
Int J Comput Vis
DOI 10.1007/s11263-009-0287-0

Learning Active Basis Model for Object Detection and
Recognition

Ying Nian Wu · Zhangzhang Si · Haifeng Gong ·
Song-Chun Zhu

Received: 28 March 2008 / Accepted: 3 August 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract This article proposes an active basis model, a
shared sketch algorithm, and a computational architecture
of sum-max maps for representing, learning, and recogniz-
ing deformable templates. In our generative model, a de-
formable template is in the form of an active basis, which
consists of a small number of Gabor wavelet elements at
selected locations and orientations. These elements are al-
lowed to slightly perturb their locations and orientations be-
fore they are linearly combined to generate the observed im-
age. The active basis model, in particular, the locations and
the orientations of the basis elements, can be learned from
training images by the shared sketch algorithm. The algo-
rithm selects the elements of the active basis sequentially
from a dictionary of Gabor wavelets. When an element is
selected at each step, the element is shared by all the train-
ing images, and the element is perturbed to encode or sketch
a nearby edge segment in each training image. The recog-
nition of the deformable template from an image can be ac-
complished by a computational architecture that alternates
the sum maps and the max maps. The computation of the
max maps deforms the active basis to match the image data,

Y.N. Wu (�) · Z. Si · H. Gong · S.-C. Zhu
Department of Statistics, University of California, Los Angeles,
USA
e-mail: ywu@stat.ucla.edu

Z. Si
e-mail: zzsi@stat.ucla.edu

H. Gong
e-mail: hfgong@stat.ucla.edu

S.-C. Zhu
e-mail: sczhu@stat.ucla.edu

H. Gong · S.-C. Zhu
Lotus Hill Research Institute, Ezhou, China

and the computation of the sum maps scores the template
matching by the log-likelihood of the deformed active basis.

Keywords Deformable template · Generative model ·
Shared sketch algorithm · Sum maps and max maps ·
Wavelet sparse coding

1 Introduction

Deformable template is an important element in object
recognition (Ullman 1996; Yuille et al. 1992; Lades et al.
1993; Cootes et al. 2001; Weber et al. 2000; Amit and
Trouve 2007). In this article, we propose a generative model,
a model-based algorithm, and a computational architecture
for representing, learning and recognizing deformable tem-
plates.

1.1 Form of Representation

We call our model the active basis model. An active ba-
sis consists of a small number of Gabor wavelet elements
at selected locations and orientations. These elements are
allowed to slightly perturb their locations and orientations
before they are linearly combined to generate the observed
image. Figure 1 illustrates the basic idea. The lower half of
Fig. 1 shows an active basis, where each element is illus-
trated by a thin ellipsoid at a certain position and with a
certain orientation. The upper half of Fig. 1 illustrates the
perturbation of one basis element. Intuitively, each Gabor
wavelet element can be considered a “stroke.” The template
is formed by a composition of a number of strokes. These
strokes can be slightly perturbed, so that the template is de-
formable.

mailto:ywu@stat.ucla.edu
mailto:zzsi@stat.ucla.edu
mailto:hfgong@stat.ucla.edu
mailto:sczhu@stat.ucla.edu

Int J Comput Vis

Figure 2 shows a real example. It displays 7 images of
cars at the same scale and in the same pose. These images
are defined on a common image lattice, which is the bound-
ing box of the cars. These images are represented by an ac-
tive basis consisting of 60 Gabor wavelet elements, as dis-
played in the first block of Fig. 2. Each wavelet element is
represented symbolically by a bar at the same location and
with the same length and orientation as the wavelet element.
The length of each element is about 1/10 of the length of the
image patch. These elements do not have much overlap and
are well connected. They form a common template or an av-

Fig. 1 Active basis. Each basis element is illustrated by a thin ellipsoid
at certain location and orientation. The upper half shows the perturba-
tion of one basis element. By shifting its location or orientation or both
within a limited range, the basis element (illustrated by a black ellip-
soid) can change to other Gabor wavelet elements (illustrated by the
blue ellipsoids)

erage sketch of the training image patches. The 60 elements
of the active basis in the first block of Fig. 2 are allowed to
locally change their locations and orientations to code each
observed image, as illustrated by the remaining 7 blocks of
Fig. 2. Within each block, the left plot displays the observed
car image, and the right plot displays the 60 Gabor wavelet
elements that are actually used for encoding the correspond-
ing observed image. They form the deformed active basis
that sketches the observed image.

1.2 Scheme of Learning

The active basis, in particular, the locations and the orienta-
tions of the basis elements, can be learned from training im-
age patches by the shared sketch algorithm. The algorithm
selects the elements of the active basis sequentially from a
dictionary. The dictionary consists of Gabor wavelets at a
dense collection of locations and orientations. Figure 3 il-
lustrates the selection of three elements by learning from a
sample of training images of cars. When an element is se-
lected, the element is shared by all the training images in
the sense that a perturbed version of this element is added to
improve the encoding of each image. Specifically, the ele-
ment is perturbed to a location and orientation that achieves
the local maximum response within a small neighborhood
of the selected element, that is, the perturbed version of the
selected element seeks to sketch a nearby edge segment in
each training image. For instance, when the green element
is selected, it is attracted to the nearby edge in each train-
ing image. The same is true for the red element and the blue
element.

For each element, a distribution of filter responses is
pooled over all the training images at the perturbed loca-
tions and orientations. The elements are selected in an or-
der according to the Kullback-Leibler divergence between

Fig. 2 Active basis formed by
60 Gabor wavelet elements. The
first block displays the 60
elements, where each element is
represented by a bar. For each of
the other 7 blocks, the left plot
is the observed image, and the
right plot displays the 60 Gabor
wavelet elements resulting from
locally shifting the 60 elements
in the first block to fit the
corresponding observed image

Int J Comput Vis

Fig. 3 Shared sketch algorithm. A selected element (colored ellipsoid)
is shared by all the training images. For each image, a perturbed version
of the element seeks to sketch a local edge segment near the element
by a local maximization operation. The elements of the active basis are
selected sequentially according to the Kullback-Leibler divergence be-
tween the pooled distribution (colored solid curve) of filter responses
and the background distribution (black dotted curve). The divergence
can be simplified into a pursuit index, which is the sum of the trans-
formed filter responses. The sum essentially counts the number of edge
segments sketched by the perturbed versions of the element

the pooled distribution (solid curve) and a background dis-
tribution (dotted curve). The background distribution is
pooled over natural images. With proper parametrization,
the Kullback-Leibler divergence can be reduced to a pur-
suit index that drives the selection of the elements. This in-
dex takes the form of the sum of the transformed filtered
responses, summed over all the training images. The trans-
formation is an increasing function that discounts large filter
responses. So the pursuit index can be interpreted as a vot-
ing of the training images, and the index favors the element
whose perturbed versions sketch as many edge segments
as possible. After an element is selected, its perturbed ver-
sion explains away a small part of each training image, and
thereby inhibits nearby Gabor wavelet elements from cod-
ing the same part of the image. So the selected elements of
the active basis are well spaced, and usually form a clear
template.

The active basis displayed in Fig. 2 is learned by the
shared sketch algorithm. It is worth noting that for the last
two examples in Fig. 2, the strong edges in the background

are not sketched, because these edges are not shared by other
examples, and such edges are ignored by the shared sketch
algorithm.

1.3 Architecture of Inference

After learning the active basis from training images, the de-
tection and recognition of the deformable template from a
testing image can be accomplished by a computational ar-
chitecture of sum-max maps. This architecture alternates be-
tween sum maps and max maps. The sum maps result from
local filtering operations for detecting edge segments and
shapes. The max maps result from local maximization oper-
ations that track shape deformations. Figure 4 illustrates this
architecture. It starts from convolving the image with Gabor
filters at all the locations and orientations. The filtered im-
ages become the first layer of the sum maps, or SUM1 maps,
because each Gabor filter is a local summation operator. In
Fig. 4, the thin ellipsoids in the SUM1 maps illustrate the
local filtering or summation operation. Then a layer of max
maps, or MAX1 maps, is computed by applying a local max-
imization operator to the SUM1 maps. In Fig. 4, the arrows
in the MAX1 maps illustrate that the local maximization is
taken over small perturbations of the Gabor wavelets. This
local maximization tells us how to deform the active basis to
match the image data.

On top of that, a sum map, or SUM2 map, is computed
by applying a local summation operator to the MAX1 maps.
Specifically, we scan the active basis template over the
whole image lattice, and for each pixel of the SUM2 map,
we compute a weighted sum of the values of the MAX1
maps, where the summation is over the locations and ori-
entations of the elements of the active basis centered at this
pixel. So this is another layer of filtering operation, and can
be considered a shape filter. It computes the log-likelihood
of the deformed active basis. In Fig. 4, the car template in
the SUM2 map illustrates the active basis centered at one
pixel. We scan this template over all the pixels to obtain the
SUM2 map, which scores the template matching.

The SUM2 map is obtained by a local summation oper-
ator of fixed shape. However, because the local summation
is applied to the MAX1 maps, shape deformation is auto-
matically accounted for, and the template matching score is
invariant to shape deformation.

Besides the log-likelihood scoring for template matching,
we also develop a non-probabilistic scoring method based
on active correlation between the template and the image.
Essentially, the active basis defines the notions of “average”
and “correlation” of image patches that are invariant of local
shape deformations.

What is described above is a bottom-up scoring process
for object detection. After an object is detected, a top-down
sketching process is triggered. This process deforms the

Int J Comput Vis

Fig. 4 Sum-max maps. The
SUM1 maps are obtained by
convolving the input image with
Gabor filters at all the locations
and orientations. The ellipsoids
in the SUM1 maps illustrate the
local filtering or summation
operation. The MAX1 maps are
obtained by applying a local
maximization operator to the
SUM1 maps. The arrows in the
MAX1 maps illustrate the
perturbations over which the
local maximization is taken. The
SUM2 map is computed by
applying a local summation
operator to the MAX1 maps,
where the summation is over the
elements of the active basis.
This operation computes the
log-likelihood of the deformed
active basis, and can be
interpreted as a shape filter

template at the detected location, to match the deformable
template to the image. This is accomplished by retrieving
the locations and orientations of the corresponding Gabor
wavelets that achieve the local maxima in the computation
of the MAX1 maps.

1.4 Review of Literature

This work is a continuation of our search for genera-
tive models of visual patterns, as well as our attempt to
understand these models within a common information-
theoretical framework (Wu et al. 2008).

For a long time, we have been trying to understand what
is beyond the Olshausen and Field’s linear sparse coding
model (Olshausen and Field 1996). The work of Viola and
Jones (2004) based on adaboost (Freund and Schapire 1997)
motivated us to apply Olshausen and Field’s representation
to modeling specific image ensembles of object categories,

instead of the generic ensemble of natural images. This led
us to retool our previous work on textons (Zhu et al. 2005),
in particular, to parallelize the matching pursuit algorithm of
Mallat and Zhang (1993) in order to pursue a sparse coding
for multiple training images simultaneously.

While the Olshausen and Field’s model is intended to ex-
plain the role of simple cells in primary visual cortex or V1,
the theory of Riesenhuber and Poggio (1999) holds that the
V1 complex cells perform local maximum pooling of re-
sponses of simple cells. This motivated us to add local per-
turbations to the locations and orientations of the linear ba-
sis elements in the Olshausen and Field’s model, so that the
linear basis becomes active, and the active basis becomes a
deformable template (Yuille et al. 1992). This connects the
Olshausen and Field’s model to shape models such as ac-
tive contours (Kass et al. 1988) and active appearance model
(Cootes et al. 2001). In the context of the active basis model,
the local maximum pooling of Riesenhuber and Poggio can

Int J Comput Vis

be interpreted as deforming the active basis to explain the
image data.

The active basis model is a simplest instance of the and-or
graph (Zhu and Mumford 2006) in the compositional frame-
work (Geman et al. 2002). The and-or grammar naturally
suggests that one can further compose multiple active bases
to represent more articulate shapes. Such a recursive active
basis leads to a recursive architecture of sum-max maps for
inference.

2 Representation, Learning, and Inference

This section presents the active basis representation, and de-
scribes the shared sketch algorithm and the sum-max maps.
We leave theoretical underpinnings and justifications to the
next section.

