On Conformal Isometry of Grid Cells: Learning Distance-Preserving Position Embedding

Dehong Xu, Ruiqi Gao, Wen-Hao Zhang, Xue-Xin Wei, Ying Nian Wu

UCLA, UT Southwestern Medical Center, UT Austin Some pictures are taken from internet, copyrights belong to original authors

ICLR 2025 Oral

Figure: Place cells and grid cells

Figure: Place cells and grid cells

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction

Figure: Neuron recording

Figure: Firing of grid cells and place cells

・ロト ・ 一下・ ・ ヨト ・

Introduction

Figure: Place cells and grid cells

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction

Figure: Place cells and grid cells

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Figure: Different place cells fire at different places

・ロト ・雪 ト ・ヨト ・ヨト

э

Figure: Response maps of different grid cells

<ロ> (日) (日) (日) (日) (日)

- 3

Figure: An internal GPS system

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- These cells are crucial for:
 - Path integration
 - Navigation
 - Spatial memory
- Key question: Why hexagonal patterns?
- Our work: Investigating the **conformal isometry hypothesis** as a mathematical explanation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Several computational models have been proposed:

- Continuous attractor neural networks (CANN)
- RNN-based models for path integration
- Basis expansion models with non-negative constraints

However, the **mathematical principles** behind hexagonal patterns remain elusive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Population Code

Figure: Left: $v_i(\mathbf{x})$ for different *i*. Right: $\mathbf{v}(\mathbf{x}) = (v_i(\mathbf{x}), i = 1, ..., d \text{ as a vector representation of <math>\mathbf{x} \in \mathbb{R}^2$, or position embedding of \mathbf{x} .

- The whole population forms a vector for representing position
- Each cell *i* is an element of the vector, with a response map $v_i(\mathbf{x})$
- But do not think about a single cell at a time
- Position embedding

Self-position representation:

- Agent at position $\mathbf{x} = (x_1, x_2)$
- Grid cells form vector $\mathbf{v}(\mathbf{x})$
- $\mathbf{v}(\mathbf{x})$ is a position embedding

Self-motion representation:

- Agent moves by Δx
- Vector transforms: $\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) = F(\mathbf{v}(\mathbf{x}), \Delta \mathbf{x})$
- F can be implemented by RNN

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Transformation by self-motion

Key idea: Neural manifold is a conformal isometric embedding of 2D physical space Mathematically:

$$\|\mathbf{v}(\mathbf{x}+\Delta\mathbf{x})-\mathbf{v}(\mathbf{x})\|=s\|\Delta\mathbf{x}\|+o(\|\Delta\mathbf{x}\|)$$
 (1)

Where:

- *s* is scaling factor (metric unit)
- Distance in physical space is preserved in neural space

Figure: 2D manifold in neural space

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We study grid cells with minimal assumptions:

() Conformal isometry: $\|\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) - \mathbf{v}(\mathbf{x})\| = s \|\Delta \mathbf{x}\| + o(\|\Delta \mathbf{x}\|)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **2** Transformation: $\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) = F(\mathbf{v}(\mathbf{x}), \Delta \mathbf{x})$
- **3** Normalization: $\|\mathbf{v}(\mathbf{x})\| = 1$ for each \mathbf{x}
- **Solution** Non-negativity: $v_i(\mathbf{x}) \ge 0$ for each *i* and \mathbf{x}

Key advantages:

- No assumptions about place cells
- Agnostic to specific form of F
- Explicit metric s

Transformation Models

We studied multiple transformation models:

Linear model:

$$\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{v}(\mathbf{x}) + \mathbf{B}(\theta)\mathbf{v}(\mathbf{x})\Delta r$$
(2)

2 Nonlinear model 1:

$$\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) = R(\mathbf{A}\mathbf{v}(\mathbf{x}) + \mathbf{B}(\theta)\mathbf{v}(\mathbf{x})\Delta r + \mathbf{b})$$
(3)

Solution Nonlinear model 2:

$$\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) = R(\mathbf{A}\mathbf{v}(\mathbf{x}) + \mathbf{B}(\theta)\Delta r + \mathbf{b})$$
(4)

Where:

- $\Delta r = \|\Delta \mathbf{x}\|$ is displacement
- θ is heading direction
- R is elementwise nonlinearity

Loss function consists of:

$$L_1 = \mathbb{E}_{\mathbf{x}, \Delta \mathbf{x}}[(\|\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) - \mathbf{v}(\mathbf{x})\| - s \|\Delta \mathbf{x}\|)^2]$$
(5)

(6)

$$L_2 = \mathbb{E}_{\mathbf{x}, \Delta \mathbf{x}}[\|\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) - F(\mathbf{v}(\mathbf{x}), \Delta \mathbf{x})\|^2]$$

- L₁ enforces conformal isometry
- L₂ ensures accurate transformation
- For $\Delta \mathbf{x}$ in L_1 : $s \|\Delta \mathbf{x}\| \le 1.25$
- For $\Delta \mathbf{x}$ in L_2 : $\|\Delta \mathbf{x}\| \leq 0.075$

We minimize $L = L_1 + \lambda L_2$ using stochastic gradient descent.

