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Abstract

This paper proposes a method for unsupervised learning
of codebooks of deformable templates for sparse represen-
tations of images of various objects and textures. Each de-
formable template is represented by an active basis model,
which is a composition of a small number of Gabor wavelets
automatically selected from a dictionary of such wavelets.
The selected wavelets are allowed to perturb their locations
and orientations so that the active basis template can de-
form to encode the observed images. For a given set of
training images, our method is to learn a codebook of such
active basis templates, so that each training image can be
represented by a small number of templates automatically
selected from the codebook. The learning algorithm iterates
the following two steps. (1) Image encoding by a template
matching pursuit algorithm. (2) Codebook re-learning by a
shared matching pursuit algorithm. Our experiments show
that the method is capable of learning meaningful code-
books from images of textures and objects, and the code-
books give meaningful representations of these images. Our
experiments also show that the learned codebooks can be
used as features for classification.

1. Introduction
Learning codebooks or dictionaries of representational

elements for images of natural scenes or images of various
types of textures and objects is one of the most fundamen-
tal problems in both computer and biological vision. This
paper proposes a method for unsupervised learning of code-
books of deformable templates that give sparse representa-
tions of images.

1.1. Explicit codebook and representation

Our method is based on an explicit generative model
of image intensities, where each image is represented by
a small number of templates automatically selected from a
codebook of templates. Each template in the codebook is
further encoded by a small number of Gabor wavelet el-
ements automatically selected from a dictionary of Gabor

wavelets. The codebook is learned from training images
without any labelling or annotation. We also require that
the number of templates in the codebook to be as small as
possible.

Figure 1. Learning a codebook of 3 active basis templates from an
image of pavement. Each black bar represents a Gabor wavelet at
the same location, orientation and length. The size of the image
is 578 by 434 pixels. Each active basis template (i.e. entry in the
codebook) is of size 60 by 60 pixels, with no more than 10 selected
wavelets. The input image is paved by 43 deformed templates
selected from the codebook, with their bounding boxes shown in
green color.

Figure 1 illustrates the basic idea. The first row displays
a codebook of 3 templates learned from a pavement image
on the left of the second row. Each template in the code-
book is represented by an active basis model. Specifically,
each template is a composition of a small number of Ga-
bor wavelets automatically selected from a dictionary of
Gabor wavelets. Each selected Gabor wavelet is depicted
by a bar that has the same location, orientation and length
as the Gabor wavelet. The selected Gabor wavelets are al-
lowed to perturb their locations and orientations, so the tem-
plate becomes deformable, and the linear basis formed by
the selected Gabor wavelet elements becomes active. The
sketch on the right of the second row displays the represen-
tation of the original pavement image using the templates
in the codebook. Here the word “pavement” also serves as
a good metaphor because the representation is essentially
a “pavement” made of the active basis templates. Specifi-
cally, each of the templates in the sketch is a spatially trans-
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lated, scaled, rotated and deformed version of a template in
the codebook. The bounding box of each template in the
sketch is also shown in green color (the deformed templates
are allowed to have some overlaps with each other). As
shown in the caption, the image can be paved by a rela-
tively small number of templates, and such a representation
is said to be sparse. It is sparser than wavelet representation
because the coding elements are compositions or groups of
wavelets.

Figure 2. Learning a codebook of 20 active basis templates from
25 images of cats (not assumed to be aligned). The input images
are resized to have roughly 22,500 pixels. Each active basis tem-
plate (i.e. entry in the codebook) is of size 72 by 72 pixels, with
no more than 12 selected wavelets. On average about 8 templates
are used to sketch each image.

Figure 2 shows another example, where a codebook of
active basis templates is learned from a set of training im-
ages of cats.

1.2. Unsupervised learning algorithm

For a given set of training images without any labeling
or annotation, our learning algorithm iterates the following
two steps:

Step 1: Image encoding by template matching pursuit:
Given the current codebook of templates, for each training
image, a template matching pursuit algorithm sequentially
selects the templates from the codebook to pave the whole
image.

