T o a |

6-dimensional vector rotating over time

U= (1), 9(2),¥(3),¥(4), ¥(5),¥(6))
= a1|1> + 012|2> + 043|3> + a4|4> + Oé5‘5> + a6|6)

When observed, P(1) = |a1|2. P(2) = |az|?, ..., P(6) = |ag|?.
|041’2 + |Oz2|2 + ...+ ‘046’2 = 1.
Superposition of [1), |2), ..., |6).



Quantum mechanics

100A
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Quantum computer

Limiting

n qubits: superposition of 2" states.
2"-dimensional vector rotating over time.
V= (YHHH..H),Y(HHH...T),...,Y(TTT...T)).



Quantum mechanics

Electron position
U = (U(x),Vz).
Wave function evolving according to Schrodinger's equation.
Limiting Infinite-dimension vector rotating.

P(X € (z,z+ Ax)) = f(x)Ax.

F(@) = [W()[

In 2D space = = (x1,z2) or (z,y)

Electron cloud

Nucleus

P(X € (z,2+ Az),Y € (y,y + Ay)) = f(z,y)AzAy.



Quantum mechanics

Electron position
s U = (U(x),Va).
Wave function evolving according to Schrodinger's equation.
Infinite-dimension vector rotating.

P(X € (z,x+ Ax)) = f(x)Ax.

F(@) = [W ()

Electron cloud, physics and chemistry

Probability density 2-dimensional plots

Limiting
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Quantum mechanics

Double slit experiment
U = (U(x),Vz).

Wave function evolving according to Schrodinger's equation.
Infinite-dimension vector rotating.

S P(X € (z,2 4 Ax)) = f(z)Az.

flx) = [u()2

double-
slit screen
Electrons
A > \
electron = 7“
engm TNt
Vel = ’w)‘
interference = \ #

Particle and wave duality
wave function, subject belief of observer
probability density function of particle position

N\
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