$$
11 / 22 / 22
$$

Markov Chain: population migration 1 mil people

$$
p^{(t)} \xrightarrow{K} p^{(t+1)}
$$

transition probability
3 sets of notation
(1) $P\left(x_{t+1}\right)=\underbrace{\sum_{x_{t}} P\left(x_{t}\right) P\left(x_{t+1} \mid x_{t}\right)}$
marginalization factorization
(2) $x \rightarrow y$
$p^{(t+1)}(y)=\sum_{x} p^{(t)}(x) K(x, y) \quad$ function, operator
(3) $i \rightarrow j$

$$
\begin{aligned}
& p_{j}^{(t+1)}=\sum_{i} p_{i}^{(t)} k_{i j} \\
& p^{(t+1)}=p^{(t)} K \quad \text { matrix, vector }
\end{aligned}
$$

*HWW derive (3) starting from (1)
meaning of K
(1) noun: transition probability
(2) verb:
a.) act on right hand side

$$
\begin{aligned}
& \text { on right hand stol } \\
& p^{(t)} K=p^{(t+1)} \\
& \text { vector } \square=\square \text { matin }
\end{aligned}
$$ "diffusing"

$$
K^{\top} p^{(t)}=p^{(t-1)}
$$

act on left hand side

$$
h=\int J
$$

preliminary: $p=$
x notation 2

$$
\begin{aligned}
p h & =\sum_{x} p(x) h(x) \\
& =E_{\mathbb{C}}(h(x)) \\
& \sim \text { follows distribution } p
\end{aligned}
$$

A notation 3

$$
K h=\tilde{h}
$$

* notation $2 \quad \tilde{h}(x)=\sum_{y} K(x, y) h(y)$
rotation $\mid=\sum_{y} P\left(x_{t+1}=y \mid x_{t}=x\right) h(y)=E\left(h\left(x_{t+1}\right) \mid x_{t}=x\right)$
meaning of \tilde{h}

$$
\tilde{h}(2)=h(2) \cdot \frac{1}{2}+h(1) \cdot \frac{1}{4}+h(3) \cdot \frac{1}{4}
$$ stay w/ prob $\frac{1}{2}$, transition w/ prob $\frac{1}{4}$

local averaging

$$
\xrightarrow[p]{\sim(t)} K h=p^{(t+1)} h
$$

$$
\left.E_{x_{t}}\left[E\left(h\left(x_{t+1}\right)\right) x_{t}\right)\right]=E\left(h\left(x_{t+1}\right)\right)
$$

Continuous Time Process
ex.) Movie Frame example

ex.) bank account
$X_{t+\Delta t}=(1+r \Delta t) \cdot X_{t}$
amant of money @ time t $r=$ interest rate
ex.) Ordinary Differential Equation

$$
\begin{aligned}
& \frac{X_{t+\Delta t}-X_{t}}{\Delta t}=r X_{t} \quad \frac{d X_{t}}{d t}=r X_{t} \\
& X_{t}=X_{0}(1+r \Delta t)^{\frac{t}{\Delta t}}=X_{0} e^{r \Delta t \frac{t}{\Delta t}}=x_{0} e^{r t}
\end{aligned}
$$

ex.) Poisson Process

Markov jump Process

$$
\begin{gathered}
\text { Transition Matrix } \\
K^{(\Delta t)}=1\left[\begin{array}{ccc}
1 & 2 & 3 \\
a_{12} \Delta t & a_{13} \Delta t \\
3 \\
a_{21} \Delta t & a_{23} \Delta t \\
a_{31} \Delta t & a_{32} \Delta t
\end{array}\right]
\end{gathered}
$$

$a_{12} \Delta t$ interpretation: among all people in state) at time $t, a_{12} \Delta t$ is fraction of people who more to state $\alpha \mathrm{w} / \mathrm{in}[t, t+\Delta t]$

$$
\left.\begin{array}{rl}
K^{(\Delta t)} & =\left[\begin{array}{ccc}
1-\left(a_{12} t a_{13}\right) \Delta t & a_{12} \Delta t & a_{13} \Delta t \\
a_{21} \Delta t & 1-\left(a_{21}+a_{23}\right) \Delta t & a_{23} \Delta t \\
a_{31} \Delta t & a_{32} \Delta t & 1-\left(a_{31}+a_{32}\right) \Delta t
\end{array}\right] \\
& =I+\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Delta t=I+A \Delta t \\
\downarrow \\
\text { transition } \\
\text { rate }
\end{array}\right]
$$

where $a_{i i}=-\sum_{j \neq i} a_{i j}$
derive differential equation

$$
=K^{t} \cdot K^{\Delta t} \quad \text { step (2) }
$$

$$
\frac{K^{(t+\Delta t)}-K^{(t)}}{\Delta t}=\frac{K^{(\Delta t)} K^{(t)}-K^{(t)}}{\Delta t}=\frac{\left(K^{(\Delta t)}-I\right) K^{(t)}}{\Delta t}
$$

$$
\begin{aligned}
& K^{((t)}=I+A \Delta t \\
& \frac{K^{(p t)}-I}{\Delta t}=A
\end{aligned}
$$