Step 2: Codebook re-learning by shared matching pur-
suit: Given the current encoding, for each template, a
shared matching pursuit algorithm re-learns the template
from all the image patches that are currently covered by this
template. The algorithm sequentially selects the constituent
Gabor wavelet elements of the template from the dictionary
of Gabor wavelets, in order to encode all these patches si-
multaneously.

Our experiments show that our method is capable of
learning meaningful codebooks from images of textures and
objects, and the codebooks give meaningful representations
of these images. Our experiments also show that the learned
codebooks can be used as features for classification.

1.3. Past work

Our generative model is built on the wavelet sparse cod-
ing model of Olshausen and Field [6] and the active ba-
sis model of Wu et al. [10]. In Olshausen-Field model,

an image is represented by a small number of wavelet ele-
ments selected from a dictionary. In our model, an image is
represented by a smaller number of groups of wavelet ele-
ments, and these groups of wavelets exhibit recurring com-
positional patterns that can be represented by active basis
models.

The part of our work on textons can be considered a con-
tinuation of the work Zhu et al. [12]. The learned code-
books can serve as Or-nodes in the And-Or graph studied
by Zhu and Mumford [13]. The learning method is also
related to L. Zhu et al. [11].

2. Olshausen-Field model
Olshausen and Field [6] propose that the role of simple

V1 cells is to provide sparse representations of natural im-
ages. This section reviews the Olshausen-Field model in
order to set the stage and fix the notation.

2.1. Overcompleteness and sparsity

Let {Im,m = 1, ...,M} be a set of training image
patches (e.g. 12×12), Olshausen-Field model seeks to rep-
resent these images by

Im =
N∑
i=1

cm,iBi + Um, (1)

where (Bi, i = 1, ..., N) is a dictionary or codebook of ba-
sis elements of the same dimensionality as Im, cm,i are the
coefficients, and Um is the unexplained residual image. N
is often assumed to be greater than the dimensionality of
Im (e.g. N = 2 × 12 × 12), so the dictionary is said to
be overcomplete. On the other hand, the number of coeffi-
cients (cm,i, i = 1, ..., N) that are non-zero or significantly
different from zero is assumed to be very small for each im-
age Im. The dictionary of (Bi, i = 1, ..., N) can be learned
automatically from the training images {Im} by imposing a
sparsity regularization function.

2.2. Self-similarity and geometric attributes

One may also assume that the dictionary of the basis el-
ements are translated, rotated and dilated version of one an-
other, as in Olshausen et al. [7], so that eachBi can be writ-
ten as Bx,s,α, where x is the location (a two-dimensional
vector), s is the scale, and α is the orientation. We call such
a dictionary self-similar, and we call (x, s, α) the geometric
attribute of Bx,s,α.

Model (1) then becomes

Im =
∑
x,s,α

cm,x,s,αBx,s,α + Um, (2)

where Bx,s,α are translated, rotated and dilated copies of a
single basis element, e.g. B = Bx=0,s=1,α=0, and (x, s, α)

2
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are properly discretized. B can be learned from training
images {Im}.

Assumption on wavelets in this paper. From now on,
we assume that the dictionary of wavelets is self-similar,
and (Bx,s,α,∀(x, s, α)) is already available. It can either
be learned or designed. In the following, we assume that
Bx,s,α is a Gabor wavelet, and we also assume that Bx,s,α
is normalized to have unit L2 norm so that |Bx,y,α|2 = 1.
Bx,s,α may also be a pair of Gabor sine and cosine wavelets,
so that for each Gabor wavelet B, B = (B0, B1). The cor-
responding coefficient c = (c0, c1), and cB = c0B0+c1B1.
For projection 〈I, B〉 = (〈I, B0〉, 〈I, B1〉), and |〈I, B〉|2 =
〈I, B0〉2 + 〈I, B1〉2.