2.1 Gabor Wavelets and Sparse Coding

A dictionary of Gabor wavelets. To fix notation, a Ga-
bor function (Daugman 1985) is of the form G(x,y) ∝
exp{−[(x/σx)

2 + (y/σy)
2]/2}eix , where σx < σy . We can

translate, rotate, and dilate G(x,y) to obtain a general
form of Gabor wavelets: Bx,y,s,α(x′, y′) = G(x̃/s, ỹ/s)/s2,
where x̃ = (x′ − x) cosα + (y′ − y) sinα, ỹ = −(x′ −
x) sinα + (y′ − y) cosα. (x, y) is the central position, s

is the scale parameter, and α is the orientation. The Gabor
wavelets give reasonable fit to the receptive fields of the sim-
ple cells in V1 (Daugman 1985).

The central frequency of Bx,y,s,α is ω = 1/s. Bx,y,s,α =
(Bx,y,s,α,0, Bx,y,s,α,1), where Bx,y,s,α,0 is the even-symmet-
ric Gabor cosine component, and Bx,y,s,α,1 is the odd-
symmetric Gabor sine component. We always use Gabor
wavelets as pairs of cosine and sine components. We nor-
malize both the Gabor sine and cosine components to have
zero mean and unit �2 norm. For each Bx,y,s,α , Bx,y,s,α,0

and Bx,y,s,α,1 are orthogonal to each other.
Let D be the domain of image lattice. The dictio-

nary of Gabor wavelet elements is Dictionary = {Bx,y,s,α ,
∀(x, y, s,α)}, where (x, y, s,α) are densely sampled:
(x, y) ∈ D with a fine sub-sampling rate (e.g., every 1 pixel
or every 2 pixels), and α ∈ {aπ/A,a = 0, . . . ,A − 1} (e.g.,
A = 15).

Filtering operation. For an image I defined on domain D,
the projection coefficient of I onto Bx,y,s,α,η , or the filter re-
sponse, is 〈I,Bx,y,s,α,η〉 = ∑

x′,y′ I(x′, y′)Bx,y,s,α,η(x
′, y′),

where η = 0,1. We write 〈I,Bx,y,s,α〉 = (〈I,Bx,y,s,α,0〉,
〈I,Bx,y,s,α,1〉). The local energy is |〈I,Bx,y,s,α〉|2 =
〈I,Bx,y,s,α,0〉2 + 〈I,Bx,y,s,α,1〉2. |〈I,Bx,y,s,α〉|2 measures
the local spectrum of I. The local maxima of |〈I,Bx,y,s,α〉|2
can be used to detect edges in I.

Whitening normalization. To make filter responses com-
parable between different training images, we need to nor-
malize them. Let

σ 2(s) = 1

|D|A
∑

α

∑

(x,y)∈D

|〈I,Bx,y,s,α〉|2, (1)

where |D| is the number of pixels in I, and A is the
total number of orientations. σ 2(s) measures the power
spectrum of I around frequency 1/s. For each input im-
age I, we normalize |〈I,Bx,y,s,α〉|2 by changing it to
|〈I,Bx,y,s,α〉|2/σ 2(s). This is a whitening normalization, be-
cause it makes the power spectrum flat over s.

Linear additive model that explains the image data.
A deeper perspective than local filtering is offered by the
sparse coding theory of Olshausen and Field (1996), where
Bx,y,s,α serves as a representational, instead of operational,
element. Specifically, for an image I, we can represent it by

I =
n∑

i=1

ciBi + U, (2)

where Bi = Bxi,yi ,si ,αi
, (ci) are the coefficients, and U is

the unexplained residual image. Recall that each Bi is a pair
of Gabor cosine and sine components. So Bi = (Bi,0,Bi,1).
Accordingly, ci = (ci,0, ci,1) and ciBi = ci,0Bi,0 + ci,1Bi,1.
The set of Gabor wavelet elements (Bi, i = 1, . . . , n) are se-
lected from the dictionary. If the (Bi, i = 1, . . . , n) are or-
thogonal, i.e., if they do not overlap in spatial domain or
frequency domain, then ci = 〈I,Bi〉.

Sparse coding means that for a typical natural image I,
one can usually select a small number n of elements from the
dictionary, so that a linear combination of these elements can
represent I with a small residual U . Of course, for different
images, one usually selects different sets of elements. The
wavelet sparse coding representation (2) reduces an image
of tens of thousands of pixels to a small number of wavelet
elements or strokes. Using the sparse coding principle, Ol-
shausen and Field (1996) were able to learn from natural
image patches a dictionary of Gabor-like wavelet elements
that closely resemble the properties of the receptive fields of
the simple cells in V1.

Matching pursuit that explains away the image data. The
matching pursuit algorithm of Mallat and Zhang (1993) is a
commonly used method for fitting model (2). Each step of
matching pursuit explains away a small part of image data
by selecting a wavelet element, which then inhibits nearby
neighboring elements from being included in the linear rep-
resentation. This idea is used in the shared sketch algorithm.

2.2 Representation: Active Basis Model

The sparse coding model (2) is intended to model the whole
ensemble of natural images, where for different I, one may

Int J Comput Vis

represent them with completely different wavelet elements
(Bi, i = 1, . . . , n) with different n. In the active basis model,
we apply the sparse coding model (2) to image ensembles
of various object categories. Then for each category, we re-
quire that the images share the same set of wavelet elements
(Bi, i = 1, . . . , n). These elements form a common tem-
plate. However, when we use (Bi, i = 1, . . . , n) to encode
each individual image, we allow the template to slightly de-
form, by allowing the elements or strokes to perturb their
locations and orientations.

Let {Im,m = 1, . . . ,M} be a set of training image patches
defined on a common rectangle lattice D. We assume that D

is the bounding box of the objects in {Im}, and these objects
are from the same category and in the same pose. We shall
relax this assumption later.

Our method is scale specific. We fix s so that the length
of Bx,y,s,α (e.g., 17 pixels) is fixed. We can learn templates
at multiple scales and then combine them.

Wavelet expansion with perturbations. The active basis
model is a composition of strokes that are perturbable:

Composition: Im =
n∑

i=1

cm,iBm,i + Um, (3)

Perturbations: Bm,i ≈ Bi, i = 1, . . . , n, (4)

where Bi ∈ Dictionary Bm,i ∈ Dictionary (cm,i, i = 1,

. . . , n) are the coefficients, and Um is the unexplained resid-
ual image. To define the perturbation Bm,i ≈ Bi , suppose

Bi = Bxi,yi ,s,αi
, (5)

Bm,i = Bxm,i ,ym,i ,s,αm,i
, (6)

then Bm,i ≈ Bi if and only if there exists (dm,i, δm,i) such
that

xm,i = xi + dm,i cosαi, (7)

ym,i = yi + dm,i sinαi, (8)

αm,i = αi + δm,i, (9)

dm,i ∈ [−b1, b1], δm,i ∈ [−b2, b2]. (10)

That is, we allow Bi to shift its location along its normal
direction, and we also allow Bi to shift its orientation. See
Fig. 1 for an illustration. We call (dm,i , δm,i) the activity or
perturbation of Bi in image Im. b1 and b2 are the bounds for
the allowed activities (e.g., b1 = 6 pixels, and b2 = π/15).

In the above notation, the active basis B = (Bi, i =
1, . . . , n) forms a deformable template. The deformed ac-
tive basis is Bm = (Bm,i, i = 1, . . . , n) ≈ B. See Fig. 2 for
an illustration.

It is important to distinguish between B and Bm. B is
the common “average” template shared by all the exam-
ples {Im}. Bm is the image specific template that only de-
scribes Im. B is learned from all the training images {Im},

and it can generalize to testing images, because the basis
elements in B are active.

Because we fix the scale s in the representation (3) to
(10), the linear superposition

∑n
i=1 cm,iBm,i only explains

the frequency band of Im around the frequency ω = 1/s,
while leaving the remaining frequency components to the
unexplained Um. Um can be further explained by templates
at other scales.

2.3 Learning: Shared Sketch Algorithm

Given the set of training images {Im,m = 1, . . . ,M}, the
shared sketch algorithm sequentially selects Bi and perturbs
it to Bm,i ≈ Bi to sketch each image Im. The basic idea is to
select Bi so that its perturbed versions {Bm,i,m = 1, . . . ,M}
sketch as many edge segments as possible in the training im-
ages {Im}.

Shared sketch algorithm

Input: Training images {Im,m = 1, . . . ,M}.
Output: Common template B = (Bi, i = 1, . . . , n), and de-

formed template Bm = (Bm,i, i = 1, . . . , n) that
sketches Im for m = 1, . . . ,M .

1. Convolution: For each m = 1, . . . ,M , and for each
B ∈ Dictionary, compute [Im,B] = h(|〈Im,B〉|2).
Set i ← 1.

2. Local maximization: For each putative candidate
Bi ∈ Dictionary, do the following: For each m =
1, . . . ,M , choose the optimal Bm,i that maximizes
[Im,Bm,i] among all possible Bm,i ≈ Bi .

3. Selection: Choose that particular candidate Bi

whose corresponding
∑M

m=1[Im,Bm,i] achieves
the maximum among all possible Bi ∈ Dictionary.
Record this Bi and retrieve the corresponding opti-
mal Bm,i ≈ Bi for m = 1, . . . ,M .

4. Non-maximum suppression: For each m = 1,

. . . ,M , if [Im,Bm,i] > 0, then for every B ∈
Dictionary such that corr(B,Bm,i) > ε, set
[Im,B] ← 0.

5. Stop if i = n. Otherwise let i ← i + 1, and go back
to 2.

In the above description, h() is a monotone increasing (or
non-decreasing) transformation that discounts large value of
|〈Im,B〉|2. [Im,B] records the response of B to Im. It can
change during the algorithm because of the non-maximum
suppression.

For two Gabor elements B1 and B2, corr(B1,B2) =∑1
η1=0

∑1
η2=0〈B1,η1 ,B2,η2〉2 measures their correlation or

overlap in spatial and frequency domains. B1 and B2 are
orthogonal as long as they do not overlap in either spatial
domain or frequency domain. The non-maximum suppres-
sion step suppresses those B that overlap with the selected

Int J Comput Vis

Bm,i . ε (e.g., ε = .1) is the tolerance of the overlap between
selected basis elements in the deformed active basis.

See Fig. 3 for an illustration of the above algorithm.
Comparison with edge detection. The algorithm can be

considered a parallel version of edge detection simultane-
ously applied to multiple images. For a putative Bi , the
local maximization step seeks to sketch a local edge seg-
ment in image Im by a perturbed version Bm,i ≈ Bi . The
selection step seeks to find Bi with the strongest overall
response

∑M
m=1[Im,Bm,i], which pools the edge strengths

from the training images around Bi . After Bi is selected, we
retrieve the corresponding Bm,i , and let Bm,i suppress or in-
hibit nearby overlapping Gabor elements B by setting the
response [Im,B] ← 0. So for each image Im, the selected
(Bm,i, i = 1, . . . , n) are approximately orthogonal to each
other.

If M = 1 and if we forbid perturbations in locations and
orientations by setting b1 = b2 = 0, then the algorithm re-
duces to usual edge detection.

For M > 1, the shared sketch algorithm seeks to ac-
complish the following two tasks: (1) Eliminating the back-
ground edges. (2) Averaging the foreground shapes.

Transformation of responses. To understand the transfor-
mation h(), let us consider a simplified discontinuous one:
h(r) = 1r>ξ , where ξ is a threshold for edge detection. More
specifically, h(r) = 1 if r > ξ , and h(r) = 0 otherwise. Then∑M

m=1 h(rm,i) simply counts the number of detected edge
segments in the training images {Im,m = 1, . . . ,M}. That
is, we select Bi and perturb it to {Bm,i}, so that {Bm,i} sketch
as many edge segments as possible.

In this article we entertain the following designs of con-
tinuous transformations. The learned templates are not very
sensitive to the choice of the transformation.

(1) Sigmoid transformation. The transformation is char-
acterized by a saturation level ξ (e.g., ξ = 6),

h(r) = sigmoid(r) = ξ

[
2

1 + e−2r/ξ
− 1

]

, (11)

which increases from 0 to ξ , and h′(0) = 1.
(2) Whitening transformation. Let q(r) be the marginal

distribution of r = |〈I,Bx,y,s,α〉|2 where I is a random
sample from the ensemble of natural images. Let F(t) =
q(r > t), i.e., the probability that r > t under q(r). The non-
linear whitening transformation is

h(r) = whiten(r) = − logF(r). (12)

On top of the whitening normalization in Sect. 2.1, the non-
linear whitening transformation (12) makes the marginal
distribution of |〈I,Bx,y,s,α〉|2 the same as that of the white
noise.

