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Population

Recall Example 2 in Part 1: Sample a random person from a
population of 100 people, 50 males and 50 females. 30 males
are taller than 6 ft, 10 females are taller than 6 ft.
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Population proportion

Example 2: A male, B tall.

P (A) =
|A|
|Ω| =

50

100
= 50%.

P (B) =
|B|
|Ω| =

30 + 10

100
= 40%.

P (A ∩B) =
|A ∩B|
|Ω| =

30

100
= 30%.

Probability = population proportion.
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Population proportion

Experiment → outcome → number
Example 2: A male, B tall.

P (A|B) =
|A ∩B|
|B| =

30

40
= 75%.

Among tall people, what is the proportion of males?

P (B|A) =
|A ∩B|
|A| =

30

50
= 60%.

Among males, what is the proportion of tall people?
Conditional probability = proportion within
sub-population.
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Joint distribution

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

p(m, t) = .3; p(m, s) = .2; p(f, t) = .1; p(f, s) = .4.
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Marginal distribution

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

P (X = x) = p(x) =
∑
y

p(x, y).

P (Y = y) = p(y) =
∑
x

p(x, y).
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Conditional distribution

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

P (X = x|Y = y) = p(x|y) = p(x, y)/p(y).

P (Y = y|X = x) = p(y|x) = p(x, y)/p(x).

Chain rule: p(x, y) = p(x)p(y|x) = p(y)p(x|y).
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Rule of total probability

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

p(y) =
∑
x

p(x, y) =
∑
x

p(x)p(y|x).
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Bayes rule

Example 2: X ∈ { male, female}, Y ∈ { tall, short}.

p(x, y) = P (X = x, Y = y).

p(x|y) =
p(x, y)

p(y)
=

p(x)p(y|x)∑
x′ p(x′)p(y|x′) .
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Independence

P (A|B) = P (A).

P (A ∩B) = P (A)P (B).

X ∈ { male, female}, Y ∈ { college, not}

p(y|x) = p(y).
p(x, y) = p(x)p(y|x) = p(x)p(y).
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Reasoning

Recall Example 6: Rare disease example
1% of population has a rare disease.
A random person goes through a test.
If the person has disease, 90% chance test positive.
If the person does not have disease, 90% chance test negative.
If tested positive, what is the chance he or she has disease?
P (D) = 1%.
P (+|D) = 90%, P (−|N) = 90%.
P (D|+) =?
X ∈ {D,N}. Y ∈ {+,−}.
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Reasoning

Example 6: Rare disease example

P (D|+) = 9
9+99 = 1

12 .

p(x|y) =
p(x, y)

p(y)
=

p(x)p(y|x)∑
x′ p(x′)p(y|x′) .

p(x): prior belief. p(x|y): posterior belief.
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Discrete joint, marginal, conditional

X = eye color, Y = hair color.
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Continuous

P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = P (X ∈ (x, x+ ∆x))/∆x.
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Two continuous random variables

X = height, Y = weight.

STATS 100A HW2

Problem 1 Consider a random walk on integers. We start from X0 = 0, and at each step, we flip

a fair coin. If it is head, we move forward by 1, and if it is tail, we move backward by 1. In math

notation, Xt+1 = Xt + εt, where εt = 1 with probability 1/2, and εt = −1 with probability 1/2.

(1) At time t = 5, what are the possible values of Xt?

(2) What is the probability of each possible value in (1)?

(3) If 1 million people do the random walk independently, all starting from 0 at t = 0. At t = 5,

what is the distribution of these 1 million people?

Problem 2 Suppose a person does random walk over 2 states, 1 and 2, starting from state 1. At

each step, the person will stay with probability 1/3, or move to the other state with probability

2/3. Let Xt be the state of the person at step t, with X0 = 1.

(1) Calculate P (Xt = 1) and P (Xt = 2) for t = 1, 2, 3, 4.

(2) Let Kij = P (Xt+1 = j|Xt = i). Let K be the 2× 2 matrix. Write down K.