2.3. spatial point process

Given the dictionary (Bx,s,α,∀(x, s, α)), the encoding
of an image Im amounts to inferring (cm,x,s,α,∀(x, s, α))
in (2) under the sparsity constraint, which means that only
a small number of (cm,x,s,α) are non-zero. That is, we seek
to encode Im by

Im =
n∑
i=1

cm,iBxm,i,sm,i,αm,i
+ Um, (3)

where n� N is a small number, and (xm,i, sm,i, αm,i, i =
1, ..., n) are the geometric attributes of the selected
wavelet elements whose coefficients (cm,i) are non-zero.
(xm,i, sm,i, αm,i, i = 1, ..., n) form a spatial point process.
(we continue to use i to index the basis elements, but here
i only runs through the n selected basis elements instead of
all the N basis elements as in (1)).

3. Active basis model
The active basis model was proposed by Wu et al. [10]

for modeling deformable compositional patterns of the se-
lected wavelet elements.

3.1. A single template for aligned image patches

Suppose we have a set of training image patches
{Im,m = 1, ...,M}. This time they are defined on the
same bounding box. The objects in these images come from
the same category. They appear at the same location, scale
and orientation, and in the same pose within the bounding
box. The active basis model is of the following form

Im =
n∑
i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i + Um, (4)

where B = (Bxi,s,αi
, i = 1, ..., n) form the original tem-

plate. Here we assume that the scale s is fixed and given.
Bm = (Bxi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n) is the de-
formed template for encoding Im, where (∆xm,i,∆αm,i)

are the perturbations in the location and orientation respec-
tively, in order to account for deformation. Both ∆xm,i
and ∆αm,i are assumed to vary within limited ranges (e.g.
∆xm,i ∈ [−3, 3] pixels, and ∆αm,i ∈ [−π/16, π/16]).

3.2. Shared matching pursuit: local maximum pool-
ing and arg-max explaining-away inhibition

The selection of Bxi,s,αi and the inference of its
perturbed versions Bxi+∆xm,i,s,αi+∆αm,i

can be accom-
plished by a shared matching pursuit algorithm that greedily
minimizes

∑M
m=1 |Im−

∑n
i=1 cm,iBxi+∆xm,i,s,αi+∆αm,i

|2
(recall that the wavelet elements are normalized to have unit
L2 norm).

[0] Initialize i ← 0. For m = 1, ...,M , initialize the
residual image Um ← Im.

[1] i ← i + 1. Select the next element by (xi, αi) =
arg maxx,α

∑M
m=1 max∆x,∆α |〈Um, Bx+∆x,s,α+∆α〉|2,

where max∆x,∆α is a local maximum pooling within the
small ranges of ∆xm,i and ∆αm,i .

[2] For m = 1, ...,M , given (xi, αi), infer the perturba-
tions in location and orientation by retrieving the arg-max in
the local maximum pooling of step [1]: (∆xm,i,∆αm,i) =
arg max∆x,∆α |〈Um, Bxi+∆x,s,αi+∆α〉|2. Let cm,i ←
〈Um, Bxi+∆xm,i,s,αi+∆αm,i

〉, and update the residual im-
age Um ← Um − cm,iBxi+∆xm,i,s,αi+∆αm,i

.
[3] Stop if i = n, else go back to step [1].
The above algorithm is a generalization of the match-

ing pursuit algorithm of Mallat and Zhang [5]. In step
[1], the max∆x,∆α is the local maximum pooling, pro-
posed by Riesenhuber and Poggio [8] as a function of V1
complex cells. The selected Bxi,s,αi

is supposed to en-
code all the images {Im} simultaneously, subject to local
perturbations. That is, Bxi,s,αi

is shared by all the im-
ages. After the selection of the shared wavelet element
Bxi,s,αi , we infer its perturbations by retrieving the arg-
max of the local maximum pooling. This arg-max wavelet
element Bxi+∆xm,i,s,αi+∆αm,i

then explains away a small
part from Um, thereby implicitly inhibits nearby wavelet el-
ements from being selected in the future.