(3) Thresholding transformation. A crude but simple ap-
proximation to whiten(r) is

h(r) = threshold(r) = min(r, T), (13)

where T is a threshold (e.g., T = 16).
Scoring template matching. Let B = (Bi, i = 1, . . . , n)

be the template. For each training image Im, the template
matching is scored by

MATCH(Im,B) =
n∑

i=1

(λi[Im,Bm,i] − logZ(λi)). (14)

λi can be calculated directly from
∑M

m=1[Im,Bm,i] in the
selection step. Z() is a non-linear function. This template
matching score is actually a log-likelihood ratio for an ex-
ponential family model, and the weight vector � = (λi, i =
1, . . . , n) is estimated by maximum likelihood method. See
the next section for details.

Active correlation. We can also use a linear score for tem-
plate matching:

MATCH(Im,B) =
n∑

i=1

θi[Im,Bm,i], (15)

where h(r) = whiten(r)1/2 or h(r) = threshold(r)1/2, and
� = (θi, i = 1, . . . , n) is a unit vector, with ‖�‖2 =
∑n

i=1 θ2
i = 1. The elements are still selected by the shared

sketch algorithm, with the aforementioned new definition
of h(). To estimate �, we first calculate θi =
∑M

m=1[Im,Bm,i]/M , then we normalize � = (θi, i = 1,

. . . , n) to be a unit vector.
The template matching score (15) can be considered

the active correlation between the template B and the im-
age Im, where B is deformed to Bm = (Bm,i, i = 1, . . . , n)

before the inner product is calculated. We may also con-
sider (15) as the inner product between Im and the vector
V = ∑n

i=1 θiBi . V is an active vector because Bi can be
perturbed to Bm,i when we correlate V with Im. V can be
considered an active average of the images {Im}.

2.4 Inference: Sum-Max Maps

After training the active basis model, specifically, after se-
lecting B = (Bi = Bxi,yi ,s,αi

, i = 1, . . . , n), and computing
the weight vector � = (λi, i = 1, . . . , n) or � = (θi, i =
1, . . . , n), we can use the trained model to detect and then
sketch the object in a testing image.

Let I be a testing image defined on a lattice D. Here we
use the notation D to denote the lattice of I instead of the
bounding box of the template B, which is usually smaller
than D. We assume that the bounding box of the template
B is centered at origin (x = 0, y = 0). We can scan the tem-
plate over D, and at each position (x, y) ∈ D, we fit the ac-
tive basis model to the image patch of I within the bounding
box (or the scanning window) centered at (x, y), and calcu-
late the template matching score according to (14) or (15).

Int J Comput Vis

Pseudo-code for inference algorithm

Input: Template B = (Bi = Bxi,yi ,s,αi
, i = 1, . . . , n), � =

(λi, i = 1, . . . , n), and testing image I.
Output: Location (x̂, ŷ) of the detected object, and the

deformed template (Bx̂i ,ŷi ,s,α̂i
, i = 1, . . . , n) that

sketches I.
Up-1 For all (x, y) ∈ D, and for all α, compute the

SUM1 maps:

SUM1(x, y, s,α) = |〈I,Bx,y,s,α〉|2.
Up-2 For all (x, y) ∈ D, and for all α, compute the

MAX1 maps:

MAX1(x, y, s,α)

= max
d∈[−b1,b1]
δ∈[−b2,b2]

SUM1(x + d cosα,

y + d sinα, s,α + δ). (16)

Let (d̂, δ̂) be the value of (d, δ) that achieves the
maximum in (16). Let x̂ = x + d̂ cosα, ŷ = y +
d̂ sinα, and α̂ = α+ δ̂. Record TRACK1(x, y, s,α)

= (x̂, ŷ, α̂).
Up-3 For all (x, y) ∈ D, compute the SUM2 map:

SUM2(x, y)

=
n∑

i=1

[λih(MAX1(x + xi, y + yi, s, αi))

− logZ(λi)].
Up-4 Compute the MAX2 score: MAX2 =

max(x,y)∈D SUM2(x, y).
Down-4 Retrieve (x̂, ŷ) that achieves the maximum in the

computation of Up-4.
Down-3 Retrieve (x̂ + xi, ŷ + yi, αi) in the computation

of MAX1(x + xi, y + yi, s, αi) for i = 1, . . . , n in
Up-3.

Down-2 Retrieve (x̂i , ŷi , α̂i) = TRACK1(x̂ + xi, ŷ + yi,

s, αi), for i = 1, . . . , n, where the TRACK1 maps
are defined in Up-2.

Down-1 Retrieve the coefficients in the computation of
SUM1(x̂i , ŷi , s, α̂i) for i = 1, . . . , n in Up-1.

Bottom-up detection and top-down sketching. The infer-
ence algorithm consists of two processes. The first process
is a bottom-up detection process, which calculates SUM1,
MAX1, SUM2, MAX2 scores consecutively. The following
are the questions that these scores seek to answer:

SUM1 maps: Is there an edge segment at this location
and orientation?

MAX1 maps: Is there an edge segment at a nearby loca-
tion and orientation? Where is it?

SUM2 map: Is there a certain composition of edge seg-
ments that form the template at this location?

MAX2 score: Is there a certain composition within the
whole image?

These maps are soft scores, not hard decisions. They
are computed in a bottom-up process, SUM1 → MAX1 →
SUM2 → MAX2.

This is to be followed by a top-down retrieving process,
which retrieves the central location of the template and then
retrieves the locations and orientations of the basis elements
of the deformed template. The following are the questions
to be answered:

Back to MAX2 score: If there is a template, where is it?
Back to SUM2 map: What are the locations and orienta-

tions of the elements of the template before deformation?
Back to MAX1 maps: What are the nearby locations and

orientations that these elements are perturbed to?
Back to SUM1 maps: What are the coefficients of these

perturbed elements?
The top-down retrieving process follows the sequence

MAX2 → SUM2 → MAX1 → SUM1. The process de-
forms the template to sketch the observed image.

Shape filter. The SUM2 map in Up-3 scores template
matching. The computation of SUM2 can be considered a
shape filter for template matching. Like Gabor filters, it is
also a local weighted summation operator. See Fig. 4 for an
illustration. The shape filter in Up-3 has fixed (xi, yi, αi, i =
1, . . . , n). But it is computed on the MAX1 maps instead of
SUM1 maps, so it is invariant to shape deformation.

For an input image, we can apply the above algorithm at
multiple resolutions of the input image. Then we can choose
the resolution that achieves the maximum MAX2 score as
the optimal resolution.

Comparison with Riesenhuber and Poggio’s cortex-like
structure. The above sum-max structure is inspired by the
cortex-like structure of Riesenhuber and Poggio (1999).
The differences are as follows: (1) The TRACK1 maps
are recorded in Up-2 step together with the MAX1 maps.
The TRACK1 maps link the locations and orientations of
the MAX1 maps back to the locations and orientations
of the SUM1 maps where the local maxima are achieved.
(2) A SUM2 operator is used for template matching. This
operator is learned from training images. (3) A top-down
sketching process is triggered after the bottom-up detection
process. The top-down process is guided by the TRACK1
maps. (4) The selected wavelet elements in the deformed
active basis inhibit nearby overlapping elements, especially
in the learning stage.

2.5 Shared Sketch Algorithm Based on Sum-Max Maps

The shared sketch algorithm in Sect. 2.3 can be expressed
more precisely in terms of the sum maps and max maps.

Int J Comput Vis

Pseudo-code for shared sketch algorithm

Input: Training images {Im,m = 1, . . . ,M}.
Output: Template B = (Bi = Bxi,yi ,s,αi

, i = 1, . . . , n),
weight vector � = (λi, i = 1, . . . , n), and de-
formed template Bm = (Bm,i = Bxm,i ,ym,i ,s,αm,i

, i =
1, . . . , n) that sketches Im for m = 1, . . . ,M .

1. Convolution: For each m = 1, . . . ,M , for all
(x, y) ∈ D, and for all α, compute the SUM1 maps
SUM1m(x, y, s,α) = |〈Im,Bx,y,s,α〉|2, in the same
way as in the Up-1 step of the inference algorithm.

2. Local maximization: For each m = 1, . . . ,M , for
all (x, y) ∈ D, and for all α, compute the MAX1
maps:

MAX1m(x, y, s,α)

= max
d∈[−b1,b1]
δ∈[−b2,b2]

SUM1m(x + d cosα,

y + d sinα, s,α + δ), (17)

and record TRACK1m(x, y, s,α), in the same way
as in the Up-2 step of the inference algorithm.
For each m = 1, . . . ,M , set SUM2m ← 0. Set
i ← 1.

3. Selection: Find (xi, yi, αi) by maximizing
∑M

m=1 h(MAX1m(x, y, s,α)) over all (x, y,α).
Compute λi from

∑M
m=1 h(MAX1m(xi, yi, s, αi)).

Update SUM2m ← SUM2m + λih(MAX1m(xi,

yi, s, αi)) − logZ(λi) for each m = 1, . . . ,M .
4. Non-maximum suppression: Retrieve (xm,i, ym,i,

αm,i) = TRACK1m(xi, yi, s, αi) for each m =
1, . . . ,M , similar to the Down-2 step of the infer-
ence algorithm.
If MAX1m(xi, yi, s, αi) > 0, then for all those
(x, y,α) such that corr(Bxm,i ,ym,i ,s,αm,i

, Bx,y,s,α)

> ε, set SUM1m(x, y, s,α) ← 0.
Re-compute the MAX1 maps according to (17).

5. Stop if i = n. Otherwise let i ← i + 1, and go back
to Step 3.

The above algorithm can be easily mapped to computer
code. The following are remarks on implementing it:

(1) In updating the SUM1 maps and the MAX1 maps in
Step 4, we only need to update the parts of the maps that are
affected.

(2) The correlation corr(Bxm,i ,ym,i ,s,αm,i
,Bx,y,s,α) in

Step 4 only depends on (xm,i − x, ym,i − y,αm,i − α).
We can store a correlation function corr(�x,�y,�α) =
corr(Bx+�x,y+�y,s,α+�α,Bx,y,s,α) before running the algo-
rithm.

Multiple alignment score. The SUM2m score evaluates
the matching of Im to the learned template B according
to (14). The total score

∑M
m=1 SUM2m measures the overall

alignment of multiple training images. This multiple align-
ment score is very useful for unsupervised learning, where
the objects in the training images are of unknown locations,
scales, and categories. The alignment score

∑M
m=1 SUM2m

is the criterion that determines these hidden variables.
We would like to point out a subtle difference between

the computation of SUM2m score in the learning algorithm
and the computation of SUM2 map in the inference algo-
rithm. In the learning algorithm, there is a non-maximum
suppression step, where Bm,i suppresses nearby overlapping
elements. This is necessary for selecting the basis elements.
In the inference algorithm, we omit this step for efficiency.
This is because the elements selected by the learning al-
gorithm are already well spaced due to the non-maximum
suppression in learning, so there is not much need for non-
maximum suppression in inference.

3 Theoretical Underpinning

This section presents theoretical underpinnings of the model
and the algorithms presented in the previous section. Read-
ers who are more interested in applications and experiments
can jump to the next section.

3.1 Probability Distribution on Image Intensities

With multiple training images {Im,m = 1, . . . ,M} repre-
sented by (3) to (10), we can pool the probability distrib-
ution of {(cm,i, i = 1, . . . , n)} as well as the distribution of
{Um} over m = 1, . . . ,M . With these two distributions, we
can obtain the distribution of Im, or more specifically, the
distribution of Im given Bm, p(Im | Bm). With the probabil-
ity density p(Im | Bm), both learning and inference can be
based on maximizing the likelihood function.

We first simplify the notation using matrices and vectors.
Im can be treated as a |D| × 1 column vector, where |D|
is the number of pixels. B = (Bi,0,Bi,1, i = 1, . . . , n) can
be treated as a |D| × 2n matrix, where each Bi,η (η = 0,1)
is a |D| × 1 vector. Each Bm can be treated as a |D| × 2n

matrix in the same way. We can write C = (cm,0, cm,1, i =
1, . . . , n)′ as a 2n × 1 vector. Thus in matrix notation, (3)
becomes Im = BmCm + Um.

