$10 / 4 / 22$

Independence

"independent"

$$
\begin{aligned}
& A \perp B \Longleftrightarrow P(A \cap B) \\
& =|A \cap B|=|A||B|=P(A) P(B)
\end{aligned}
$$

ex.) $\quad F$ lip a coin inge pendently $P($ head $)=3$ I million people doing same experiments (repetitions)

ex.) Sampling from a population

$$
\begin{aligned}
& 3 \mathrm{red}+7 \text { blue } \\
& 0000000000
\end{aligned}
$$

$$
\begin{aligned}
P(R R B) & =3 \cdot 3 \cdot 7 \\
& =\frac{3 \cdot 3 \cdot 7}{10^{3}} \quad \frac{|A|}{|\Omega|}
\end{aligned}
$$

ex.) Flip a coin (L_{p}) independently

$$
\begin{aligned}
p(H H T T H T) & =p \cdot p \cdot(1-p) \cdot(1-p) \cdot p \cdot(1 p) \\
& =p^{3}(1-p)^{3}
\end{aligned}
$$

$P($ a sequence w/ k heads, $n-k$ tails $)=p^{k}(1-p)^{n-k}$

$$
\begin{aligned}
& X \sim \operatorname{Bin}(n, p) \\
& P(X=k)=\underbrace{\binom{n}{k}} p^{k}(1-p)^{n-k}
\end{aligned}
$$

\# of seq.s prob of each sequence w/ k heads

$$
\begin{aligned}
& \text { Binomial Formula } \rightarrow \text { correspondence to } \\
& q=1-p \\
& \text { binary tree } \\
& =\sum_{k=0}^{n} p(x=k)=1 \\
& E(X)=\sum_{x} x p(x) \\
& =\sum_{k=0}^{n} k P(x=k) \\
& =\sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} q^{n-k} \\
& \underset{\operatorname{skip},}{\operatorname{con}^{n} \rightarrow 0}=\sum_{k=1}^{n} \frac{n(n-1)!}{(k-1)!(n-k)!} p^{k-1} q^{n-k} \\
& =n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} q^{n-k} \\
& \begin{array}{l}
\begin{array}{l}
n^{\prime}=n-1 \\
k^{\prime}=k-1
\end{array}=n p \sum_{=1}^{\sum_{k^{\prime}=0}^{n^{\prime}} \frac{n^{\prime}!}{k^{\prime}!\left(n^{\prime}-k^{\prime}\right)!} p^{k^{\prime}} q^{n^{\prime}-k^{\prime}}} \\
F(x)=n p
\end{array} \\
& \text { change notation }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(x)=E\left(x^{2}\right)-E(x)^{2} \\
& \operatorname{Var}(x)=2-(n p)^{2} \\
& \text { cold change } k^{2} \\
& \text { but cancellation } \\
& \text { is not } \\
& \text { prev. root simple } \\
& E(X(X-1))=\sum_{k=0}^{n} k(k-1) \frac{n!}{k!(n-k)!} p^{k} q^{n-k} \\
& =\sum_{k=2}^{n} \frac{n(n-1)(n-2)!}{(k-2)!(n-k)!} p^{2} p^{k-2} q^{n-k} \\
& =n(n-1) p^{2} \sum_{k=2}^{n} \frac{(n-2)!}{(k-2)!(n-k)!} p^{(k-2)^{k \prime 2}} q^{n-k} \\
& =n(n-1) p^{2} \\
& E\left(x^{2}-x\right)=E\left(x^{2}\right)-E(x)=n(n-1) p^{2} \\
& E\left(X^{2}\right)=n(n-1) p^{2}+n p \\
& \operatorname{Var}(x)=E\left(x^{2}\right)+E(x)^{2} \\
& =n(n-1) p^{2}+n p-(n p)^{2} \\
& =n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2} \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
\begin{aligned}
& X=\sum_{i=1}^{n} z_{i} \\
& z_{i} \sim \operatorname{Ber}(p) \\
& E\left(z_{i}\right)=p \quad \operatorname{Var}\left(z_{i}\right)=p(1-p) \\
& E(X)=\sum_{i=1}^{n} E\left(z_{i}\right)=n p
\end{aligned}
$$

$$
\operatorname{Var}(x) \stackrel{\text { ind }}{=} \sum_{i=1}^{n} \operatorname{Var}\left(z_{i}\right)=n p(1-p)
$$

$\frac{X}{n}$: Frequency/sample proportion

$$
\begin{aligned}
& E\left(\frac{x}{n}\right)=\frac{E(x)}{n}=\frac{n p}{n}=p \\
& \operatorname{Var}\left(\frac{x}{n}\right)=\frac{\operatorname{Var}(x)}{n^{2}}=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n} n \rightarrow \infty=0 \\
& P\left(\left|\frac{x}{n}-p\right|<\varepsilon\right) \rightarrow 1
\end{aligned}
$$

Sample space Ω

$$
p=\frac{1}{2} \quad \Omega=\{H, T\}^{n}
$$

$\omega \in \Omega$
\uparrow
sequence
$X(\omega)=$ of heads in ω

$$
E(X)=\frac{1}{2^{n}} \sum_{w \in \Omega} X(w)=\frac{n}{2}
$$

sequences

$$
\begin{aligned}
& \operatorname{Var}(X)=\frac{1}{2^{n}} \sum_{\omega \in \Omega}\left(X(\omega)-\frac{n}{2}\right)^{2} \\
& P\left(\left|\frac{x}{n}-\frac{1}{2}\right|<\varepsilon\right)=\frac{\left|A_{n, \varepsilon}\right|}{2^{n}} \rightarrow 1 \\
& A_{n, \varepsilon}=\left\{\omega: \left.\frac{X(w)}{n}-\frac{1}{2} \right\rvert\,<\varepsilon\right\}
\end{aligned}
$$