Assumption on orthogonality in this paper. Be-
cause of the arg-max explaining-away inhibition, the
wavelet elements in each deformed template Bm =
(Bxi+∆xm,i,s,αi+∆αm,i

, i = 1, ..., n) usually have little
overlaps with each other. So from now on, we shall assume
that these wavelet elements are orthogonal to each other,
so that the coefficient cm,i = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i

〉.
We write Cm = (cm,i, i = 1, ..., n). In practice, we allow
small overlaps between the elements of Bm.

3.3. Statistical modeling: foreground pops out from
natural image background

The above algorithm implicitly assumes that the residual
Um is Gausian white noise. This assumption is wrong. A

3
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better assumption is to assume that Um follows the same
distribution as that of natural images. Specifically, the
distribution of Im given the deformed template Bm =
(Bxi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n), i.e., p(Im | Bm),
is obtained by modifying the distribution of natural im-
ages q(Im) in such a way that we only change the dis-
tribution of Cm = (cm,i, i = 1, ..., n) from q(Cm) to
p(Cm), while leaving the conditional distribution of Um
given Cm unchanged. Here p(Cm) and q(Cm) are the dis-
tributions of Cm under p(Im | Bm) and q(Im) respec-
tive. We should find B and perturb it to {Bm} so that
p(Cm) and q(Cm) have the maximum contrast in terms of
the Kullback-Leibler divergence. Thus the model is in the
form of foreground p(Cm) popping out from background
q(Im). Specifically, p(Im | Bm) = q(Im)p(Cm)/q(Cm).
Such a density substitution scheme was first used in projec-
tion pursuit density estimation [3].

For computational simplicity, we further assume that
(cm,i, i = 1, ..., n) are independent given Bm, under both p
and q, so we have

p(Im | Bm) = q(Im)
n∏
i=1

pi(cm,i)
q(cm,i)

,

where q(c) is assumed to be the same for i = 1, ..., n be-
cause q(Im) is stationary. q(c) can be pooled from natural
images in the form of a heavy-tailed histogram of Gabor
filter responses.

For parametric modeling, we assume the following ex-
ponential family model,

pi(c) =
1

Z(λi)
exp{λih(|c|2)}q(c), (5)

where h(r) is a function of the response r = |c|2 that satu-
rates for large r. Specifically, h(r) = ξ[2/(1 + e−2r/ξ)−1].
h(r) behaves like h(r) ≈ r for small r, but h(r) → ξ
(e.g., ξ = 6) as r → ∞. The reason we assume this sat-
uration function is that in the natural image background,
there are also occasional (albeit less frequent) edges that
give equally large responses r as those in foreground, so the
probability ratio pi(c)/q(c) should go to a positive constant
instead of 0 for large |c|2. Z(λ) =

∫
exp{λh(r)}q(c)dc =

Eq[exp{λh(r)}] is the normalizing constant. µ(λ) =
Eλ[h(r)] is the mean parameter.

3.4. Shared matching pursuit revised: saturation
and hard inhibition

We can revise the shared matching pursuit in section
(3.2) in order to maximize the log-likelihood instead of min-
imize the squared loss as in section (3.2). The algorithm is
as follows.

[0] Initialize i ← 0. For m = 1, ...,M , initialize the
response maps Rm(x, α)← 〈Im, Bx,s,α〉 for all (x, α).

[1] i← i+1. Select the next wavelet element by finding

(xi, αi) = arg max
x,α

M∑
m=1

max
∆x,∆α

h(|Rm(x+∆x, α+∆α)|2),

where max∆x,∆α is again local maximum pooling.
[2] For m = 1, ...,M , given (xi, αi), infer the perturba-

tions by retrieving the arg-max in the local maximum pool-
ing of step [1]:

(∆xm,i,∆αm,i) = arg max
∆x,∆α

|Rm(xi + ∆x, αi + ∆α)|2.