(3) Let p(t) = (P (Xt = 1), P (Xt = 2)). Prove p(t+1) = p(t)K, and p(t) = p(0)Kt.

(4) If 1 million people do the random walk independently, all starting from 1 at t = 0. At t = 4,

what is the distribution of these 1 million people?

Problem 3 Suppose at any moment, the probability of fire in a classroom is α. Suppose the

conditional probability of alarm given fire is β, and the conditional probability of alarm given no

fire is γ.

(1) Calculate the marginal probability of alarm using the rule of total probability.

(2) Calculate the conditional probability of fire given alarm using the Bayes rule.

(3) Suppose we repeat the experiment 10,000 times. Suppose α = 1%, β = 99%, and γ = 2%.

Then on average, how may times are there fire? how many times are there alarm? how many times

are there false alarm? When there is alarm, how often is it true alarm?

1
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Two continuous random variables

X = height, Y = weight.
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Two continuous random variables

X = height, Y = weight.
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Two continuous random variables

X = husband, Y = wife.
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Two continuous random variables

X = husband, Y = wife.
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Continuous joint density

(X,Y ) ∼ f(x, y).

P (X ∈ (x, x+ ∆x), Y ∈ (y, y + ∆y) = f(x, y)∆x∆y.
f(x, y) = P (X ∈ (x, x+ ∆x), Y ∈ (y, y + ∆y)/∆x∆y.
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Marginal density

P (X ∈ (x, x+ ∆x)) = f(x)∆x.

P (X ∈ (x, x+∆x)) =
∑
y

P (X ∈ (x, x+∆x), Y ∈ (y, y+∆y)).

f(x)∆x =
∑
y

f(x, y)∆x∆y.

f(x) =
∑
y

f(x, y)∆y =

∫
f(x, y)dy.
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Conditional density

P (X ∈ (x, x+ ∆x)|Y ∈ (y, y + ∆y)) = f(x|y)∆x.

P (X ∈ (x, x+ ∆x)|Y ∈ (y, y + ∆y)) =
P (X ∈ (), Y ∈ ())

P (Y ∈ ())

f(x|y)∆x =
f(x, y)∆x∆y

f(y)∆y
.

f(x|y) =
f(x, y)

f(y)
.
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Conditional density

f(x|y) =
f(x, y)

f(y)
.

Chain rule: f(x, y) = f(y)f(x|y).
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Density
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Density
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Density
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Bivariate Normal

X ∼ N(0, 1),

Y = ρX + ε; ε ∼ N(0, 1− ρ2),

ε is independent of X. Given X = x, Y = ρx+ ε.
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Bivariate Normal

The distribution of points within a vertical slice at x.

E(Y |X = x) = E(ρx+ ε) = ρx.

Regression towards the mean, e.g., son’s height given father’s
height.

Var(Y |X = x) = Var(ρx+ ε) = Var(ε) = 1− ρ2.

[Y |X = x] ∼ N(ρx, 1− ρ2).
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Bivariate Normal

f(x, y) = fX(x)fY |X(y|x)

=
1√
2π

exp

(
−x

2

2

)
1√

2π(1− ρ2)
exp

(
−(y − ρx)2

2(1− ρ2)

)
=

1

2π
√

1− ρ2
exp

[
− 1

2(1− ρ2)(x2 + y2 − 2ρxy)

]
.

symmetric in (x, y)
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Expectation

If (X,Y ) ∼ p(x, y), then

E(h(X,Y )) =
∑
x

∑
y

h(x, y)p(x, y).

If (X,Y ) ∼ f(x, y), then

E(h(X,Y )) =

∫ ∫
h(x, y)f(x, y)dxdy.
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Expectation

Population average or long run average of h(X,Y ).

1

n

n∑
i=1

h(Xi, Yi) =
1

n

∑
cells

h(x, y)nf(x, y)∆x∆y

→
∫ ∫

h(x, y)f(x, y)dxdy.
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Variance

Let µh = E(h(X,Y )), then

Var(h(X,Y )) = E[(h(X,Y )− µh)2].
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Covariance

Let µX = E(X), µY = E(Y ), we define the covariance

Cov(X,Y ) = E[(X − µX)(Y − µY )].