Linear decomposition. We assume that BmCm is the pro-
jection of Im onto the subspace spanned by the column vec-
tors of Bm, so Cm = (B′

mBm)−1B′
mIm. If Bm is orthogonal,

then Cm = B′
mIm. Um resides in the |D| − 2n dimensions

that are orthogonal to the columns of Bm. There is no loss
of generality in such an assumption, because if Um is not or-
thogonal to Bm, we can always project Um onto Bm, and let
BmCm absorb this projection. We can write Um = B̄mC̄m,
where B̄m is a |D| × (|D| − 2n) matrix whose columns are

Int J Comput Vis

orthogonal to those of Bm, and C̄m is a (|D| − 2n) × 1 vec-
tor. Thus, Im = BmCm + B̄mC̄m. There is a one-to-one lin-
ear mapping between Im and (Cm, C̄m). B̄m and C̄m can be
made implicit in statistical modeling.

Shape and texture. Now we are ready to specify the
probability density p(Im | Bm). For the linear representation
Im = BmCm + B̄mC̄m,

p(Im | Bm) = p(Cm, C̄m)|Jm|
= p(Cm)p(C̄m | Cm)|Jm|, (18)

where |Jm| is the absolute value of the determinant of the
Jacobian matrix of the linear transformation from Im to
(Cm, C̄m). p(Cm) is the distribution of the coefficients for
coding the foreground shape, and p(C̄m | Cm) is the dis-
tribution of the residual background texture given the fore-
ground coefficients. The distribution p(Im | Bm) is fully de-
termined by p(Cm) and p(C̄m | Cm).

Let q(Im) be a reference distribution. Similar to (18), we
can write q(Im) = q(Cm)q(C̄m | Cm)|Jm| with the same Ja-
cobian Jm. We want to construct p(Im | Bm) by modifying
q(Im). Specifically, we assume that p(C̄m | Cm) = q(C̄m |
Cm), i.e., the conditional distribution of the residual back-
ground in p(Im | Bm) is assumed to be the same as that in
q(Im). Then

p(Im | Bm) = q(Im)
p(Cm)

q(Cm)

= q(Im)
p(cm,1, . . . , cm,n)

q(cm,1, . . . , cm,n)
, (19)

where we substitute p(Cm) for q(Cm) to construct a density
p(Im) from q(Im).

The model (19) combines both texture and shape. q(Im)

models the background texture, and Bm and p(Cm) model
the foreground shape. The foreground shape pops out from
the background texture, as modeled by the probability ratio
p(Cm)/q(Cm).

Density substitution and maximum entropy. The form
(19) is a density substitution scheme that has been used in
projection pursuit (Friedman 1987). It is also valid if Cm is

a non-linear differentiable reduction of Im, or if Cm is dis-
crete. Such a form enables us to build a probability model
on image intensities instead of features. Such a generative
model makes it possible to select the features by explaining
away the image data. Model (19) can be justified by the max-
imum entropy principle (Pietra et al. 1997): p(Im | Bm) is
the distribution that is closest to q(Im) in terms of Kullback-
Leibler divergence among all the distributions that share the
same p(Cm).

Choices of reference distribution. We assume q(Im) to be
stationary. The following are some choices of q(Im):

(1) Gaussian white noise distribution. This is the distrib-
ution that is often assumed in linear additive model, and is
implicitly assumed in the least squares criterion for model
fitting. Under this reference distribution, q(cm,1, . . . , cm,n)

is multivariate Gaussian. If (Bm,i, i = 1, . . . , n) are orthog-
onal to each other, then (cm,i, i = 1, . . . , n) are independent.
We call this the orthogonal-independence property.

(2) Non-Gaussian marginal approximation to the distrib-
ution of natural image patches. This is the distribution q(Im)

that we shall use in this paper. In particular, we assume
that the marginal distributions of 〈Im,Bx,y,s,α〉 are all the
same as that in natural images. Such a marginal distribu-
tion is highly non-Gaussian, with a heavy tail that allows
occasional strong edges. We also assume that q(Im) inherits
the orthogonal-independence property from Gaussian white
noise. Such a distribution is the simplest modification of the
Gaussian white noise distribution, and it provides a better
model than the Gaussian white noise for the background Um,
by allowing strong edges in Um.

Figure 5 shows the two natural images that we use for
pooling the marginal distribution of Gabor filter responses.
The left one is a rural scene, which has more textures. The
right one is an urban scene, which is more regular.

Figure 6 displays the marginal histogram of
sigmoid(|〈Im,Bx,y,s,α〉|2) pooled over all (x, y,α) from the
two natural images in Fig. 5. It is a long-tailed distribution.
The small bump at the end is caused by the saturation of
the sigmoid transformation. Different scales s produce very
similar histograms.

Fig. 5 Two 768 × 1024 (height
× length) natural images that
are used to pool the marginal
distribution of filter responses

Int J Comput Vis

Fig. 6 The density of sigmoid(|〈Im,Bx,y,s,α〉|2) pooled over all
(x, y,α) from the two natural images in Fig. 5

A more formal model for q(Im) is the Markov random
field model that Zhu and Mumford (1997) developed for nat-
ural images. For this model, the orthogonal-independence
property is approximately true.

(3) The Markov random field distribution that matches
the marginal distributions of filter responses of the observed
image Im. Such a model has been developed by Zhu et al.
(1997). The marginal distributions are pooled from the ob-
served image Im over (x, y) ∈ D, instead of the above two
natural images. This model is related to the adaptive back-
ground to be discussed in Sect. 3.6.

Log-likelihood and Kullback-Leiber divergence. To learn
B and {Bm ≈ B,m = 1, . . . ,M}, we can maximize the aver-
age log-likelihood ratio

1

M

M∑

m=1

log
p(Im | Bm)

q(Im)

= 1

M

M∑

m=1

log
p(cm,1, . . . , cm,n)

q(cm,1, . . . , cm,n)
. (20)

The average log-likelihood ratio converges to
KL(p(Cm) ‖ q(Cm)) as M → ∞, provided that p(Cm) can
be consistently estimated from the training images. Here
KL(p ‖ q) denotes the Kullback-Leibler divergence from
p to q . In order to maximize the log-likelihood ratio, we
want to choose B and deform it to {Bm ≈ B} to maxi-
mize KL(p(Cm) ‖ q(Cm)), so that the maximum contrast is
achieved between the foreground shape and the background
texture. KL(p(Cm) ‖ q(Cm)) also measures the coding gain
achieved by coding Cm by p(Cm) instead of q(Cm), while
continuing to code the residual background by q(C̄m|Cm).

It is impossible to select B and {Bm} all at once. In the
next subsection, we present an algorithm that sequentially
pursues Bi and perturbs it to {Bm,i}.

3.2 Coupling Matching Pursuit with Projection Pursuit

In this subsection, we describe a shared matching pur-
suit process for selecting the basis elements B = (Bi, i =
1, . . . , n). The process couples matching pursuit (Mallat and
Zhang 1993) with projection pursuit (Friedman 1987). The
matching pursuit is used to encode each training image. The
projection pursuit is used to estimate the probability density
of the image by pooling the coefficients produced by the
matching pursuit.

The matching pursuit is a process that sequentially adds
elements Bm,i, i = 1, . . . , n to improve the encoding of im-
age Im. It has the following form:

1. For m = 1, . . . ,M , set Um ← Im. Set i ← 1.
2. For m = 1, . . . ,M , choose Bm,i . Let cm,i = 〈Um,Bm,i〉.
3. For m = 1, . . . ,M , update Um ← Um − cm,iBm,i . Repre-

sent Im = cm,1Bm,1 + · · · + cm,iBm,i + Um.
4. If i = n, stop. Otherwise, set i ← i+1, go back to Step 2.

We need to add the following three components to the
above matching pursuit process.

(1) The selection of Bm,i given Bi . The original match-
ing pursuit algorithm selects Bm,i = arg maxB |〈Um,B〉|2 in
Step 2, where the maximization is over all B ∈ Dictionary,
so that Bm,i achieves the best fit to the unexplained residual
image Um. In shared matching pursuit process, however, the
Bm,i are constrained to be perturbed versions of a commonly
shared Bi . Therefore, for each putative Bi , we need to select
Bm,i = arg maxB≈Bi

|〈Um,B〉|2.
(2) The updating of p(Im). After computing cm,i =

〈Um,Bm,i〉 in each iteration i, we can pool a distribution
pi(c) from {cm,i,m = 1, . . . ,M}. We can use such pooled
densities p1(c), . . . , pn(c) to construct the density p(Im).

Specifically, we update p(Im) sequentially using pro-
jection pursuit. Let p0(Im) = q(Im), i.e., the distribution
of background texture. At each iteration i, after select-
ing {Bm,i,m = 1, . . . ,M}, we need to update pi−1(Im) to
pi(Im). We can apply the density substitution scheme of pro-
jection pursuit, and let

pi(Im) = pi−1(Im)
pi(cm,i)

qi−1(cm,i)
, (21)

where qi−1(c) is the density of cm,i = 〈Um,Bm,i〉 under the
current model pi−1(Im). This density substitution scheme is
very similar to the model construction scheme of (19), ex-
cept that we use pi−1(Im) as the current reference distribu-
tion, and we only substitute the density of cm,i = 〈Um,Bm,i〉
under pi−1(Im). cm,i = 〈Um,Bm,i〉 can also be written as
cm,i = 〈Im, B̃m,i〉, where B̃m,i can be constructed from

Int J Comput Vis

Bm,1, . . . ,Bm,i−1 and Bm,i . So pi(Im) is a legitimate den-
sity function.

(3) The selection of Bi . We select Bi sequentially by the
maximum likelihood principle. The increase in the average
log-likelihood is

1

M

M∑

m=1

log
pi(Im)

pi−1(Im)
= 1

M

M∑

m=1

log
pi(cm,i)

qi−1(cm,i)
,

which converges to KL(pi(c) ‖ qi−1(c)). So we want to se-
lect Bi that achieves the maximum KL(pi(c) ‖ qi−1(c)).
That is, KL(pi(c) ‖ qi−1(c)) is the pursuit index that drives
the selection of Bi . Intuitively, this means that we want to
select Bi so that the distribution of the responses of the per-
turbed versions {Bm,i ≈ Bi} is most different from what is
predicted by the current model pi−1(Im).

With the above components (1), (2), and (3) incorporated
into the matching pursuit process, we will eventually reach
the model p(Im) = q(Im)

∏n
i=1 pi(cm,i)/qi−1(cm,i). This is

an approximation to the model (19) in the previous subsec-
tion. See Fig. 3 for an illustration of the shared matching
pursuit process.

The computational burden in the shared matching pursuit
process lies in the computation of qi−1(c) in (21), which
requires Monte Carlo sampling from pi−1(Im). If we have
negative training images, we can re-weight these negative
examples after each iteration, and use these re-weighted ex-
amples as samples from pi−1(Im).

3.3 Shared Sketch Algorithm

We can simplify the shared matching pursuit process into a
shared sketch algorithm.

Non-maximum suppression. After selecting Bm,i and
computing cm,i = 〈Um,Bm,i〉, we need to update Um ←
Um − cm,iBm,i , i.e., Bm,i explains away part of Um or Im.
This can be considered a soft inhibition. If an element B

has a high correlation with Bm,i , in other words, if B heav-
ily overlaps with Bm,i in both spatial domain and frequency
domain, then such a redundant B can add little to further ex-
plaining Im, in that after updating Um ← Um − cm,iBm,i ,
|〈Um,B〉|2 can be very small. Therefore, we may sim-
ply enforce that, for each Im, the selected elements of
Bm = (Bm,i, i = 1, . . . , n) do not overlap with each other,
or the selected (Bm,i, i = 1, . . . , n) are orthogonal to each
other. Then, after Bm,i is selected, we let Bm,i suppress
any B that overlaps with Bm,i . For such non-overlapping
(Bm,i, i = 1, . . . , n), cm,i = 〈Um,Bm,i〉 = 〈Im,Bm,i〉. In
practice, we allow small correlations between the elements
(Bm,i, i = 1, . . . , n).

Such a hard inhibition has the advantage that it forces
the selected elements to be well spaced and form a clean
template.