Let cm,i ← Rm(xi + ∆xm,i, αi + ∆αm,i), and update
Rm(x, α) ← 0 if corr[Bx,s,α, Bxi+∆xm,i,s,αi+∆αm,i

] > ε.
Then estimate λ̂i = µ−1(

∑M
m=1 h(|cm,i|2)/M).

[3] Stop if i = n, else go back to 1.
There are two modifications to the original shared match-

ing pursuit in section (3.2). (1) In step [1], we apply the
saturation function h() to the response. This is justified
by maximum likelihood based on the exponential family
model (5). Intuitively, it means we discount very large
responses, because there can also be occasional (though
less frequent) large responses caused by the edges in nat-
ural image background. (2) In step [2], the arg-max el-
ement Bxi+∆xm,i,s,αi+∆αm,i directly inhibits nearby el-
ements whose correlation with it is greater than a toler-
ance ε, instead of explaining away from Um and inhibiting
nearby elements indirectly. The correlation is defined as
the square of the inner product. This hard inhibition is to
approximately enforce the orthogonality assumption in sec-
tion (3.2). nmay be adaptively chosen by setting a threshold
on λ̂i.

3.5. Template matching and shape filter

After learning the template from training images {Im},
for a testing image I that contains an instance of the object,
we can detect it by scanning the template over the whole
image and compute the template matching score.

[1] For every pixel X , compute the log-likelihood l(X),
which serves as the template matching score at putative lo-
cation X:
n∑
i=1

[
λi max

∆x,∆α
h(|〈I, BX+xi+∆x,s,αi+∆α〉|2)− logZ(λi)

]
. (6)

[2] Find maximum likelihood X̂ = arg maxX l(X). For
i = 1, ..., n, inferring perturbations by retrieving the arg-
max in the local maximum pooling in step [1]:

(∆xi,∆αi) = arg max
∆x,∆α

|〈I, BX̂+xi+∆x,s,αi+∆α〉|
2.

[3] Return the location X̂ , and the translated and de-
formed template (BX̂+xi+∆xi,s,αi+∆αi

, i = 1, ..., n).

4
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l(X̂) can also be used for classification.
Shape filter. The template B can be viewed as a shape

filter, and the template matching score l(X) is the filter re-
sponse at locationX . We may even write B∗I(X) = l(X).
Step [2] finds the object and deforms the template. Step [3]
not only returns a bounding box, but also sketches the de-
tected object by the deformed template.

Rotation and multi-resolution. We can rotate the tem-
plate and scan the template over multiple resolutions of the
original image, to account for uncertainties of the orienta-
tion and scale of the object.

4. Unsupervised learning of codebooks of ac-
tive basis templates

In Olshausen-Field model (1), the coefficients are as-
sumed to be independent for simplicity. A natural question
is how to correct this assumption, or specifically, how to add
another layer of model on all the coefficients?

Since we argue that the Olshausen-Field model (1) with
a dictionary of self-similar wavelets as in (2) is essentially a
spatial point process as explicated in (3), the model on top
of all the coefficients should focus on the geometric patterns
formed by the wavelet elements with non-zero coefficients.
In particular, we may search for recurring compositional
patterns of the selected wavelet elements. These compo-
sitional patterns can be modeled by active basis models.

In this section, we shall specify our representation where
each representational element is an active basis template.
Then we shall describe the algorithm for learning code-
books of active basis templates from training images.

4.1. Representation

In this section, we strive to write down our model in a
form that is analogous to the Olshausen-Field model, by us-
ing compactified notation.

Compactified notation. As the first step of this exercise
of compactification, let us slightly generalize the active ba-
sis model by assuming that the template may appear at lo-
cation Xm in image Im, then

Im =
n∑
i=1

cm,iBXm+xi+∆xm,i,s,αi+∆αm,i + Um

= CmBXm
+ Um, (7)

where B = (Bxi,s,αi
, i = 1, ..., n) is the original template,

BXm = (BXm+xi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n) is the
deformed template spatially translated to Xm. Equation (7)
is written in what we call the compactified notation.