It is defined for both discrete and continuous random variables.
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Covariance

(Xi, Yi) ∼ f(x, y), i = 1, ..., n.

X̄ =
1

n

n∑
i=1

Xi; Ȳ =
1

n

n∑
i=1

Yi.

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).
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Covariance

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).

I, III: (Xi − X̄)(Yi − Ȳ ) > 0.
II, IV: (Xi − X̄)(Yi − Ȳ ) < 0.
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Covariance

Cov(X,Y ) = E[(X − µX)(Y − µY )]

= E[XY − µXY −XµY + µXµY ]

= E(XY )− µXE(Y )− µY E(X) + µXµY

= E(XY )− µXµY
= E(XY )− E(X)E(Y ).

Clearly, Cov(X,X) = Var(X) and Cov(Y, Y ) = Var(Y ).
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Linearity

Cov(aX + b, cY + d)

= E[(aX + b− E(aX + b))(cY + d− E(cY + d))]

= E[a(X − E(X))c(Y − E(Y ))] = acCov(X,Y ).

Covariance depends on units (meter/foot, kilogram/pound).

Cov(X + Y,Z) = E[(X + Y − E(X + Y ))(Z − E(Z))]

= E[(X − E(X) + Y − E(Y ))(Z − E(Z))]

= E[(X − E(X))(Z − E(Z))] + E[(Y − E(Y ))(Z − E(Z))]

= Cov(X,Z) + Cov(Y,Z).
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Correlation

Standardize: X → (X − µX)/σX , Y → (Y − µY )/σY .

Cov

(
X − µX
σX

,
Y − µY
σY

)
=

Cov(X,Y )√
Var(X)

√
Var(Y )

= Corr(X,Y ).
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Correlation

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
.

Cov(X,Y )
.
=

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).

Var(X)
.
=

1

n

n∑
i=1

(Xi − X̄)2; Var(Y )
.
=

1

n

n∑
i=1

(Yi − Ȳ )2.

Corr(X,Y )
.
=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
.
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Correlation

Centralize: X̃i = Xi − X̄; Ỹi = Yi − Ȳ .

Corr(X,Y )
.
=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

=

∑n
i=1 X̃iỸi√∑n

i=1 X̃
2
i

√∑n
i=1 Ỹ

2
i

.
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Correlation

Centralize: X̃i = Xi − X̄; Ỹi = Yi − Ȳ .

Corr(X,Y ) =

∑n
i=1 X̃iỸi√∑n

i=1 X̃
2
i

√∑n
i=1 Ỹ

2
i

=
〈X,Y〉
|X||Y| = cos θ.
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Correlation and regression
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Correlation and regression

Regression line:
Ŷ − Ȳ = β1(X − X̄).

Ŷ = β1X + (Ȳ − β1X̄) = β1X + β0.
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Correlation and regression
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Correlation and regression
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Correlation and regression
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Independence

P (A ∩B) = P (A)P (B).
p(x, y) = pX(x)pY (y)
f(x, y) = fX(x)fY (y)

Cov(X,Y ) = E[(X − µX)(Y − µY )]

=
∑
x

∑
y

(x− µX)(y − µY )p(x, y)

=
∑
x

∑
y

(x− µX)(y − µY )pX(x)pY (y)

=
∑
x

(x− µX)pX(x)
∑
y

(y − µY )pY (y)

=

(∑
x

xpX(x)− µX
)(∑

y

ypY (y)− µY
)

= 0.
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Correlation
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Correlation

Positive correlation → positive Cov
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Let X be a uniform distribution over [−1, 1]. Let Y = X2.
Then X and Y are not independent.
However, E(XY ) = E(X3) = 0, and E(X) = 0. Thus
Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0.
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Bivariate normal

X ∼ N(0, 1),

Y = ρX + ε; ε ∼ N(0, 1− ρ2),

E(Y ) = E(ρX + ε) = 0.