Background density. Let the reference distribution q(Im)

be the non-Gaussian marginal approximation to the dis-
tribution of natural images, as explained in Sect. 3.1.
Then (cm,i, i = 1, . . . , n) are independent for orthogonal
(Bm,i, i = 1, . . . , n), a property inherited from white noise.
Therefore, qi−1(c) = q(c), which is the marginal distribu-
tion of cm,i under q(Im). Because q(Im) is stationary, q(c)

is the same for all cm,i, i = 1, . . . , n. Hence, the pursuit in-
dex is KL(pi(c) ‖ q(c)), where, again, pi(c) is the density
pooled from {cm,i,m = 1, . . . ,M}.

If we stop the process after n iterations, then the resulting
model is

p(Im | Bm) = q(Im)

n∏

i=1

pi(cm,i)

q(cm,i)
. (22)

q(c) can be pooled from natural images before we start the
shared sketch algorithm. We do not need negative examples
beyond q(c). See Sect. 3.1 and Fig. 6.

3.4 Parametrization by Exponential Family Model

Parametric model. We can further simplify the Kullback-
Leibler divergence by assuming the following exponential
family model:

p(c;λ) = 1

Z(λ)
exp{λh(r)}q(c), (23)

where λ > 0 is the parameter, r = |c|2, and

Z(λ) =
∫

exp{λh(r)}q(c)dc = Eq [exp{λh(r)}] (24)

is the normalizing constant. h(r) is an increasing function,
so p(c;λ) puts more probability than q(c) on those c with
large r . The above model can be justified by the maximum
entropy principle (Pietra et al. 1997).

Let p(r;λ) and q(r) be the densities of r = |c|2 un-
der p(c;λ) and q(c) respectively, then p(c;λ)/q(c) =
p(r;λ)/q(r) = exp{λh(r)}/Z(λ).

Estimating pi . We estimate q(c) by pooling a histogram
from natural images. See Fig. 6. We estimate pi(c) from
{cm,i = 〈Im,Bm,i〉,m = 1, . . . ,M} by fitting the density
p(c;λi) to {cm,i}. Specifically, let us define the mean pa-
rameter

μ(λ) = Eλ[h(r)] =
∫

h(r)
1

Z(λ)
exp{λh(r)}q(r)dr. (25)

Figure 7 shows the function μ(λ). We estimate the parame-
ter λi by solving the following estimating equation

μ(λi) = 1

M

M∑

m=1

h(rm,i), (26)

Int J Comput Vis

Fig. 7 The function μ(λ), where h(r) is the sigmoid transformation

where rm,i = |cm,i |2, so that λ̂i = μ−1(
∑M

m=1 h(rm,i)/M).
This is done by inverting the function in Fig. 7. λ̂i is
the maximum likelihood estimate that maximizes∑M

m=1 log[p(cm,i;λi)/q(cm,i)] over λi (Pietra et al. 1997).
We estimate pi(c) by p(c; λ̂i).

To avoid over-fitting, we impose an upper bound on λ

(e.g., λ < 5). That is, in the rare case where no value of λ

below the upper bound satisfies the estimating equation (26),
we then let the estimated λ be this upper bound. The upper
bound plays a role mostly in single image learning, which
we shall discuss at the end of this subsection.

Both logZ(λ) in (24) and μ(λ) in (25) are one-dimen-
sional monotone functions. We can store their values over a
grid of λ values below the upper bound mentioned above,
and use nearest neighbor linear interpolation for points in
between. The solution to the estimating equation (26) can
be efficiently obtained by looking up the stored monotone
function μ(λ).

Selecting Bi . The average log-likelihood ratio

1

M

M∑

m=1

log
p(cm,i; λ̂i)

q(cm,i)
= KL(p(c; λ̂i) ‖ q(c)). (27)

It is an increasing function of
∑M

m=1 h(rm,i)/M . Therefore,
we choose Bi and perturb it to {Bm,i} by maximizing the
pursuit index

∑M
m=1 h(rm,i).

Perturbing Bi to Bm,i . p(c;λi)/q(c) is a monotone in-
creasing function of r = |c|2. This justifies that, given Bi , we
should perturb Bi to Bm,i to maximize |〈Im,Bm,i〉|2, subject
to the approximate non-overlapping constraint. Such Bm,i is
the maximum likelihood estimate given Bi .

Thus, the estimation of λi , the perturbation of Bi to Bm,i ,
and the selection of Bi all follow the maximum likelihood
principle.

Template matching score. The resulting model is

p(Im | Bm)

= q(Im)

n∏

i=1

pi(cm,i)

q(cm,i)

= q(Im)

n∏

i=1

1

Z(λ̂i)
exp{λ̂ih(|〈Im,Bm,i〉|2)}. (28)

To score the template matching, we can compute the log-
likelihood ratio

log
p(Im | Bm)

q(Im)

=
n∑

i=1

[λ̂ih(|〈Im,Bm,i〉|2) − logZ(λ̂i)]. (29)

From a classification perspective, (h(|〈Im,Bm,i〉|2), i =
1, . . . , n) are the features that tell apart the positive exam-
ples from p and the negative examples from q . See also Tu
(2007) for a related model.

Single image learning. Because of the parametrization in
the form of the exponential family model, we can learn the
model from a single image. This enables us to initialize un-
supervised learning by fitting the model to a single image.
For single image learning, we set b1 = b2 = 0, i.e., we do not
allow any activity. In that case, the estimated common tem-
plate B is the same as the deformed template Bm. However,
after learning B in this way, we immediately re-set b1 and b2

to their normal values for detection purpose. The B with re-
set (b1, b2) is an active basis that can generalize to other im-
ages. The upper bound imposed on λi helps avoid overfitting
in single image learning. The current upper bound (λi < 5)
still appears too large for single image learning, and can be
further reduced.

3.5 Transformation and Normalization

The following are explanations why we use the sigmoid and
whitening transformations for h(r).

Sigmoid transformation. The saturation in the sigmoid
transformation can be justified by mixture distributions.

Let pon(r) be the density of r = |〈I,Bx,y,s,α〉|2 when
the Gabor wavelet Bx,y,s,α is on an edge. Let poff(r) be
the density of r when the Gabor wavelet is off the edge.
We assume that pon(r) has a much longer tail than poff(r).
Let q(r) and pi(r) be the densities of r = |c|2 under
q(c) and pi(c) respectively. It is reasonable to assume
that q(r) = (1 − ρ0)poff(r) + ρ0pon(r), and pi(r) = (1 −
ρi)poff(r) + ρipon(r). That is, both q(r) and pi(r) are mix-
tures of the same on-distribution and off-distribution, with
ρi > ρ0 > 0. As r → ∞, log[pi(r)/q(r)] → log(ρi/ρ0) >

Int J Comput Vis

0, i.e., a positive constant. So we may assume the follow-
ing log-linear model: log[pi(c)/q(c)] = log[pi(r)/q(r)] =
λih(r) + constant, where λi > 0, and h(r) reaches a fixed
saturation level as r → ∞. This justifies the saturation in
the sigmoid transformation.

Whitening transformation. The whitening transformation
makes q(Im) closer to the white noise distribution, which
is a simpler null hypothesis. It also leads to explicit expres-
sions of μ(λ) and logZ(λ).

Let F(t) = q(r > t), i.e., the probability that r > t un-
der q(r) or q(Im). The reason we call h(r) = − logF(r)

the whitening transformation is that Pr(h(r) > t) =
Pr(− logF(r) > t) = Pr(F (r) < e−t) = e−t , i.e., h(r) fol-
lows Exponential distribution with unit expectation. This is
the distribution of r if q(Im) is Gaussian white noise. This
is because the local energy r is the sum of the squares of the
Gabor sine response and Gabor cosine response, and both
of them follow independent Normal distributions if q(Im) is
Gaussian white noise. So their sum of squares follows a χ2

2
distribution, which is the Exponential distribution. The dis-
tribution has expectation 1 because we normalize the image
to have unit σ 2(s). See (1).

The whitening transformation changes a long-tailed dis-
tribution q(r) to a short-tailed Exponential distribution.
With the whitening transformation, under p(c;λ) of (23),
h(r) ∼ Exp(1 − λ), which is an Exponential distribution
with μ(λ) = 1/(1 − λ). Z(λ) = 1/(1 − λ). λi can be esti-
mated by λ̂i = 1 − M/

∑M
m=1 h(rm,i).

Normalization schemes. Before applying the transforma-
tion, we need to normalize the filter responses by divid-
ing them by the average energy or power spectrum σ 2(s)

in (1). However, there can be various schemes for comput-
ing σ 2(s), due to various choices of the domain D within
which we pool the average. The following are some options:
(1) Let D be the domain of the whole image. This is the
simplest option. However, the bounding box of the training
images may be much smaller than the image domain of the
testing image, and that causes inconsistency in learning and
testing. The following two options solve the inconsistency
problem: (2) When we scan the template over the testing im-
age, we normalize the filter responses by the average pooled
within the scanning window of the template. (3) For both
training and testing images, for each Bx,y,s,α , we normalize
its response by the average pooled within a local window
centered at (x, y).

For the experiments in this paper, we have implemented
option (2) for Experiments 2, 5a, and 5b in the detection
stage. We use option (3) for Experiment 1.3. We use the sim-
ple option (1) in Experiments 3, 5c, 6, and 10, which are of
illustrative nature.

3.6 Adaptive Texture Background

Marginal histograms. In model (28), p(Im | Bm) =
q(Im)

∏n
i=1 pi(cm,i)/q(cm,i), where q(c) is the marginal

distribution of filter responses pooled over the two nat-
ural images in Sect. 3.1. In scoring an image Im, the log-
likelihood ratio score is computed by

∑n
i=1 log[pi(cm,i)/

q(cm,i)], according to (29). We can change the generic q(c)

to a background texture model fitted specifically to Im.
Specifically, for each image Im, and for each orientation
α, let qm,α(c) be the marginal distribution (or histogram)
pooled from {〈Im,Bx,y,s,α〉,∀(x, y)}. Then we can score the
image Im by

∑n
i=1 log[pi(cm,i; λ̂i)/qm,αi

(cm,i)], where αi

is the orientation of Bm,i . See Fig. 8 for an illustration.
The marginal histogram qm,α captures texture informa-

tion in Im, and provides the adaptive image-specific back-
ground for scoring the template matching. Such spatially
pooled histograms have been commonly used in literature.
For instance, Zhu et al. (1997) developed a Markov random
field model for textures based on such histograms. In fact,
the above scheme amounts to assuming the model p(Im |
Bm) = qm(Im)

∏n
i=1 pi(cm,i)/qm,αi

(cm,i), where qm(Im) is
the Markov random field model (Zhu et al. 1997) fitted to
Im by matching to the marginal histograms of Im. Therefore,
the active basis model for shape leads to a natural justifica-
tion for the Markov random field model for texture.

Template matching score against adaptive background.
Just like we can further parameterize pi(c) by the exponen-
tial family model p(c;λi) as defined in (23), qm,α can also
be parameterized in the same form. Let

hα(Im) = 1

|D|
∑

(x,y)∈D

h(|〈Im,Bx,y,s,α〉|2)

be the spatially pooled average at orientation α. We can fit
a model qm,α(c) = p(c;λm,α) to match hα(Im). The max-

Fig. 8 For each image Im, at each orientation, an adaptive q is pooled
from the Gabor filter responses at all the pixels in this image. Such
adaptive q’s capture texture information in image Im. Each pi is paired
with an adaptive q at the orientation that is the same as Bm,i

Int J Comput Vis

imum likelihood estimate λ̂m,α = μ−1(hα(Im)). Then we
compute the log-likelihood ratio score or SUM2 score by

SUM2m

=
n∑

i=1

log
p(cm,i; λ̂i)

p(cm,i; λ̂m,αi
)

=
n∑

i=1

{[λ̂ih(|〈Im,Bm,i〉|2) − logZ(λ̂i)]

− [λ̂m,αi
h(|〈Im,Bm,i〉|2) − logZ(λ̂m,αi

)]}, (30)

where αi is the orientation of Bm,i . We can also let αi be
the orientation of Bi , which is what we did in Experiment 4.
Experiments on classification suggest that the score (30) has
a slight advantage over the original score (29).