$$
\begin{aligned}
& K^{(t)}=\left(K^{(\Delta t)}\right) \frac{t}{\Delta t}=(I+A \Delta t)^{\frac{t}{\Delta t}}=e^{A \Delta t \cdot \frac{t}{\Delta t}}=e^{A t} \\
& e^{\mu^{\text {matrix }}}=1+M+\frac{M^{2}}{2}+\cdots+\frac{M^{t}}{t!}+\cdots \\
& k^{\left(t_{1}+t_{L}\right)}=k^{\left(t_{1}\right)} k^{\left(t_{2}\right)} \\
& \left\{K^{r-1}=e^{A t}, t>0\right\} \\
& \text { semi group } \\
& e^{x}=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{t}}{t^{!}}+\cdots \\
& \text { cine taylor expansion for }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d t} K^{(t)}=A K^{(t)} \longrightarrow \text { backward } \\
& b^{d c^{(k n}}=K^{(t)} A \rightarrow \text { forward similar to bank accent } \\
& \frac{d}{d t} K^{(t)} h^{(0)}=A K^{(t)} h^{(0)} \quad \frac{d}{d t} x(t)=r X(t) \\
&
\end{aligned}
$$

massage/smooth $h(0)$ for duration t
\rightarrow similiar t putting money in bank account for time t

$$
\Rightarrow \frac{d}{d t} p^{(0)} K(t)=p^{(0)} k^{(t)} A
$$

$\frac{d}{d t} p^{(t)}=p^{(t)} A$ ex. 1 mil people $w /$ distribution
Solution: $p^{(t)}=p^{(0)} k^{(t)} \quad p^{(t)}$. Rate of change of dist $\Rightarrow \frac{d}{d t} p^{(t)}$

Diffusion (Brownian Motion, Wiener Process)

$$
\begin{aligned}
& X_{t+\Delta t}=X_{t}+\Delta x \cdot \Sigma_{t} \\
& \underbrace{\frac{-1}{2}+1}_{\text {prob }} \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta t=\frac{t}{n} \\
& X_{t}=\sum_{i=1}^{n} \Delta x \varepsilon_{i} \\
& E\left(\varepsilon_{i}\right)=0 \quad \operatorname{Var}\left(\varepsilon_{i}\right)=1 \\
& E\left(x_{t}\right)=0 \quad \operatorname{Var}\left(x_{t}\right)=\Delta x^{2} n=\Delta x^{2} \frac{t}{\Delta t}
\end{aligned}
$$

$\frac{\Delta x^{2}}{\Delta t}=\sigma^{2} \quad$ independent of how we discretize $x \uparrow$

$$
\Delta x=\sigma \sqrt{\Delta t}
$$

$$
V=\frac{\Delta x}{\Delta t} \rightarrow \infty
$$

Numorrin nomarin $\xrightarrow{\text { amplest case }} t$ simplest case of Brownian motion
ε_{t} are iud

$$
A=\frac{K^{\Delta t}-I}{\Delta t}=\frac{1}{2} \frac{1}{\Delta t}\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -2 \\
0 & 1 & -21
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{since} \\
\Delta x=\sigma \sqrt{\Delta t} \\
\Delta t=\frac{\Delta x^{2}}{\sigma^{2}}
\end{aligned} \quad=\frac{\sigma^{2}}{2 \Delta x^{2}} D=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}} . \quad \begin{aligned}
\frac{1}{h}(x) & =\frac{h(x-\Delta x)-2 h(x)+h(x+\Delta x)}{\Delta x^{2}} \\
\frac{\Delta x^{2}}{\Delta}[\square=\square & =\frac{h(x+\Delta x)-h(x)}{\Delta x}-\frac{h(x)-h(x-\Delta)}{\Delta x} \\
& =\frac{d}{d x^{2}} h(x)
\end{aligned}
$$

$$
\begin{aligned}
& (A h)(x)=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}} h(x) \\
& (P A)(x)=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}} P(x) \\
& A h=\frac{K^{(\Delta t)}-I}{\Delta t} h=\frac{K^{(\Delta t)} h-h}{\Delta t}=\tilde{h} \\
& \tilde{h}(x)=\frac{\left(K^{(\Delta t)} h\right)(x)-h(x)}{\Delta t}=\frac{E\left(h\left(x_{t+\Delta t} \mid X_{t}=x\right)\right)-h(x)}{\Delta t} \\
& =\frac{E\left(h\left(x+\sigma \sqrt{\Delta t} \varepsilon_{t}\right)\right)-h(x)}{\Delta t}
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{E\left(h(x)+h^{\prime}(x) \sigma \sqrt{\Delta t} \varepsilon_{t}+\frac{1}{2} h^{\prime \prime}(x) \sigma^{2} \Delta t \varepsilon_{t}^{2}-h(x)\right.}{\Delta t} \\
=\frac{\sigma^{2}}{2} h^{\prime \prime}(x) & \text { Taylor expansion: throw away } \\
(A h)(x)=\frac{\sigma^{2}}{2} h^{\prime \prime}(x) & \text { terms higher than orderst } \\
A=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}} & \text { genercl } \varepsilon_{t} \\
& E\left(\varepsilon_{t}\right)=0 \operatorname{Vor}\left(\varepsilon_{E}\right)=1
\end{array}
$$

forward equation

$$
\frac{d}{d t} p^{(t)}(x)=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}} p^{(t)}(x)
$$

"heat equation"
\rightarrow solution is Normal distribution