ε and X are independent.

Var(Y ) = Var(ρX + ε) = ρ2Var(X) + Var(ε) = 1.

Cov(X,Y ) = E(XY ) = E[X(ρX+ε)] = ρE(X2)+E(Xε) = ρ.

E(Xε) = E(X)E(ε) = 0.
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Variance of sum

E(X + Y ) =
∑

x

∑
y(x+ y)p(x, y) =∑

x

∑
y xp(x, y) +

∑
x

∑
y yp(x, y) = E(X) + E(Y ).

Var(X + Y ) = E[((X + Y )− µX+Y )2]

= E[((X − µX) + (Y − µY ))2]

= E[(X − µX)2 + (Y − µY )2 + 2(X − µX)(Y − µY )]

= E[(X − µX)2] + E[(Y − µY )2] + 2E[(X − µX)(Y − µY )]

= Var(X) + Var(Y ) + 2Cov(X,Y ).

If X and Y are independent, then Cov(X,Y ) = 0, and

Var(X + Y ) = Var(X) + Var(Y ).



100A

Ying Nian Wu

Distribution

Correlation

Limiting

52/77

Variance of sum
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Variance of sum
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Average
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Average
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Sum and average

Xi ∼ f(x), i = 1, ..., n, iid: independent and identically
distributed.

S =

n∑
i=1

Xi. X̄ =
S

n
.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

E(S) = E(

n∑
i=1

Xi) =

n∑
i=1

E(Xi) = nµ.

Var(S) = Var(

n∑
i=1

Xi) =
n∑

i=1

Var(Xi) = nσ2.

E(X̄) =
E(S)

n
= µ.

Var(X̄) =
Var(S)

n2
=
nσ2

n2
=
σ2

n
.
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Law of large number

E(X̄) =
E(S)

n
= µ.

Var(X̄) =
Var(S)

n2
=
nσ2

n2
=
σ2

n
→ 0.

X̄ → µ, in probability.

P (|X̄ − µ| < ε)→ 1, ∀ε > 0.

Average → expectation.
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Law of large number

Special case:

X =

n∑
i=1

Zi, Zi ∼ Bernoulli(p) iid.

E(X) = np; Var(X) = np(1− p).
E(X/n) = p; Var(X/n) = p(1− p)/n→ 0.

X/n→ p, in probability.

Frequency → probability.
X/n is average of Zi. Probability is expectation of Zi.
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Law of large number

Special case:

Keep flipping a fair coin, frequency → 1/2.
Intuition: most of 2n sequences have frequencies close to
1/2.
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Law of large number

Special case: Xi ∼ Uniform[0, 1], iid, i = 1, ..., n.

X̄ =

∑n
i=1Xi

n
→ E(Xi) = 1/2.

P (|X̄ − 1/2| < ε)→ 1, ∀ε > 0.

Intuition: (X1, ..., Xi, ..., Xn) is a random point in Ω = [0, 1]n,
n-dimensional unit cube.
A = {(x1, ..., xi, ..., xn) : |x̄− 1/2| < ε} is the central diagonal
piece.
P (A) is the volume of A. P (A)→ 1.
No matter how small ε is, the volume of the central diagonal
piece is almost the same as the volume of the whole
n-dimensional unit cube Ω.
Most of the points in Ω belong to A.
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Law of large number
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Statistical physics

Most of the points in Ω belong to A.
Suppose (x1, ..., xi, ..., xn) describes a physical system, e.g.,
n = 1023 molecules.
It evolves deterministically over time, by traversing with Ω.
Ergodic: it traverses every point in Ω with equal number of
visits in the long run.
Then mostly it will be in A, and thus x̄

.
= 1/2.

Or at any random moment, (xi, ..., xi, ..., xn) ∼ Unif[0, 1] iid,
and thus x̄→ 1/2.
Law of large number is the reason statistical physics makes
sense, even if we assume things move deterministically.
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Central limit theorem

X =

n∑
i=1

Zi, Zi ∼ Bernoulli(1/2) iid.