3.7 Active Mean Vector and Active Correlation

We can replace the log-likelihood score log[p(Im | Bm)/

q(Im)] in (29) by the correlation between Im and the vec-
tor Vm = ∑n

i=1 θiBm,i , which is defined as

〈Im|Vm〉 =
n∑

i=1

θiwhiten(|〈Im,Bm,i〉|2)1/2. (31)

We assume that Im is normalized. The reason we use whiten-
ing transformation defined by (12) is that after such a trans-
formation, the distribution of the natural images is closer
to white noise. Geometrically, the white noise distribution
is close to the uniform distribution over a high dimensional
sphere. Image patches (after normalization and whitening
transformation) from the same object category form a cluster
on this sphere. Such a simple picture makes the concept of
correlation geometrically meaningful. The correlation score
(31) can be considered the length that Im projects on Vm.
In (31), we filter out the local phase information, because
phase is irrelevant for shape. We call (31) the active correla-
tion between Im and the vector V = ∑n

i=1 θiBi , because we
perturb V to Vm in order to best correlate it with Im.

For the training images {Im,m = 1, . . . ,M}, we want
to find the vector V = ∑n

i=1 θiBi that best correlates with
{Im,m = 1, . . . ,M}, by maximizing the sum of the active
correlation scores:

m∑

i=1

〈Im | Vm ≈ V 〉

=
n∑

i=1

[

θi

M∑

m=1

whiten(|〈Im,Bm,i〉|2)1/2

]

. (32)

The algorithm for learning B = (Bi, i = 1, . . . , n) and � =
(θi, i = 1, . . . , n) is described in Sect. 2.3. The resulting

V = ∑n
i=1 θiBi can be consider the mean shape of {Im,m =

1, . . . ,M}. We call it the active mean vector. Geometrically,
V points to the center of the cluster formed by {Im,m =
1, . . . ,M}. The active mean vector is a non-linear average
that involves dimension reduction and perturbation of basis
elements. It can be used in the K-mean clustering as we shall
show in Sect. 6.1.

4 Supervised Learning, Detection, and Classification

This section applies the learning and inference algorithms to
supervised learning, detection, and classification.

4.1 Learning with Given Bounding Boxes

In supervised learning, we assume that the training images
are defined on the same image lattice which is the bounding
box of the objects in these images.

In the experiments in this article, we hand pick the num-
ber of basis elements, n. In principle, it can be automati-
cally determined by comparing

∑M
m=1 h(rm,i)/M with the

average of h(MAX1(x, y, s,α)) in natural images or in the
observed image Im, or equivalently, by enforcing a lower
bound on the estimated λi , so that if λi is below this lower
bound, we then stop the algorithm. As suggested by the ex-
periments on classification, the choice of n is not critical.

We also hand pick the resize factor of the training im-
ages. Of course, in each experiment, the same resize factor
is applied to all the training images.

Parameter values. The following are the parameter val-
ues that we use in all the experiments in this paper (unless
otherwise stated). Length of Gabor wavelets = 17. In some
experiments, we also combine templates of Gabor wavelets
at different scales. (x, y) is sub-sampled every 2 pixels or 1
pixel. The sub-sampling rate for experiments in all the sub-
sections of this Sect. 4 is 2. The orientation α takes A = 15
equally spaced angles in [0,π]. The orthogonality toler-
ance is ε = .1. The threshold T = 16 in the threshold trans-
formation (13). The saturation level ξ = 6 in the sigmoid
transformation (11). The shift along the normal direction
dm,i ∈ [−b1, b1] = [−6,6] pixels. In some experiments, we
also make this range smaller, such as b1 = 3 or 2 pixels. The
shift of orientation δm,i ∈ [−b2, b2] = {−1,0,1} × π/15.

Experiment 1. In Experiment 1.1, we take h(r) =
threshold(r), as defined by (13), so that there is no need
to pool q(r). This simple choice was used in our ICCV
paper (Wu et al. 2007). We apply the shared sketch al-
gorithm to a training set of M = 37 car images. The car
images are 82 × 164 (height × length). Figure 9 displays
the results, where n = 60. The first block displays the
learned active basis B = {Bi, i = 1, . . . , n = 60}, where
each Bi is represented symbolically by a bar at the same

Int J Comput Vis

Fig. 9 Experiment 1.1. The 37 training images are 82 × 164 (height
× length). The first block displays the learned active basis consisting
of 60 elements. Each element is symbolized by a bar. The rest of the

blocks display the observed images and the corresponding deformed
active bases. The images are displayed in the descending order of the
log-likelihood ratio, which scores the template matching

Fig. 10 Experiment 1.2. The 15 images are 179 × 112. Number of elements is 50. h() is sigmoid transformation

location and with the same length and orientation as Bi .
The intensity of the bar that symbolizes Bi is the average
∑M

m=1 h(MAX1m(xi, yi, s, αi))/M . For the remaining M

pairs of plots, the left plot shows Im, and the right plot
shows Bm = (Bm,i, i = 1, . . . , n). The intensity of the bar
that symbolizes Bm,i is the squared root of h(|〈Im,Bm,i〉|2).
These M examples are arranged in descending order by the
SUM2m scores output by the algorithm. We can see that
all the examples with non-typical poses are in the lower
end.

Figures 10–13 display more examples, where the results
are obtained by the same algorithm. Different choices of h()

and different normalization schemes produce similar results.
Negative experience in Experiment 1. This experiment

requires that the training images are roughly aligned and
the objects are in the same pose. If this is not the case, our
method cannot learn clean templates. Also, our method does
not do well on objects with strong textures, such as zebras,
leopards, tigers, giraffes, etc. The learning algorithm tends
to sketch edges in textures.

Int J Comput Vis

Fig. 11 Experiment 1.3. The 9 images are 122×120. Number of elements is 40. h() is sigmoid transformation. The filter responses are normalized
locally within a 20 × 20 window. See Sect. 3.5 for a discussion of normalization schemes

Fig. 12 Experiment 1.4. The 12 images are 120 × 167. Number of elements is 50. h() is threshold transformation

Fig. 13 Experiment 1.5. The 11
images are 133 × 140. Number
of elements is 50. h() is sigmoid
transformation

In Sect. 5, we shall show that our method can be extended
to learning from non-aligned images. In Sect. 6, we shall
show that our method can be used to find clusters in training
images.

4.2 Detection by Inference Algorithm

This section studies the detection task using the inference
algorithm based on sum-max maps.

Experiment 2. In Experiment 2.1, we learn the template
from training images in Experiment 1.1, with h() being the
sigmoid transformation. Figure 14(a) displays the learned
template. The bounding box is 82 × 164. Then we use the
learned template to detect the car in the testing image, which
is shown in Fig. 14(b). We run the inference algorithm
over 15 resolutions of the testing image, from 50 × 67 to

751 × 1001. Figure 14(c) displays the superposed sketch of
(Bx̂i ,ŷi ,s,α̂i

, i = 1, . . . , n = 60) at the optimal resolution.
In the inference algorithm, the filter responses are nor-

malized by the average response within the 82 × 164 sliding
window of the template. To handle flat regions in sky and
ground where the average responses are very small, we en-
force a lower bound on the averages, which is 1% of the
maximal average within the testing image. When scanning
the template over the image, we may allow the template to
be partially outside the image. We only need to set the fil-
ter responses of those elements that are outside the image to
be 0.

Figure 15 displays the MAX2 scores over the 15 reso-
lutions, as well as the SUM2 map at the optimal resolution
that achieves the maximum MAX2 score over these 15 res-
olutions.

Int J Comput Vis

Fig. 14 Experiment 2.1.
(a) Template learned from
training images in
Experiment 1.1. h() is the
sigmoid transformation. Size of
template is 82 × 164. (b) Testing
image. The inference algorithm
is run over 15 resolutions, from
50 × 67 to 751 × 1001.
(c) Superposed with sketch of
the 60 elements of the deformed
active basis at the optimal
resolution and location

Fig. 15 Experiment 2.1. (a) MAX2 scores at resolutions 1 to 15. (b) SUM2 map at the optimal resolution

Fig. 16 Experiment 2.2.
Testing image

Figure 16 displays the observed image in Experiment 2.2.
The deformable template is learned in Experiment 1.2. The
bounding box is 179 × 112. We run the inference algorithm
on 10 resolutions of the testing image, from 150 × 110 to
286 × 190.

Figure 17 displays the superposed sketch at each of the

10 resolutions. Figure 18 displays the MAX2 scores over

the 10 resolutions. There are two peaks, corresponding to

the two human figures in the testing image.

In Experiment 2.3, we learn templates using Gabor

wavelets of 5 different scales from the training images in

Experiment 1.3, and then combine them for detection. The

lengths of the Gabor wavelets at these 5 scales are 17, 25, 33,

39, 49 respectively. Figure 19 displays the 5 templates. The

number of elements at the lowest scale is 40. The numbers

of elements at other scales are inverse proportional to the

corresponding scales. The filter responses are normalized

within the whole templates.

For each template, we apply the inference algorithm

over 15 resolutions of the testing image, which is shown in

Fig. 20. We then combine these 5 templates by summing

over their SUM2 maps. The MAX2 score is computed from

this combined SUM2 map.

Int J Comput Vis

Fig. 17 Experiment 2.2.
Superposed sketch of 50
elements of the deformed active
basis at each of the 10
resolutions, from 150 × 110 to
286 × 190. The bounding box is
179 × 112

Fig. 18 Experiment 2.2. MAX2 scores at resolutions 1 to 10

Figure 21 displays the superposed templates of the 5
scales, at the detected location and resolution of the testing
image.

Figure 22(a) displays the MAX2 scores over the 15 res-
olutions. (b) displays the combined SUM2 map at the opti-
mal resolution. The combined SUM2 map is the sum of the
SUM2 maps of the 5 templates.

Computationally, applying a larger Gabor filter to an im-
age is the same as applying a smaller Gabor filter to a lower
resolution of the same image, although the former may have
more numerical precision. In Experiment 2.3, we have not
eliminated such a computational redundancy. We use multi-
scale Gabor wavelets and meanwhile we also search over
multiple resolutions of the testing image.

Fig. 19 Experiment 2.3. Learned templates using Gabor wavelets of
lengths 17, 25, 33, 39, 49 respectively

Fig. 20 Experiment 2.3. Testing image. For each template, we run the
inference algorithm over 15 resolutions, from 110 × 140 to 341 × 434

Negative experience in Experiment 2. Our method can
sometimes be distracted by cluttered edges or strong edges
in the background. One may need to incorporate local ap-
pearance variables such as textures and smoothness into the
model.

4.3 Geometric Transformation of Template

Given a template B = (Bi = Bxi,yi ,s,αi
, i = 1, . . . , n), we

can transform this template by dilation, rotation, and chang-
ing the aspect ratio. This amounts to simple transformations
of (xi, yi, αi, i = 1, . . . , n).

Int J Comput Vis

Fig. 21 Experiment 2.3.
Superposed with templates of 5
scales, at detected resolution
and location

Fig. 22 Experiment 2.3. (a) MAX2 scores at resolutions 1 to 15. (b) Combined SUM2 map at the optimal resolution

Fig. 23 Experiment 3.1. The 27 images are 180 × 180. Number of elements is 60

Experiment 3. Figure 23 displays the bike template

learned from 27 images, using the active basis model with
sigmoid transformation.

Figure 24 shows three examples of detection. We trans-

form the template into a collection of templates at differ-

ent scales, orientations, and aspect ratios. After that, we use

these templates to detect the object by the inference algo-
rithm, using the sum-max maps. We do not need to try mul-

tiple resolutions, because we already scale the template. Fi-

nally, we choose the transformed template that gives the best

Int J Comput Vis

Fig. 24 Experiment 3.1.
(a) The image size is 252 × 320.
The scale factor is 1.4. The
rotation is 1 × π/15. The aspect
factor is 0.9. (b) The image size
is 200 × 250. The scale factor is
1.4. The rotation is 1 × π/15.
The aspect factor is 1. (c) The
image size is 248 × 232. The
scale factor is 1.2. The rotation
is −1 × π/15. The aspect factor
is 0.6

Fig. 25 Experiment 3.2. The 30 images are 120 × 150. Number of elements is 40

Fig. 26 Experiment 3.2. (a) The image size is 166 × 202. The scale
factor is 1.2. The rotation is 0. The aspect factor is 0.8. (b) The image
size is 192 × 144. The scale factor is 1. The rotation is 4 × π/15. The
aspect factor is 1.4

match in terms of the MAX2 score, and superpose the de-
formed template on the input image.

Figures 25 and 26 show another example with the horse
template.

Negative experience in Experiment 3. We encountered
some difficulty with the bicycle template. When the viewing
distance is close, the size of one wheel can be larger than the
size of the other wheel, so a single scale factor does not give
a very good fit. An additional difficulty is caused by the fact
that the frontal wheel may turn to a different direction than
the back wheel.

