Stats 200 A
9/22
Prof Ming Nan Wu ywu@stat.vcla. ed OH Tue/Thur 3:50-4:50 pm

$$
\text { Math Sci } 8971
$$

Weekly HW 20\%
Final 30\%
lecture notes \& videos in Canvas Modules Review w/ 100 A on teaching page

Basic Concepts
random variable
discrete

- continuous

2 random variable

- conditioning
- correlation/regression

3 \& more - multivariate

- conditional independence
∞ many ind
- Law of large numbers
- central limit theorem
∞ mary dependent
stochastic processes
- markov
- diffusion
. SDE

Basic concepts
sample space: Ω
$\Omega \underset{\substack{\text { random } \\ \text { sampling }}}{\longrightarrow}$ outcome $\omega \rightarrow \underset{\text { variable le }}{\text { radom }} \dot{x}(\omega)$
event $A \subset \Omega$
$P(A)$ or $\operatorname{Pr}(A)$: prob of A occurring
relations \& notation

logic	$N O T$	$A N D$	$O R$
set	A^{c}	$A \cap B$	$A \cup B$
venn	$A^{C} A$	$A O_{B}$	ara

Ex. 1Ω is a population w is a person
A: male sub-population

Equally likely uniform sampling
Axiom $0 \quad P(A)=\frac{|A|}{|\Omega| \text {-size of } A}$ population proportion counting measure
ex.)

$$
\begin{aligned}
& X(w)= \begin{cases}1 & w \text { is male } \\
0 & w \text { is female }\end{cases} \\
& A=\{w: X(w)=1 \\
& P(A)=P(\{w: X(w)=1\})=P(X=1) \\
& Y(w)=\text { height of } w
\end{aligned}
$$

Ex. 2Ω is a region (unit square)

randomly sample (uniform) a point w from Ω
$P(A)=\frac{|A|}{|\Omega| \text {-area proportion of } A}$
Axiom $1 \quad P(\Omega)=1 \rightarrow$ generalization of Axiom 0
Axiom $2 \quad B(A) \geq 0$
Axiom 3

$$
\begin{aligned}
& \text { if } A \cap B=\varnothing \text { (empty), } \\
& P(A \cup B)=P(A)+P(B) \text { additivity }
\end{aligned}
$$

infinite additivity

$$
\begin{aligned}
& A_{1} A_{2} \ldots A_{i} \ldots \\
& A_{i} \cap A_{j}=\varnothing \text { if } i \neq j \\
& P\left(\bigcup_{i=j}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
\end{aligned}
$$

Frequency repetitions

1 million repetitions $n(A)=\#$ of points in A

$$
\frac{n(A)}{n} n \rightarrow \infty \Rightarrow p(A)=\frac{|A|}{|\Omega|}
$$

limit definition of probability
with this limit definition, of covers the case when no points enter A or all in A

convergence in probability

$$
\begin{aligned}
& P\left(\left|\frac{n(A)}{n}-P(A)\right|<\varepsilon\right) \rightarrow 1 \\
& P\left(\left|\frac{n(A)}{n}-\frac{|A|}{|\Omega|}\right|<\varepsilon\right) \rightarrow 1
\end{aligned}
$$

$B C \Omega^{n} \rightarrow$ weak law of large numbers

$$
P(B)=|B|
$$

imagine as $2 n$ dimensional culoe. This cube still has volume $=1$.
$w_{1} w_{2} \ldots w_{n} \quad \epsilon \Omega$

$$
\begin{aligned}
& w^{n}=\left(\right.
\end{aligned}
$$

$$
\text { vol of } B
$$

taker up whole

$$
\text { vol of } \Omega
$$

Strong law of large numbers

$$
\begin{aligned}
& P(\underbrace{\frac{n(A)}{n} \rightarrow P(A)}_{B})=1 \quad \begin{array}{c}
\text { almost sure } \\
\text { convergence }
\end{array} \\
& B \subset \Omega^{\infty}=\left\{w^{\infty}=\left(w_{1} w_{2} \ldots\right)\right\} \\
& \text { ifruize } D \text { cube } \\
& B \subset \Omega^{n} \\
& \left|B \times \Omega^{\prime} \times \Omega \times \ldots \times \Omega \times \ldots\right|=|B|
\end{aligned}
$$

Equally likely
ex.) flip a Fair coin

$$
\begin{aligned}
\Omega & =\{H, T\} \\
P(H) & =P(T)=\frac{1}{2}
\end{aligned}
$$

ex.) biased coin

$$
P(H)=.3 \quad P(T)=.7 \quad P(\text { red })=.3=P(H)
$$

Random variables
Discrete

x	1	2	3	4	5	6
$P(x)$.1	.1	.3	.2	.2	.1

$\omega \sim \operatorname{Unif}(\Omega)$
$x(\omega)$
Continuous