X ∼ Binomial(n, 1/2). P (X = k) =

(
n
k

)
2n

.

P (X = n/2 + z
√
n/2) = P (X/n = 1/2 + z/(2

√
n))

.
=

1√
2π

exp

(
−z

2

2

)
2√
n

= f(z)∆z.
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Central limit theorem

X =

n∑
i=1

Zi, Zi ∼ Bernoulli(p) iid.

E(X) = np; Var(X) = np(1− p).
X ∼ Binomial(n, p) ∼ N(np, np(1− p))).
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Central limit theorem

S =

n∑
i=1

Xi.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

S ∼ N(nµ, nσ2).
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Central limit theorem
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Central limit theorem

S =
n∑

i=1

Xi. X̄ = S/n.

E(Xi) = µ; Var(Xi) = σ2, i = 1, ..., n.

S ∼ N(nµ, nσ2). X̄ ∼ N(µ, σ2/n).



100A

Ying Nian Wu

Distribution

Correlation

Limiting

68/77

Central limit theorem

Universal, regardless of the distribution of each Xi.

S ∼ N(nµ, nσ2). X̄ ∼ N(µ, σ2/n).
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Central limit theorem

Universal, regardless of the distribution of each Xi.

S ∼ N(nµ, nσ2). X̄ ∼ N(µ, σ2/n).
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Quantum mechanics

Quantum coin flipping

Ψ = (Ψ(0) = α,Ψ(1) = β) = α|0〉+ β|1〉 is a vector rotating
over time.
When observed, P (0) = |α|2. P (1) = |β|2.
|α|2 + |β|2 = 1. (α and β are complex numbers)
Superposition of |0〉 and |1〉.
Qubit for quantum computer
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Quantum mechanics

Schrodinger’s cat

1 is alive, and 0 is dead.
Ψ = (Ψ(0) = α,Ψ(1) = β) = α|0〉+ β|1〉 is a vector rotating
over time.
When observed (measured), P (0) = |α|2. P (1) = |β|2.
|α|2 + |β|2 = 1. (α and β are complex numbers)
interpretation: Probability is the subjective uncertainty of the
observer before measuring the result. Or frequency that the
observer sees a result in long run repetition.
Heisenberg uncertainty principle
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Quantum mechanics

Quantum die rolling

6-dimensional vector rotating over time

Ψ = (Ψ(1),Ψ(2),Ψ(3),Ψ(4),Ψ(5),Ψ(6))

= α1|1〉+ α2|2〉+ α3|3〉+ α4|4〉+ α5|5〉+ α6|6〉

When observed, P (1) = |α1|2. P (2) = |α2|2, ..., P (6) = |α6|2.
|α1|2 + |α2|2 + ...+ |α6|2 = 1.
Superposition of |1〉, |2〉, ..., |6〉.
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Quantum mechanics

Quantum computer

n qubits: superposition of 2n states.
2n-dimensional vector rotating over time.
Ψ = (Ψ(HHH...H),Ψ(HHH...T ), ....,Ψ(TTT...T )).
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Quantum mechanics

Electron position
Ψ = (Ψ(x), ∀x).
Wave function evolving according to Schrodinger’s equation.
Infinite-dimension vector rotating.
P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = |Ψ(x)|2.
In 2D space x = (x1, x2) or (x, y)

P (X ∈ (x, x+ ∆x), Y ∈ (y, y + ∆y)) = f(x, y)∆x∆y.
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Quantum mechanics

Electron position
Ψ = (Ψ(x), ∀x).
Wave function evolving according to Schrodinger’s equation.
Infinite-dimension vector rotating.
P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = |Ψ(x)|2.
Electron cloud, physics and chemistry
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Quantum mechanics

Double slit experiment
Ψ = (Ψ(x), ∀x).
Wave function evolving according to Schrodinger’s equation.
Infinite-dimension vector rotating.
P (X ∈ (x, x+ ∆x)) = f(x)∆x.
f(x) = |Ψ(x)|2.

Particle and wave duality
wave function, subject belief of observer
probability density function of particle position
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