The above difficulty suggests that we should better split
the bicycle template into two part-templates, and allow each
part-template to have its own geometric transformation. We
shall explore the composition of multiple part-templates in
Sect. 8.

4.4 Classification

In this section, we evaluate our method on classification
tasks and compare it with adaboost (Freund and Schapire
1997; Viola and Jones 2004) and PCA in terms of the areas
under the ROC curves, or the AUC scores.

We learn the active basis B = (Bi, i = 1, . . . , n) and esti-
mate � = (λi, i = 1, . . . , n) from the training images. Then
for each testing image Im, we compute its score SUM2m

Int J Comput Vis

according to (29) or (30). The latter scores the template
against the adaptive background. The testing step is accom-
plished by the inference algorithm. We fit the active basis
model with sigmoid transformation. The parameter values
are taken to be their default values specified in Sect. 4.1. The
sigmoid transformation outperforms whitening and thresh-
old transformations.

Experiment 4. We conduct cross validation experiments
with 131 positive images of heads and shoulders, and 600 +
negative images. The image size is 85 × 127. In total, there
are 5 repetitions × 3 methods × 5 numbers of positive train-
ing examples (5, 10, 20, 40, 80). The number of negative
training examples is kept at 160. We pool q(r) from the
negative training images for learning the active basis. The
learning does not require negative images beyond this one-
dimensional marginal histogram.

Figure 27 plots the AUC scores against the numbers of
positive training examples. The vertical bars represent the
90% confidence intervals estimated from the 5 repetitions
based on t-statistics. The number of basis elements in active
basis is 40.

The adaboost features are obtained by thresholding the
MAX1 maps, i.e., 1MAX1(x,y,s,α)>c or 1MAX1(x,y,s,α)<c . For
each (x, y,α), an optimal threshold c is searched over a grid
of 50 equally spaced points from the minimum to the maxi-
mum of {MAX1m(x, y, s,α)}. The number of adaboost fea-
tures is 80. In conducting this experiment, we noticed an
issue in our previous implementation of adaboost (Wu et al.
2007), where the threshold for each basis element is pre-
trained on the training examples with the uniform weights,
and the adaboost only selects the basis elements. While this
might not be unfair because the h() function in active basis
learning is fixed beforehand, in the current implementation,
the thresholds are trained during the adaboost iterations on

Fig. 27 Experiment 4.1. AUC scores over the number of positive train-
ing examples for active basis with adaptive background, adaboost, and
PCA. The vertical bars are 90% confidence intervals

re-weighted examples, and the adaboost is started from bal-
anced uniform weights, i.e., the total weights of positives
and negatives are both 1/2.

For PCA, we first normalize each image to have mar-
ginal mean 0 and marginal variance 1. Then we estimate
the mean image and the principal components from all the
positive training images. In testing, we fit the learned mean
image and the principal components to each testing image,
and score the image by the squared norm of the residual im-
age. As for the number of principal components, we use the
first two components, which gives good performance among
different choices. We may let the number of components in-
crease along with the increase of the sample size, but there
seems to be not much hope that PCA can be competitive
with the other two methods. One needs to extend it to active
appearance model (Cootes et al. 2001) to explicitly account
for shape deformations in order to achieve competitive per-
formance.

Number of basis elements. Figure 28 plots the AUC
scores of active basis with adaptive background over the
numbers of basis elements, where the numbers of train-
ing examples are 5 and 40 respectively. The optimal per-
formance is attained around 30 elements. The performance
does not change much if we continue to increase the number
of elements.

Figure 29 shows the active basis template and adaboost
template sketched by the first 30 elements, as well as
the mean image and the two principal components. They
are all learned from the same 40 positive training im-
ages during one repetition of the cross validation experi-
ment. For adaboost templates, most features are of the type
1MAX1(x,y,s,α)>c .

As a further illustration, Fig. 30 displays the active basis
learning results from the first 5 positive images.

Fig. 28 Experiment 4.1. AUC scores of active basis with adaptive
background versus the number of elements

Int J Comput Vis

Fig. 29 Experiment 4.1. Learned from the same training set with 40 positive examples. (a) Active basis template (the first 30 basis elements).
(b) Adaboost template (the first 30 elements). (c) Mean positive image. (d) and (e) The first two principal components

Fig. 30 Experiment 4.1. Learning active basis from the first 5 training images. The images are 85 × 127. Number of elements is 30

Fig. 31 Experiments 4.2 and
4.3. Active basis template (left)
and adaboost template (right),
with 60 elements, learned from
the same training set with 20
positive examples. (a) Horses
data set. (b) Butterflies data set

Fig. 32 Experiment 4.3. Learning active basis from the first 9 training images. The images are 100 × 150. Number of elements is 50

We conduct the same experiments on a horse data set and
a butterfly date set. Figure 31 displays the active basis tem-
plates and adaboost templates learned from the same train-
ing sets. Figure 32 displays the active basis learned from the
first 9 positive images of butterflies.

Experiment 4 suggests that the active basis model is com-
parable to adaboost in classification when the sample size is
relatively small, despite the fact that it maximizes the log-
likelihood ratio instead of the classification margin. The ac-
tive basis model does not need negative examples beyond
pooling a marginal histogram. In fact, the selection of the
basis elements B = (Bi, i = 1, . . . , n) does not require neg-
ative examples at all. The marginal histogram is only used
for estimating the weight vector � = (λi, i = 1, . . . , n).

For generative model to stay competitive with the dis-
criminative approach when the sample size is very large, we
may need to represent the positive training set by a mixture
of multiple prototypes, as in Amit and Trouve (2007). See
also Sect. 6.2 on learning prototype templates.

We still do not understand the relationship between gen-
erative and discriminative learning, either empirically or the-
oretically. The generative learning maximizes the likelihood
ratio, and tends to focus on typical positive examples in-
side the classification boundary. The discriminative learn-
ing maximizes the class probability or margin, and tends to
focus on marginal examples that are close to classification
boundary. In the pursuit of basis elements, the generative
learning does not re-weight positive examples, and the inhi-
bition between basis elements is carried out through residual
images. In the discriminative learning, the inhibition is done
by re-weighting the training examples. It is unclear what the
effect of the above-mentioned differences is on the learned
templates. It is even more unclear how these differences play
out in unsupervised learning, which involves inferring latent
variables in training examples, or finding structures in the
training set.

In what follows, we shall present some experiments
which suggest that it is possible to learn the active basis
model in the situations that are not fully supervised.

Int J Comput Vis

5 Learning from Non-aligned Images

In this section, we study the problem of learning from im-
ages where the objects are of unknown locations and scales.

5.1 Multiple Image Alignment

For the training image patches {Im,m = 1, . . . ,M} defined
on the same bounding box, such as those in the previous
section, we can define the multiple alignment score (as com-
pared to pairwise alignment) by

ALIGN(Im,m = 1, . . . ,M) =
M∑

m=1

MATCH(Im,B), (33)

where B is the template learned from the image patches,
and MATCH(Im,B) is the template matching score defined
by either (14) for log-likelihood or (15) for active correla-
tion. The computation is carried out by the shared sketch
algorithm in Sect. 2.5, and ALIGN(Im,m = 1, . . . ,M) =∑M

m=1 SUM2m, where the SUM2m scores are output by the
algorithm.

When the training images {Im,m = 1, . . . ,M} are of dif-
ferent sizes, and the objects appear at different locations in
the training images, we need to infer the unknown locations.
Let box(x, y) be the rectangular bounding box of the tem-
plate centered at (x, y). For an image I, let I[box(x, y)] be
the image patch cropped from the image I within box(x, y).
We want to maximize the alignment score

ALIGN(Im[box(xm, ym)],m = 1, . . . ,M) (34)

over {(xm, ym),m = 1, . . . ,M}, where (xm, ym) is the un-
known location of the bounding box in Im.

The alignment score can be maximized by a greedy algo-
rithm that iterates the following two steps:

(1) Supervised learning: Given {(xm, ym),m = 1,

. . . ,M}, estimate (B,�) from {Im[box(xm, ym)], m =
1, . . . ,M} using the shared sketch algorithm in Sect. 2.5.

(2) Detection: Given (B,�), estimate (xm, ym) from each
Im using the inference algorithm in Sect. 2.4. (xm, ym)

achieves the maximum of the SUM2 map.
Experiment 5a. In this experiment, we initialize the al-

gorithm by specifying the bounding box for the first train-
ing image. Then we estimate (B,�) from this single im-
age patch. In learning from the single image patch, we set
b1 = b2 = 0, that is, we do not allow the elements Bi to per-
turb. After that, we re-set b1 and b2 to their default values,
and iterate Step (2) and Step (1) described above. In Experi-
ment 5, with the exception of the horses example, the default
value for b1, i.e., the allowed range of displacement in loca-
tion, is 3 pixels, and the sub-sampling rate is 1 pixel. For
horses example, b1 = 6 pixels, and the sub-sampling rate is
2 pixels. The default value for b2, i.e., the allowed range of
displacement in orientation, is π/15, as before. The reason

we make b1 smaller than in the previous experiments is that
with the adjustment of the overall locations and scales of the
objects, better alignment is expected to be achieved.

In Step (2), we search over 9 different resolutions, from
0.8 to 1.2 times the input image size (enlarging the range to
0.6 to 1.4 can still result in meaningful templates). We crop
Im[box(xm, ym)] from the optimal resolution.

We run the algorithm for 5 iterations. Figure 33 displays
some examples.

We can also learn templates at different scales in the step
of supervised learning, and combine them in the detection
step. Figure 34 displays two examples of multi-scale tem-
plates.

Experiment 5b. This is a repetition of Experiment 5a, ex-
cept that we do not assume that the bounding box of the
object in the first image is given. We simply start from the
template learned from the whole image of the first training
image. In other words, we assume that the whole image lat-
tice of the first image is the bounding box of the template.
Figure 35 displays two examples. In each example, the first
template is learned from the first image, and the template
serves as the initialization of the algorithm. The second tem-
plate is produced after 5 iterations of the algorithm used in
Experiment 5a.

Negative experience in Experiments 5a and 5b. When
there are cluttered edges in the background, the detection
step may fail to locate the objects. When the objects have
large deformations or pose changes, the learned template
may not be clean, and may fail to sketch the objects in the
training images correctly. In Experiments 5b, if the objects
do not occupy significant portions of the training images,
our method may fail to establish correct alignment.

5.2 Learning Part-templates

The algorithm in Experiment 5a can be used to learn part-
templates from training images.

Experiment 5c. We start the learning algorithm from a
large number of patches cropped from the training images,
and for each starting patch, we learn a template using the
same iterative algorithm as in Experiment 5a. The number of
iterations is 3. Here we use active correlation (see Sect. 3.7)
instead of the log-likelihood for learning and detection.

Then we select the first K templates with the highest
alignment scores. We did not perform spatial inhibition be-
tween the part-templates. After that, we double the sizes of
the input images, and use the same procedure to learn part-
templates at a higher resolution.

Figure 36 displays the top three part-templates learned
from three car images. Because of the large deformations in
these three cars, it is impossible to learn a common template
for the whole cars, but it is still possible to learn meaningful
part templates that correspond to frontal, middle and rear
parts of the cars.

Int J Comput Vis

Fig. 33 Experiment 5a. The bounding box in the first image is given.
The number of iteration is 5. With the exception of horses example,
the allowed displacement in location is up to 3 pixels, and the sub-
sampling rate is 1 pixel. For the horses example, the allowed displace-
ment in location is up to 6 pixels, and the sub-sampling rate is 2 pixels.
(1) Cats: The size of the bounding box is 136 × 140. The number of

elements in the active basis is 60. (2) Wolves: The bounding box is
117 × 117. Number of elements is 60. (3) Swans: The bounding box is
129 × 178. Number of elements is 50. (4) Pigeons: The bounding box
is 103 × 129. Number of elements is 30. (5) Horses: The bounding box
is 103 × 158. Number of elements is 60. (6) Deers: The bounding box
is 143 × 149. Number of elements is 50

Fig. 34 Experiment 5a. Multi-scale templates. The lengths of the Ga-
bor wavelets are 17, 25, 33, 39 respectively. Cat: Number of elements
at the lowest scale is 60. The numbers of elements are inverse propor-
tional to the scales. Swan: Number of elements at the lowest scale is 50

Figure 37 displays the top two part-templates learned
from these three images after we resize these images by a
factor of 2.

