Conditional distribution
$[Y \mid X] \sim P(y \mid x)$ discrete $f(y \mid x)$ continuous

$$
E(Y \mid X=x)^{\text {fixed }}=\int y f(y \mid x) d y=h(x)
$$

$$
\begin{aligned}
& E(Y \mid X=x)=\int y f(y \mid x) \text { fitudd } \\
& \left.\operatorname{Var}(Y \mid X=x)=E\left(\left(Y-h(x)^{2} \mid X=x\right)\right)=\int(y-h(x))^{2} f(y \mid x) d y\right) . \\
& \text { night }
\end{aligned}
$$

$2 D$

$$
\begin{equation*}
\frac{1}{n} \sum h\left(x_{\dot{v}}\right) \rightarrow E(h(x)) \tag{1}
\end{equation*}
$$

linear: $\quad x \sim N(0,1)$

$$
\begin{gathered}
{[y \mid x=x] \sim N\left(\rho x, 1-\rho^{2}\right)} \\
h(x)=\rho x
\end{gathered}
$$

(1)

$$
\begin{aligned}
& \text { "Adam" } \\
& E_{x}^{E_{Y \mid x}(Y \mid x)}
\end{aligned}=E(Y) .
$$

* see plot

$$
\begin{aligned}
& Y \rightarrow h(X) \\
& E(Y)=E(h(X))
\end{aligned}
$$

"EVE formula"

summation is unchanged	\because	
L when converting	\because	
γ to $h(X)$,		

not changing
sum $w /$ in each slice

$$
\operatorname{var}(y)=f(\operatorname{Var}(y \mid x))+\operatorname{Var}(\underbrace{E(y \mid x)}_{h(x)})
$$

whin group between group
variance reduction by conditioning

$$
\begin{aligned}
& \varepsilon=y-h(x) \\
& y=h(x)+\varepsilon \\
& \downarrow
\end{aligned}
$$

$\underset{\substack{\text { regression } \\ p x}}{ }$ error

$$
\begin{aligned}
& E(\varepsilon)=E(\underline{y-h(x)})=E(y)-E(h(x))=0 \\
& E(\varepsilon g(x))=E_{x} E(\varepsilon g(x) \mid x) \\
& E(\varepsilon g(x) \mid x=x)=g(x) E(\varepsilon \mid x=x)=g(x) E(\underline{y-h(x))} \mid x=x) \\
& \operatorname{Cov}(\varepsilon, g(x))=E(\underset{g}{ }(x))-E(\varepsilon) E(g(x))=0
\end{aligned}
$$

	x	y	$h(x)$	ε
1				
\vdots	x_{i}	y_{i}	$h\left(x_{i}\right)$	ε_{i}
\vdots				

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}(h(x)+\varepsilon)=\operatorname{Var}(h(x))+\operatorname{Var}(\varepsilon)+2 \operatorname{Cov}(h(x), \varepsilon) \\
& =\operatorname{Var}(E(Y \mid x))+\epsilon_{x} \underbrace{E\left((y-h(x))^{2} \mid x\right)}_{\operatorname{Var}(Y \mid x)}
\end{aligned}
$$

linear: $\quad E(Y \mid X=x)=p x$

$$
\begin{aligned}
& \operatorname{Var}(Y \mid X=x)=1-\rho^{2} \\
& E(Y)=E E(Y \mid x)=E(p x)=p E(x)=0 \\
& \operatorname{Var}(Y)=E(\operatorname{Var}(Y \mid x))+\operatorname{Var}(E(Y \mid x)) \\
&=1-\rho^{2}+p^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& y=p^{x+\varepsilon} \\
& \varepsilon \perp x \quad \varepsilon \sim N\left(0,1-\rho^{2}\right) \\
& \operatorname{cov}(x, y)=\operatorname{cov}\left(x, p^{x}+\varepsilon\right)
\end{aligned}
$$

Recall
(1) $\operatorname{Cov}(a x+b, c y+d)=a c \operatorname{Cov}(x, y)$
(2) $\operatorname{Cov}(x+y, z)=\operatorname{Cov}(x, z)+\operatorname{Cov}(y, z)$