- L₁ has a non-zero minimum due to the non-infinitesimal range
- Conformal isometry is nearly exact for $s \|\Delta \mathbf{x}\| \leq 0.8$
- Beyond that point, deviation increases due to extrinsic curvature

• Minimizing L_1 finds the maximally distance-preserving embedding Key insight: The hexagon torus structure emerges as the optimal solution for preserving distances in all directions.

- 1m \times 1m environment with 40 \times 40 regular lattice
- Learn $\mathbf{v}(\mathbf{x})$ on lattice points
- Bilinear interpolation for off-lattice points
- Linear model and nonlinear model 1: 24 grid cells

- Nonlinear model 2: 1000 grid cells
- Constrained $s \|\Delta \mathbf{x}\| \leq 1.25$ for L_1
- Constrained $\|\Delta \mathbf{x}\| \leq 0.075$ for L_2

Hexagonal Patterns in Linear Models

Figure: Learned grid cells with different scaling factors

- Hexagonal patterns emerge across different scaling factors
- Consistent scale and orientation within each module
- Variations in phases (spatial shifts)

Toroidal Analysis

Figure: Toroidal structure spectral analysis

- Spectral embedding shows grid cell states fall on a toroidal manifold
- 2D Fourier transforms reveal hexagonal distribution along 3 principal directions

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

• 3 rings indicate 2D twisted torus topology

Nonlinear Models and Ablation Studies

Figure: Left: Nonlinear models with different activations. Right: Ablation studies

- Hexagonal patterns emerge with various activation functions
- Without conformal isometry: non-hexagon patterns emerge
- Non-negativity constraint: not essential but improves stability
- Transformation and normalization: necessary for hexagonal patterns

Model	$Gridness(\uparrow)$	Valid rate(\uparrow)
Banino2018	0.18	25.2%
Sorscher2023	0.48	56.1%
Gao2021	0.90	73.1%
Our Linear	1.70	100.0%
Our Nonlinear	1.17	100.0%

Table: Gridness scores and validity rates

- Our models achieve higher gridness scores
- 100% valid grid cells in both linear and nonlinear models
- Scale of patterns inversely proportional to scaling factor s

Scaling factor	Estimated scale
<i>s</i> = 5	0.82
s = 10	0.41
s = 15	0.27

Table: Relationship between scaling factor and grid scale

The estimated scale of grid patterns is inversely proportional to the scaling factor *s*:

- Larger s: smaller grid spacing (higher resolution)
- Smaller s: larger grid spacing (lower resolution)

Evidence for Local Conformal Isometry

Figure: Relationship between $\|\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) - \mathbf{v}(\mathbf{x})\|$ and $\|\Delta \mathbf{x}\|$

э

- Linear relationship for small $\|\Delta \mathbf{x}\|$ (blue line)
- Quadratic deviation for larger $\|\Delta \mathbf{x}\|$ (orange curve)
- Deviation due to extrinsic curvature of manifold $\mathbb{M}_{\mathbb{P}^{n}}$,

Neuroscience Evidence

Figure: Analysis of real neural recording data (Gardner et al., 2021)

- Clear linear relationship between $\| \bm{v}(\bm{x} + \Delta \bm{x}) \bm{v}(\bm{x}) \|$ and $\| \Delta \bm{x} \|$
- Minimal deviation from linearity for local $\|\Delta \mathbf{x}\|$
- Distribution of $\| \bm{v}(\bm{x}) \|$ approximately constant

Results consistent with conformal isometry hypothesis in real grid cells.

Proposition

The transformations $(F(\cdot, \Delta \mathbf{x}), \forall \Delta \mathbf{x})$ form a group acting on the manifold $\mathbb{M} = (\mathbf{v}(\mathbf{x}), \forall \mathbf{x})$, and the 2D manifold \mathbb{M} has a torus topology.

