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Figure: Place cells and grid cells
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Figure: Neuron recording
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Figure: Firing of grid cells and place cells
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Figure: Different place cells fire at different places
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Figure: Response maps of different grid cells
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Figure: An internal GPS system



Introduction

These cells are crucial for:

Path integration
Navigation
Spatial memory

Key question: Why hexagonal patterns?

Our work: Investigating the conformal isometry hypothesis as a
mathematical explanation



Existing Models and Hypotheses

Several computational models have been proposed:

Continuous attractor neural networks (CANN)

RNN-based models for path integration

Basis expansion models with non-negative constraints

However, the mathematical principles behind hexagonal patterns remain
elusive.



Population Code

Figure: Left: vi (x) for different i . Right: v(x) = (vi (x), i = 1, ..., d as a vector
representation of x ∈ R2, or position embedding of x.

The whole population forms a vector for representing position

Each cell i is an element of the vector, with a response map vi (x)

But do not think about a single cell at a time

Position embedding



Position Representation and Self-Motion

Self-position representation:

Agent at position x = (x1, x2)

Grid cells form vector v(x)

v(x) is a position embedding

Self-motion representation:

Agent moves by ∆x

Vector transforms:
v(x+∆x) = F (v(x),∆x)

F can be implemented by RNN

Figure: Transformation by
self-motion



The Conformal Isometry Hypothesis

Key idea: Neural manifold is a conformal
isometric embedding of 2D physical space
Mathematically:

∥v(x+∆x)−v(x)∥ = s∥∆x∥+o(∥∆x∥) (1)

Where:

s is scaling factor (metric unit)

Distance in physical space is preserved
in neural space

Figure: 2D manifold in neural
space



Our Approach: Minimalistic Setting

We study grid cells with minimal assumptions:

1 Conformal isometry: ∥v(x+∆x)− v(x)∥ = s∥∆x∥+ o(∥∆x∥)
2 Transformation: v(x+∆x) = F (v(x),∆x)

3 Normalization: ∥v(x)∥ = 1 for each x

4 Non-negativity: vi (x) ≥ 0 for each i and x

Key advantages:

No assumptions about place cells

Agnostic to specific form of F

Explicit metric s



Transformation Models

We studied multiple transformation models:

1 Linear model:

v(x+∆x) = v(x) + B(θ)v(x)∆r (2)

2 Nonlinear model 1:

v(x+∆x) = R(Av(x) + B(θ)v(x)∆r + b) (3)

3 Nonlinear model 2:

v(x+∆x) = R(Av(x) + B(θ)∆r + b) (4)

Where:

∆r = ∥∆x∥ is displacement

θ is heading direction

R is elementwise nonlinearity



Learning Method

Loss function consists of:

L1 = Ex,∆x[(∥v(x+∆x)− v(x)∥ − s∥∆x∥)2] (5)

L2 = Ex,∆x[∥v(x+∆x)− F (v(x),∆x)∥2] (6)

L1 enforces conformal isometry

L2 ensures accurate transformation

For ∆x in L1: s∥∆x∥ ≤ 1.25

For ∆x in L2: ∥∆x∥ ≤ 0.075

We minimize L = L1 + λL2 using stochastic gradient descent.



Maximally Distance-Preserving Embedding

L1 has a non-zero minimum due to the non-infinitesimal range

Conformal isometry is nearly exact for s∥∆x∥ ≤ 0.8

Beyond that point, deviation increases due to extrinsic curvature

Minimizing L1 finds the maximally distance-preserving embedding

Key insight: The hexagon torus structure emerges as the optimal solution
for preserving distances in all directions.



Numerical Experiments: Setup

1m × 1m environment with 40 × 40 regular lattice

Learn v(x) on lattice points

Bilinear interpolation for off-lattice points

Linear model and nonlinear model 1: 24 grid cells

Nonlinear model 2: 1000 grid cells

Constrained s∥∆x∥ ≤ 1.25 for L1

Constrained ∥∆x∥ ≤ 0.075 for L2



Hexagonal Patterns in Linear Models

Figure: Learned grid cells with different scaling factors

Hexagonal patterns emerge across different scaling factors

Consistent scale and orientation within each module

Variations in phases (spatial shifts)



Toroidal Analysis

Figure: Toroidal structure spectral analysis

Spectral embedding shows grid cell states fall on a toroidal manifold

2D Fourier transforms reveal hexagonal distribution along 3 principal
directions

3 rings indicate 2D twisted torus topology



Nonlinear Models and Ablation Studies

Figure: Left: Nonlinear models with different activations. Right: Ablation studies

Hexagonal patterns emerge with various activation functions

Without conformal isometry: non-hexagon patterns emerge

Non-negativity constraint: not essential but improves stability

Transformation and normalization: necessary for hexagonal patterns



Quantitative Evaluation

Model Gridness(↑) Valid rate(↑)

Banino2018 0.18 25.2%
Sorscher2023 0.48 56.1%
Gao2021 0.90 73.1%
Our Linear 1.70 100.0%
Our Nonlinear 1.17 100.0%