(x.) Sample from a population of N people randanly sample n people

$$
\Omega=\left\{N^{n} \text { sequences }\right\}
$$

I of possible samples
$\omega \in \Omega \quad X(\omega)=\#$ red bulls

$$
\begin{aligned}
& E(X)=\frac{1}{N^{n}} \sum_{w} X(w)=n p \\
& P\left(\left|\frac{X}{n}-p\right|<\varepsilon\right)=\frac{\left|A_{n}, \varepsilon\right|}{N^{n}}
\end{aligned}
$$

ex.) Flip a coin (p) independently
$T=\#$ of flips until $1^{\text {st }} H \sim$ Geometric (p)

$$
P(T=k)
$$

if $k=1$: head
if $k=2$: tail, head
if $h=3$: tail, tail, had

$$
\begin{aligned}
& \text { if } k=3 \text { : tail, tail, } \\
& P(T=k)=P(\underbrace{T, \ldots,}_{k-1}, H)=(1-p)^{k-1} P \\
& E(T)=\sum_{k=1}^{\infty} k P(T=k)=\frac{1}{P}
\end{aligned}
$$

If $q=1-p$

$$
\begin{aligned}
& =\sum_{k=1}^{\infty} k q^{k-1} p \\
& =p \sum_{k=1}^{\infty} k q^{k-1} \\
& =p \sum_{k=1}^{\infty} \frac{d}{d q} q^{k}=p \frac{d}{d q} \sum_{k=1}^{\infty} q^{k}
\end{aligned}
$$

$$
\begin{aligned}
s & =1+a^{+}+a^{2}+\cdots+a^{m} \\
a S & =a+a^{2}+a^{3}+\cdots a^{m+1} \\
(1-a) s & =1-a^{m+1} \\
S & =\frac{1-a^{m+1}}{1-a}=0 \\
|a| & <1 \quad \sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a} \\
E(T) & =\sum_{k=1}^{\infty} k P(T=k)=\frac{1}{P}
\end{aligned}
$$

Continuous $R V_{s}$
Uniform $[0,1]$

$$
\begin{aligned}
& \overbrace{0 \sim} \\
& U \sim U_{n} i t[0,1] \\
& P(U \in A)=\frac{|A|}{|\Omega|}=|A| \\
& P(U=.3)=0 \quad \text { length of a point }=0
\end{aligned}
$$

$$
\begin{aligned}
& P(U \in(u, u+\Delta u))=\Delta u \\
& f(u)= \\
& =\frac{A(U \in(u, u+\Delta u)}{\Delta u-\text { length }}=\frac{\Delta u}{\Delta u}=1 \quad u \in[0,1] \\
& \\
& \\
& \\
& P(u(u)=1 \\
& P(u \in(u, u+\Delta u))=f(u) \Delta u
\end{aligned}
$$

basic event statement

1 dealication of discrete, large number

$$
X \sim U \text { nit }\{0,1, \ldots, M-1\}
$$

$$
u=\frac{x}{M} \in[0,1]
$$

Linear congrvential method
X o see": carehlly chosen integers
Heave

$$
X \sim f(x)
$$

basic event

$$
f(x)=\frac{P(X \in(x, x+\Delta x))}{\Delta x}
$$

$$
\Delta x \rightarrow 0
$$

$$
P(x \in(x, x+\Delta x))=F(x) \Delta x
$$

divide into small bins

* recall discrete $P(X=x)=P(x)$

$$
E(X)=\left\{\begin{array}{l}
\sum_{x} x P(X=x) \cdots \text { discrete } \\
\sum_{X \text { bins }} x P(X \in(x, x+\Delta x)) \\
\\
=\sum_{\text {bins }} x f(x) \Delta x \xrightarrow[0]{\Delta x} \int x f(x) d x \ldots \text { continuous }
\end{array}\right.
$$

$$
\begin{aligned}
& X_{t+1}=\left(\begin{array}{l}
\left.a_{5} X_{t}+b\right) \bmod m^{31-1}
\end{array}\right. \\
& X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \ldots \\
& U_{t}=\frac{X_{t}}{M} \stackrel{\text { ind }}{\sim} U_{n i t}[0,1] \text { pseudo-random }
\end{aligned}
$$

$$
E(h(x))=\int h(x) f(x) d x
$$

$\omega \sim \operatorname{Vnif}(\Omega)$
$X(\omega)=$ horizontal coordinate $\sim f(x)$

$$
\begin{aligned}
P(x \in A) & =\frac{\int_{\sigma}^{b} F(x) d x}{a b b} \\
& =\sum_{\text {bins }}^{a} \sum_{\text {bin }} x \cdot \eta(x)=\sum_{\text {bins }} x \frac{\eta(x)}{n} \\
& \rightarrow x f(x) \Delta x=E(x)
\end{aligned}
$$

ex.)
Ω US population

$$
w=\text { person }
$$

$X(\omega)=$ height of ω

$$
\begin{aligned}
& N(x)=\# \text { of people } n(x, x+\Delta x)^{6 f t} 6 f t+1 \text { in } \\
& \frac{N(x) / N}{\Delta x}=f(x)
\end{aligned}
$$

random sampling w
under random sampling, prob becomes pop.

$$
\begin{aligned}
& P(X(w) \in(x, x+\Delta x))=\frac{N(x)}{N}=f(x)^{\text {proportion }} \\
& E(X)=\frac{1}{N} \sum_{w} X(w)
\end{aligned}
$$