• Group $(F(\cdot, \Delta \mathbf{x}), \forall \Delta \mathbf{x})$ represents the 2D additive Euclidean group

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- It's an abelian Lie group, compact and connected
- According to Lie group theory, such a group has torus topology
- Torus topology makes $\mathbf{v}(\mathbf{x})$ a 2D periodic function of \mathbf{x}

For small displacements, conformal isometry holds:

$$\|\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) - \mathbf{v}(\mathbf{x})\|^2 = \|\Delta \mathbf{x}\|^2 + o(\|\Delta \mathbf{x}\|^2)$$
(7)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For larger displacements, we analyze higher-order deviations:

$$\|\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) - \mathbf{v}(\mathbf{x})\|^2 - \|\Delta \mathbf{x}\|^2 = -\frac{1}{12}D(\Delta \mathbf{x}) + o(\|\Delta \mathbf{x}\|^4)$$
(8)

Where $D(\Delta \mathbf{x})$ involves inner products of 4th-order derivatives and \mathbf{v} .

Theorem

If the torus $\mathbb{M} = (\mathbf{v}(\mathbf{x}), \forall \mathbf{x})$ is a hexagon flat torus, then $D(\Delta \mathbf{x}) = c \|\Delta \mathbf{x}\|^4$ for a constant coefficient c, i.e., $D(\Delta \mathbf{x})$ is isotropic.

• Hexagon torus has 6-fold rotational symmetry (60-degree rotations)

- This symmetry leads to isotropic deviation from flatness
- $D(\Delta \mathbf{x}) = c(\Delta x_1^2 + \Delta x_2^2)^2 = c \|\Delta \mathbf{x}\|^4$
- Other flat tori (square, rectangle) lack this isotropy

Theorem

For any fixed average extrinsic curvature, the overall deviation from local flatness:

$$L(\Delta r) = \int (\|\mathbf{v}(\mathbf{x} + \Delta \mathbf{x}) - \mathbf{v}(\mathbf{x})\|^2 - \|\Delta \mathbf{x}\|^2)^2 d\theta$$
(9)

is minimized if $D(\Delta \mathbf{x})$ is constant over all directions θ .

- Hexagon torus distributes extrinsic curvature evenly in all directions
- This minimizes the variance of $D(\Delta \mathbf{x})$ across directions
- Result holds for all displacement magnitudes Δr
- Therefore, hexagon torus forms maximally distance-preserving embedding

Multiple Modules of Grid Cells

Figure: Multi-module patterns example

- Grid cells form multiple modules with different scales
- Each module satisfies conformal isometry with its own scaling factor s
- Trade-off: Small $s \rightarrow$ large range but low resolution
- Large $s \rightarrow$ small range but high resolution

Conformal isometry provides crucial benefits for navigation:

- Preserves geometry of local environment
- Facilitates straight-path planning via steepest descent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Supports planning at different spatial scales

More plainly, grid cell embeddings serve as a coordinate system:

- We only have **v** and $F(\mathbf{v}, \Delta \mathbf{x})$ in the brain, not **x**
- We overlay (\mathbf{v}) onto the 2D physical domain
- It has to be conformal to correctly calculate distance and direction

- Indispensable for path planning, shortest path requires correct distance and direction
- Multiple scales (resolutions, precisions, metrics)

Why high dimensional $\mathbf{v}(\mathbf{x})$ for 2D \mathbf{x} ?

- $\bullet~v(x)$ serves as linear basis functions (similar to Fourier basis)
- Multi-scale isotropic basis for representing any $h(x) = W \nu(x)$

- W only needs to pick up scale and deviation from isotropy
- Enables fast learning of cognitive map

Our approach differs from previous work:

- Prior RNN models: Don't consistently produce hexagonal patterns
- Non-negativity hypothesis: Relies on Difference-of-Gaussian assumption
- Previous conformal isometry work: Required place cells, specific transformations

Our contributions:

• Scientific reductionism: Isolated grid cell system of a single module

- No assumptions about place cells or their interactions
- Agnostic to transformation model
- Explicit scaling factor s

- Conformal isometry provides a fundamental explanation for hexagonal grid patterns
- Hexagon patterns emerge from maximally distance-preserving position embeddings
- Our theory is supported by:
 - Numerical experiments across various models
 - Analysis of real neural recordings
 - Mathematical proof of hexagon torus optimality
- This hypothesis serves as a foundation for further development of normative models

Project page:

https://github.com/DehongXu/grid-cell-conformal-isometry

Questions?

Acknowledgments: NSF DMS-2015577, NSF DMS-2415226