Table: Gridness scores and validity rates

Our models achieve higher gridness scores

100% valid grid cells in both linear and nonlinear models

Scale of patterns inversely proportional to scaling factor s



Scaling Factor and Grid Scale

Scaling factor Estimated scale

s = 5 0.82
s = 10 0.41
s = 15 0.27

Table: Relationship between scaling factor and grid scale

The estimated scale of grid patterns is inversely proportional to the scaling
factor s:

Larger s: smaller grid spacing (higher resolution)

Smaller s: larger grid spacing (lower resolution)



Evidence for Local Conformal Isometry

Figure: Relationship between ∥v(x+∆x)− v(x)∥ and ∥∆x∥

Linear relationship for small ∥∆x∥ (blue line)

Quadratic deviation for larger ∥∆x∥ (orange curve)

Deviation due to extrinsic curvature of manifold M



Neuroscience Evidence

Figure: Analysis of real neural recording data (Gardner et al., 2021)

Clear linear relationship between ∥v(x+∆x)− v(x)∥ and ∥∆x∥
Minimal deviation from linearity for local ∥∆x∥
Distribution of ∥v(x)∥ approximately constant

Results consistent with conformal isometry hypothesis in real grid cells.



Theoretical Understanding: Torus Topology

Proposition

The transformations (F (·,∆x), ∀∆x) form a group acting on the manifold
M = (v(x),∀x), and the 2D manifold M has a torus topology.

Group (F (·,∆x), ∀∆x) represents the 2D additive Euclidean group

It’s an abelian Lie group, compact and connected

According to Lie group theory, such a group has torus topology

Torus topology makes v(x) a 2D periodic function of x



Analyzing Deviation from Local Flatness

For small displacements, conformal isometry holds:

∥v(x+∆x)− v(x)∥2 = ∥∆x∥2 + o(∥∆x∥2) (7)

For larger displacements, we analyze higher-order deviations:

∥v(x+∆x)− v(x)∥2 − ∥∆x∥2 = − 1

12
D(∆x) + o(∥∆x∥4) (8)

Where D(∆x) involves inner products of 4th-order derivatives and v.



Hexagonal Isotropy

Theorem

If the torus M = (v(x),∀x) is a hexagon flat torus, then D(∆x) = c∥∆x∥4
for a constant coefficient c, i.e., D(∆x) is isotropic.

Hexagon torus has 6-fold rotational symmetry (60-degree rotations)

This symmetry leads to isotropic deviation from flatness

D(∆x) = c(∆x21 +∆x22 )
2 = c∥∆x∥4

Other flat tori (square, rectangle) lack this isotropy



Why Hexagons are Optimal

Theorem

For any fixed average extrinsic curvature, the overall deviation from local
flatness:

L(∆r) =

∫
(∥v(x+∆x)− v(x)∥2 − ∥∆x∥2)2dθ (9)

is minimized if D(∆x) is constant over all directions θ.

Hexagon torus distributes extrinsic curvature evenly in all directions

This minimizes the variance of D(∆x) across directions

Result holds for all displacement magnitudes ∆r

Therefore, hexagon torus forms maximally distance-preserving
embedding



Multiple Modules of Grid Cells

Figure: Multi-module patterns example

Grid cells form multiple modules with different scales

Each module satisfies conformal isometry with its own scaling factor s

Trade-off: Small s → large range but low resolution

Large s → small range but high resolution



Functional Benefits for Navigation

Conformal isometry provides crucial benefits for navigation:

Preserves geometry of local environment

Facilitates straight-path planning via steepest descent

Supports planning at different spatial scales



Functional Necessity for Navigation

More plainly, grid cell embeddings serve as a coordinate system:

We only have v and F (v,∆x) in the brain, not x

We overlay (v) onto the 2D physical domain

It has to be conformal to correctly calculate distance and direction

Indispensable for path planning, shortest path requires correct
distance and direction

Multiple scales (resolutions, precisions, metrics)



Functional Benefits for Representation

Why high dimensional v(x) for 2D x?

v(x) serves as linear basis functions (similar to Fourier basis)

Multi-scale isotropic basis for representing any h(x) = Wv(x)

W only needs to pick up scale and deviation from isotropy

Enables fast learning of cognitive map



Comparison to Prior Work

Our approach differs from previous work:

Prior RNN models: Don’t consistently produce hexagonal patterns

Non-negativity hypothesis: Relies on Difference-of-Gaussian
assumption

Previous conformal isometry work: Required place cells, specific
transformations

Our contributions:

Scientific reductionism: Isolated grid cell system of a single module

No assumptions about place cells or their interactions

Agnostic to transformation model

Explicit scaling factor s



Conclusion

Conformal isometry provides a fundamental explanation for hexagonal
grid patterns

Hexagon patterns emerge from maximally distance-preserving position
embeddings

Our theory is supported by:

Numerical experiments across various models
Analysis of real neural recordings
Mathematical proof of hexagon torus optimality

This hypothesis serves as a foundation for further development of
normative models

Project page:
https://github.com/DehongXu/grid-cell-conformal-isometry

https://github.com/DehongXu/grid-cell-conformal-isometry


Thank You!

Questions?
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