Then $\operatorname{cov}(x, y)=\operatorname{siov}(x, x)+\operatorname{cov}(x, \varepsilon)=\rho$
"Regression" original meaning $=\operatorname{Cor}(X, Y)$

$$
E(y \mid x=x)=\rho x
$$

$$
\begin{aligned}
& (y \mid x=x)=p x \\
& \downarrow \\
& \downarrow
\end{aligned}
$$

son's height father's height
regression boards mean
ex.) Michael Jordan's son isn't as tall \rightarrow son is towards mean Libut ε will continue to cave fluetration ls which caused Jordan
otherwise $Y=X+\varepsilon$ to bee taler than his dad

$$
\operatorname{Var}(y)=\operatorname{Var}(x)+\operatorname{Var}(\varepsilon)
$$

bivariate normal

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=N\left(0,\left[\begin{array}{ll}
1 & p \\
p & 1
\end{array}\right]\right)
$$

contour plat:

Conditional Covariance

$$
\begin{aligned}
\operatorname{Cov}(x, y \mid z=z) & =E((x-h(z))(y-g(z)) \mid z=z) \\
& =\int(x-h(z))(y-g(z)) f(x, y \mid z) d x d y \\
E(x \mid z=z) & =h(z) \\
E(y \mid z=z) & =g(z)
\end{aligned}
$$

(3) $\operatorname{cov}(x, y)=\epsilon_{z} \operatorname{Cov}(x, y \mid z)+\operatorname{cov}(E(X \mid z), f(y \mid z))$
proof:

$$
\begin{aligned}
& \text { roof: } x=h(z)+\varepsilon \\
& y=g(z)+\delta \\
& \operatorname{cov}(x, y)=\operatorname{cov}(h(z)+\varepsilon, g(z)+\delta) \quad \begin{array}{c}
\text { since } \varepsilon \text { is } \\
\text { incomelated }
\end{array} \\
&=\operatorname{Cov}(h(z), g(z))+\operatorname{Cov}(\varepsilon, \delta)+\operatorname{Cov}(h(z), \delta)+\operatorname{Cov}(\varepsilon, g(z)) \\
&=\operatorname{Cov}(E(x, z), E(y \mid z))+E E \underbrace{(x-h(z))(y-g(z) \mid z)}_{\operatorname{cov}(x, y \mid z)}
\end{aligned}
$$

ex.)

$$
\begin{aligned}
& x: \operatorname{SAT} \\
& y: \operatorname{GPA} \\
& z: \operatorname{sch} \alpha \mathrm{l}
\end{aligned} \quad \operatorname{cor}(x, y \mid z)<0
$$

Conditional Independence
Recall $X \perp Y$

$$
\begin{aligned}
& f(x, y)=f_{X}(x) f_{Y}(y) \\
& x \perp Y \mid z \\
& f(x, y \mid z)=f(x \mid z) f(y \mid z) \\
& f(x, y)=\int f(x, y \mid z) d z=\int f(x, y \mid z) f_{z}(z) d z \\
&\left.=\int f(x \mid z) f(y) z\right) f_{z}(z) d z \\
& X=z+\varepsilon \\
& Y=z+\delta
\end{aligned}
$$

ex.)
2 : time it takes from office b bus stop near home
ε : person A time from bus stop to their home 8: person B time from bis stop to their home
ex.)

$$
x^{\prime}=z^{\text {parent }}+\varepsilon
$$

ex.) Discrete case
Discrete case
Y: health
X : smoking habit - pi pr cigarette L seem to have strong comelation
2: age \rightarrow confounding variable

* older people tend to be less healthy \& more lively to smoke from a pipe
causal effect

$\longrightarrow j$ joint distribution $p(x, y, z)$
pipe cigarette
say that health is measured scale from $1-100$

Let $z=h_{2}\left(\varepsilon_{2}\right)$
structural $X=h_{x}\left(z, \varepsilon_{x}\right)$ assume $\varepsilon_{z}, \varepsilon_{x}, \varepsilon_{y}$ are ind. equation

$$
y=h_{y}\left(x, z, \varepsilon_{y}\right)
$$

canterfactral analysis

$$
\begin{aligned}
& z_{2}=h_{2}\left(\varepsilon_{z}\right) \\
& X \longrightarrow Y=h_{y}\left(x, z, \varepsilon_{y}\right) \quad
\end{aligned} \begin{aligned}
& \quad \text { lo } 1: x \in 1 \\
& \\
& \\
& \text { do } 0: x \in 0
\end{aligned}
$$

causal effect: $E(y \mid x \leftarrow 1)-E(Y \mid x \leftarrow 0)$

$$
\begin{aligned}
& \text { or } \tilde{p}\left(y \mid d_{0}(x)\right)=\sum_{z} p(v \mid x, z) p(z) \\
& \text { vs } p(y \mid x)=\sum_{z} p(y, z \mid x)=\sum_{z} p(v \mid x, z) p(z \mid x)
\end{aligned}
$$