For each image I and each X , we can also define

〈I,BX〉 =
n∑
i=1

[
λi max

∆x,∆α
h(|〈I, BX+xi+∆x,s,αi+∆α〉|2)

− logZ(λi)
]
, (8)

which is l(X) = B ∗ I(X) in section (3.5).
As the next step of this compactification exercise, in ad-

dition to spatial translation and deformation, we can also
rotate and scale template. So a more general model is
Im = CmBXm,Sm,Am + Um, where Xm is the location,
Sm is the scale, and Am is the orientation. The scaling of
the template is implemented by changing the resolution of
the original image. We adopt the convention that whenever
the notation B appears in image representation, it always
means the deformed template.

We can also define 〈I,BX,S,A〉 in a similar way as in
equation (8).

Compactified representation. Now suppose we have a
codebook of T templates, {B(t), t = 1, ..., T}. Then we
can represent an image by K templates that are spatially
translated, rotated, scaled and deformed versions of these T
templates in the codebook.

Im =
K∑
k=1

Cm,kB
(tm,k)
Xm,k,Sm,k,Am,k

+ Um, (9)

where each B(tk)
Xm,k,Sm,k,Am,k

is obtained by translating the
template B(tk) in the codebook to location Xm,k, scale it to
scale Sm,k, rotate it to orientation Am,k, and deform it to
match Im. Again, the scaling of a template can be imple-
mented by changing the resolution of the image.

Packing and unpacking. The above representation is in
analogy to equation (3) in section (2.1), which we copy
here: Im =

∑n
i=1 cm,iBxm,i,sm,i,αm,i + Um. The dif-

ference is that each B(tk)
Xm,k,Sm,k,Am,k

is itself a group of
wavelet elements that follow a certain composition pattern
tk. Because of such grouping or packing, the number of
templates K needed to code Im is expected to be smaller
than n. Specifically, if each template is a group of g wavelet
elements, then n = Kg (if there is no overlaps between
templates). In other words, we can unpack model (9) into
the wavelet expansion model (3). The reason that it is ad-
vantageous to pack the wavelets into groups is that these
groups exhibit T types of recurring compositional patterns
to be discovered automatically by the learning algorithm.

4.2. Learning algorithm

We want to learn the codebook {B(t), t = 1, ..., T} from
training images {Im,m = 1, ...,M}, and at the same time,
infer the representation for each Im in terms of the model
(9). The objective function is the log-likelihood

M∑
m=1

K∑
k=1

〈Im,B
(tm,k)
Xm,k,Sm,k,Am,k

〉, (10)

which is the sum of the log-likelihood of all the selected
templates (recall that we should not use the simple squared
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loss, which implicitly and incorrectly assumes that Um is
white noise, see section (3.4)). K is assumed to be small
and may vary for different Im.

The learning algorithm is guided by the above objective
function. It iterates an image encoding step and a codebook
revision step.

Step 1: Image encoding by template matching pursuit.
Suppose we are given the current codebook {B(t), t =
1, ..., T}. Then for each Im, m = 1, ...,M , the template
matching pursuit algorithm seeks to represent it by sequen-
tially selecting a small number of templates from the code-
book in order to pave Im.

[0] Initialize the response maps R(t)
m (X,S,A) ←

〈Im,B(t)
X,S,A〉, for all (X,S,A, t). This can be accom-

plished by first rotating the template to orientation A, and
then scanning the rotated template over the image zoomed
to the resolution corresponds to scale S. The larger the S
is, the smaller the resolution is. Let k ← 1.

[1] Select the translated, rotated, scaled and de-
formed template by finding the global maximum
of the response maps: (Xm,k, Sm,k, Am,k, tm,k) =
arg maxX,S,A,tR

(t)
m (X,S,A).

[2] Let the selected arg-max template inhibits over-
lapping candidate templates, i.e., for all (X,S,A, t), if
corr[B(t)

X,S,A, B(tm,k)
Xm,k,Sm,k,Am,k

] > ε, then set the response

R(t)
m (X,S,A)← −∞. k ← k + 1.
[3] Stop if all R(t)

m (X,S,A, t) ≤ 0. Otherwise go to step
[1].

This template matching pursuit algorithm implements a
hard inhibition. The corr[B1, B2] here is simply defined as
the overlap between the bounding boxes of the two tem-
plates B1 and B2. It can also be defined in a more re-
fined manner in terms of the inner products between the
constituent elements of B1 and B2. More rigorously, we
could even update the residual image by Um ← Um −
CmB(tm,k)

Xm,k,Sm,k,Am,k
as in the original version of matching

pursuit. But the current simplified version is more efficient
and works well enough.

Step 2: Codebook re-learning by shared matching pur-
suit. For each t = 1, ..., T in the codebook, the shared
matching pursuit algorithm re-learns B(t) from all the im-
age patches that are covered by B(t) by selecting the con-
stituent Gabor wavelet elements of B(t). This consists of
the following two operations:

[1] Image patch cropping. For each Im, go through all
the selected templates {B(tm,k)

Xm,k,Sm,k,Am,k
,∀k} that pave Im.

If tm,k = t, then crop the image patch of Im (at the resolu-
tion that corresponds to Sm,k) covered by the bounding box
of the template B(tm,k)

Xm,k,Sm,k,Am,k
.

[2] Template re-learning. Re-learn template B(t) from
all the image patches covered by B(t) that are cropped in

step [1], and with their bounding boxes aligned. The learn-
ing is accomplished by the shared matching pursuit algo-
rithm of section (3.4), which sequentially selects Gabor
wavelet elements to encode all these image patches simul-
taneously.

In practice, we do not have to deal with these image
patches directly. We only need to crop the maps of Ga-
bor filter responses, and feed them into the shared sketch
algorithm.

Polarization or specialization. The learning algorithm
starts from a codebook of templates learned from randomly
cropped image patches. As a result, the initial templates are
rather random and meaningless, and the differences among
them are small. However, as the algorithm proceeds, the
small differences among the initial templates quickly start a
polarizing or specializing process, where the templates be-
come more and more different, and they specialize in cod-
ing different types of image patches. One may start the al-
gorithm multiple times and select the one that achieves the
maximum of the log-likelihood (10).

Generalized matching pursuit in both steps. Both the
encoding and re-learning steps of the learning algorithm
are generalizations of matching pursuit. In fact, the whole
learning algorithm can be viewed as an encoding algorithm,
which seeks to automatically discover the recurring compo-
sitional patterns that are otherwise overlooked by the plain
matching pursuit algorithm. The re-learning of each tem-
plate can be viewed as encoding multiple image patches by
a single template.

No early decision on wavelet representation For learn-
ing the codebooks, it is tempting to first apply the plain
matching pursuit algorithm to each training image, and then
search for recurring compositional patterns in the selected
wavelets produced by the plain matching pursuit. The prob-
lem with such a two-step sequential scheme is that the
wavelet representation produced by the plain matching pur-
suit is an early decision or early commitment. Presumably,
there may be many other wavelet representations that are
equally good or comparable in terms of sparsity, but they
may be much more regular in terms of forming recurring
compositional patterns. So we have to obtain the wavelet
representation and discover the compositional patterns si-
multaneously or by an iterative algorithm. Not making early
decision on wavelet expansion or edge detection is a key dif-
ference between our learning algorithm and those of Zhu et
al. [12] and L. Zhu et al. [11].

Biological plausibility. The Olshausen-Field model is
a model for simple V1 cells. The local max pooling of
Riesenhuber and Poggio [8] and the arg-max retrieval and
inhibition of the active basis model may be related to com-
plex V1 cells. The codebooks of active basis templates may
be related to V2 cells.
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5. Experiments

This section presents experimental results that show that
our learning algorithm is capable of learning explicit and
meaningful codebooks that give explicit and meaningful
representations of training images.

5.1. Learning codebooks of textons

We first apply the learning algorithm to texture images,
where we learn codebooks of active basis templates that
can be used to pave the texture images. The learned tem-
plates are recurring patterns within the texture images, and
we may call them textons, following Julesz. Figure 3 shows
some examples. Some members in the codebook may dis-
appear if they fail to be selected in the encoding step.

Figure 3. Learning codebooks of texons. For each texture image,
we learn a codebook of 3 textons (for the wall example only 2
survived). The sizes of the images: bricks (291 by 271), leaves
(509 by 382), peanuts (289 by 217), fabric (275 by 275), grapes
(555 by 417), and fence (554 by 418). Each active basis template
(i.e. entry in the texton codebooks) is of size 60 by 60 pixels, with
no more than 12 selected wavelets. A small number of translated
and deformed templates are used to pave each input image: bricks
(43), leaves (94), peanuts (40), fabric (29), grapes (83), and fence
(105). For the last two examples, we use different colors for dif-
ferent textons.

Allowing overlaps. In our current implementation, we
allow quite some overlaps between the translated and de-
formed templates to avoid that situations where small pieces
of images fall through the cracks and unpaved.

5.2. Learning codebooks of partons

We also apply the learning algorithm to object images
without assuming image alignment. The learned codebooks
of active basis templates correspond to parts of the objects
as well as the backgrounds. These templates are recurring
patterns across multiple images. We may call them partons,
following the physicist Feynman. Figure 4 shows some ex-
amples.

Figure 4. Learning codebooks of partons. For each data set, we
learn a codebook of 20 partons (for the flower example 19 sur-
vived). The number of training images: car (50), flower (9), teapot
(61), and horse (50). Each active basis template (i.e. entry in the
codebook) is of size 60 by 60 pixels, with no more than 12 selected
wavelets. All images are resized to around 22,500 pixels.

5.3. Using codebooks of partons for classification

The learned codebooks of partons can be used for im-
age classification. Specifically let {B(t), t = 1, ..., T} be

7
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Table 1. Classification accuracies on face and bicycle datasets.

dataset method codebook size accuracy

Face
k-means+sift

k-means+sift

our approach

50

500

20

84.15%

89.31%

99.56%

Bicycle
k-means+sift

k-means+sift

our approach

50

500

50

53.95%

76.69%

81.23%

a codebook learned from positive training images, then for
each testing image I, we scan rotated versions of B(t) over
multiple resolutions of I, and then take the global maximum
of the template matching score as defined in section (3.5).
We threshold the maximum score below at 0. This gives
us T scores. We then feed these T scores to SVM [9] for
classification.

We report experimental results on two commonly used
datasets: Caltech-101 face 1 and Graz02 bicycle 2. The
Caltech-101 [2] contains 450 face images and 900 back-
ground images. Among them, we randomly select 225 face
images for training, and all the other images for testing. The
Graz02 dataset has 365 bicycle images and 380 background
images. We train on 100 randomly selected bicycle images,
and test on all the remaining bicycle and background im-
ages. For each data set, the accuracies are computed by av-
eraging over 10 repetitions. We compared our method with
k-means + sift [1, 4] under identical experiment settings.
The latter is perhaps the most commonly used approach for
image classification. Table 1 presents the experimental re-
sults. Our approach achieves a higher classification accu-
racy than k-means + sift with much smaller codebook size.
Figure 5 gives the codebooks, each obtained from one rep-
etition.

6. Conclusion
Although our work makes use of active basis model, our

model is novel, and our learning algorithm is much more
versatile and powerful than that used in the active basis
model [10].

Reproducibility: Data and code can be found in the
supplementary materials.
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