Negative experience in Experiment 5c. When the part-
template is small relative to the whole objects, the method
often fails to establish correct correspondence among the
images.

The above difficulty suggests that we should add con-
straints for more reliable learning of the parts. If the bound-
ing boxes are given as in Experiment 1, we can restrict the
ranges of movements of parts in the training images, so that
in the detection step, we do not need to search over the whole
images. If the bounding boxes are not given, we might si-
multaneously learn multiple parts while restricting their rel-
ative positions. We leave it to future investigations.

5.3 Learning Moving Template from Motion Sequence

Our method can also be used to learn a moving deformable
template from a video sequence. Let (It , t = 1, . . . ,M) be

Int J Comput Vis

Fig. 35 Experiment 5b. In each
example, the first template is the
starting template. The second
template is learned after 5
iterations. The number of
elements of the active basis is
30 in the left example, and 60 in
the right example

Fig. 36 Experiment 5c. The top
three part-templates. The size of
the bounding box is 100 × 100.
The number of elements is 40.
The allowed activity in location
is up to 3 pixels. The allowed
activity in orientation is up to
π/15, as usual. The number of
iterations is 3

Fig. 37 Experiment 5c. The top
two part-templates learned after
the sizes of the input images are
doubled. The parameters are the
same as in Fig. 36

a sequence of frames of an object shape that is moving at a
speed v = (vx, vy). We can estimate v and learn a template
of the object shape simultaneously.

At the true speed v = (vx, vy), let J(v)
t (x, y) = It (x +

vxt, y + vyt), i.e., for frame t , we shift the image lattice

back by vt , then the object shapes in {J(v)
t , t = 1, . . . ,M}

will be well aligned. If we apply the shared sketch algo-
rithm to {J(v)

t }, we shall learn a clean template that has a
high alignment score. We can try all possible v, and choose
the v that achieves the maximum alignment score, i.e., we
maximize

ALIGN(J(v)
t , t = 1, . . . ,M) (35)

over v. This is actually a simpler problem than learning from
non-aligned images.

In our experiment, we use active correlation (see
Sect. 3.7) to evaluate the alignment score (35). Before
computing this score, we need to perform background

subtraction. First, we compute the background SUM1:
SUM10(x, y, s,α) = ∑M

t=1 SUM1t (x, y, s,α)/M . Then
we modify SUM1t (x, y, s,α) ← [SUM1t (x, y, s,α)−
SUM10(x, y, s,α)]+, where [r]+ = r if r > 0 and [r]+ = 0
otherwise. For each v, we compute the alignment score of
the background subtracted SUM1 maps using the shared
sketch algorithm.

Experiment 6. We learn the moving template from a se-
quence of 19 frames of size 204 × 258. The image sequence
is cropped from the PETS 2006 benchmark data (Ferryman
2006). We try 5 different directions vx/vy , and at each direc-
tion, we try 7 different speeds. Figure 38 displays the align-
ment scores at different speeds of the optimal direction.

Figure 39 displays the learned template and the super-
posed sketch for each frame at the optimal speed and direc-
tion.

Figure 40 displays another example.

Int J Comput Vis

6 Clustering and Local Learning

In this section, we study the problem of clustering, where we
need to learn multiple templates from the training set, which
is a mixture of different poses or different categories.

Unlike conventional clustering problem, we not only
need to separate the examples into different clusters, but
we also need to learn the active basis for each cluster, i.e.,
find the dimensions that characterize each cluster. These two
tasks can be naturally integrated, and they actually depend
on each other.

Fig. 38 Experiment 6.1. Alignment scores at different speeds of the
optimal direction

6.1 EM and K-mean

Mixture model and EM. Suppose there are K clusters, and
each cluster k can be described by an active basis model
B(k) = (B

(k)
i , i = 1, . . . , n) and �(k) = (λ

(k)
i , i = 1, . . . , n).

Let ρ(k) be the probability that a training image Im comes
from cluster k, k = 1, . . . ,K . So Im ∼ ∑K

k=1 ρ(k)p(k)(Im |
B(k)

m), i.e., a mixture distribution, where each p(k)(Im | B(k)
m)

is modeled as in Sect. 3.1.
We can learn {ρ(k),B(k),�(k), k = 1, . . . ,K} by the EM

algorithm (Dempster et al. 1977). For each image Im, we de-
fine (z

(k)
m , k = 1, . . . ,K) as an indictor vector, where z

(k)
m =

1 if Im comes from cluster k, otherwise z
(k)
m = 0.

E-step. For each m = 1, . . . ,M and k = 1, . . . ,K , we im-
pute

z(k)
m = ρ(k) exp{SUM2(k)

m }
∑K

k=1 ρ(k) exp{SUM2(k)
m }

.

This is a soft classification based on the current models
of the clusters, where each z

(k)
m becomes a fraction. The

SUM2(k)
m scores are obtained in the M-step.

M-step. For each k = 1, . . . ,K , we learn B(k) and �(k)

according to the shared sketch algorithm in Sect. 2.5. We
only need to make the following changes to the original ver-
sion of the learning algorithm.

(1) In Step 3, find (xi, yi, αi) by maximizing
∑M

m=1 z
(k)
m h(MAX1m(x, y, s,α)), which is a weighted sum.

(2) In Step 3, compute λ̂i by

λ̂i = μ−1
(∑M

m=1 h(rm,i)z
(k)
m

∑M
m=1 z

(k)
m

)

, (36)

Fig. 39 Experiment 6.1.
Learned template and
superposed sketch for each
frame at the optimal speed and
direction. There are 19 frames
of size 204 × 258, cropped from
PETS 2006 benchmark data.
Number of elements is 70

Int J Comput Vis

Fig. 40 Experiment 6.2. Learned template and superposed sketches at the optimal speed. The image frames are 180 × 186. Number of elements
is 80

Fig. 41 Experiment 7.1. Learned templates from a mixture of 106 training images in Experiment 4. Image size is 120 × 150. Number of elements
in each template is 40. Number of iteration is 4. (a) EM. (b) K-mean

that is, we match μ(λi) to the weighted average.
(3) At the end of the algorithm, attach a superscript (k)

to the resulting SUM2m and B. SUM2(k)
m can then be used

in the E-step.
We initialize the algorithm by randomly generating

{z(k)
m }, and then iterate the M-step and the E-step. We stop

the algorithm after a few iterations. Then we classify Im to
the cluster k∗ that maximizes z

(k)
m over all k = 1, . . . ,K .

Experiment 7. Figure 41(a) displays the templates B(k),
k = 1,2,3, learned from the mixture of three subsets of pos-
itive images in Experiment 4. The EM algorithm can easily
separate the three clusters.

Figure 42(a) displays the learned templates B(k), k = 1,2
from a mixture of images of horses facing different direc-
tions. The EM algorithm separates the two clusters.

K-mean clustering. Our K-mean clustering scheme is dif-
ferent than the conventional ones. The mean vector is not
a simple average. It is obtained by the shared sketch algo-
rithm. The distance is not simple Euclidean distance, but is
defined in terms of active correlation.

We can pose the clustering problem as the follow-
ing alignment problem: Find {(z(k)

m , k = 1, . . . ,K),m =
1, . . . ,M} to maximize

K∑

k=1

ALIGN
(
Im, z(k)

m = 1
)
, (37)

where ALIGN(Im, z
(k)
m = 1) is the alignment score of the k-

th cluster. See Sect. 5.1 for the definition of the alignment

Fig. 42 Experiment 7.2. Learned templates for 57 images of horses
facing two different directions. Image size is 120 × 150. Number of
elements in each template is 50. (a) EM with 4 iterations. (b) K-mean
with 8 iterations

score. Here z
(k)
m are 0/1 variables instead of fractions. The

computation of the alignment score by the shared sketch al-
gorithm also produces the template B(k) for the k-th clus-
ter. If we use active correlation to learn the template for
each cluster and score the alignment within each cluster,
then the learned (B(k),�(k)) gives us an active mean vec-
tor V (k) = ∑n

i=1 θ
(k)
i B

(k)
i for each cluster. The mean vector

V (k) points to the center of the k-th cluster. The K-mean
algorithm is a greedy scheme that maximizes (37), and it
iterates the following two steps:

(1) Given {(z(k)
m , k = 1, . . . ,K),m = 1, . . . ,M}, estimate

the mean vector (B(k),�(k)) from {Im, z
(k)
m = 1} for each

k = 1, . . . ,K .
(2) Given {B(k),�(k), k = 1, . . . ,K}, classify each image

Im to a cluster k∗ that maximizes 〈Im | V (k)
m 〉 (see (31)) over

all k = 1, . . . ,K , where V
(k)
m is the deformed version of V (k)

for fitting image Im (see Sect. 3.7). Set z
(k∗)
m = 1, and set

z
(k)
m = 0 for k �= k∗.

Int J Comput Vis

The implementation of this K-mean algorithm is similar
to the EM algorithm. We only need to make the following
modifications:

(1) Change the E-step: let z
(k∗)
m = 1 if k∗ achieves the

maximum of SUM2(k)
m among all k = 1, . . . ,K , and set the

rest of z
(k)
m to 0.

(2) Change the M-step: for each k = 1, . . . ,K , compute
SUM2m and estimate B and � for each cluster k using the
shared sketch algorithm that maximizes the active correla-
tion (see (32)).

Figures 41(b) and 42(b) display the learned templates
B(k), k = 1, . . . ,K using K-mean algorithm. We initialize
the algorithm with random {z(k)

m }.
We also did a third experiment where we mix the pos-

itive training examples of head-shoulder images and nega-
tive training examples. The EM and K-mean algorithms can
still separate out many of the positive training examples, al-
though they also mistakenly include some negative exam-
ples into the positive cluster.

Negative experience in Experiment 7. When the object
shapes of different categories are not very different, our
method often fails to distinguish them if we start from ran-
dom clustering.

The above difficulty is not caused by the model or the
EM or K-mean iteration, but mainly by the fact that random
clustering gives poor initialization. We address this issue in
the next subsection.

6.2 Local Learning of Prototype Templates

To address the problem of initializing EM or K-mean, we
develop a local learning scheme. The word “local” means
being local in the high dimensional image space. It does not
mean being local in the two-dimensional image lattice. Here
the measure of locality or similarity depends on the models
to be learned locally from similar examples. This naturally
suggests an iterative procedure that iterates between learn-
ing the local model from similar examples and identifying
similar examples based on the learned local model.

Local learning algorithm

Input: Training images {Im,m = 1, . . . ,M}.
Output: A prototype template (B(m),�(m)) around each im-

age Im.
1. Initialize template (B(m),�(m)) by learning from

the single image Im using the shared sketch algo-
rithm, with b1 = b2 = 0, i.e., no activity is allowed.
Then restore b1 and b2 to their normal values (e.g.,
b1 = 2 pixels, b2 = π/15).

2. Use (B(m),�(m)) to score all the images, using the
inference algorithm based on the sum-max maps.
Find the K (e.g., K = 5) images with the highest
SUM2 scores.

3. Re-learn (B(m),�(m)) from the K images identi-
fied in Step 2, using the shared sketch algorithm.

4. Go back to Step 2, and stop after t iterations (e.g.,
t = 3).

In the above algorithm, Step 2 can be very fast, because
it only involves a linear combination of a small number of
MAX1 scores for each image. Step 3 can also be fast be-
cause learning is done on a small number of nearest neigh-
bors. A more localized implementation is to enforce that Im

must be among the K neighbors, and Im may even receive a
higher weight than other neighbors.

In local learning, we reduce the range of allowed activity,
in order to get tighter clusters. Specifically, we set b1 = 2
pixels, instead of 6 pixels as in Experiment 1.

Experiment 8. In Experiment 8.1, we learn local proto-
types from a training set of 123 images of animal heads,
where K = 5. After learning all the 123 templates, we trim
them to satisfy the constraint that the K nearest neighbors
of the remaining templates should not overlap (this may be
too aggressive). This leaves 15 exemplar templates.

Figure 43 shows the 15 templates. They are ordered by
the alignment scores computed from their respective K near-
est neighbors.

Fig. 43 Experiment 8.1. The 15 locally learned prototypes. They are
ordered by the alignment scores computed from their respective nearest
neighbors. Image size is 100 × 100. Number of elements is 40. Num-

ber of iterations is 3 for learning each template. The allowed activity
of location is up to 2 pixels. The allowed activity of orientation is up to
π/15

Int J Comput Vis

Fig. 44 Experiment 8.1. The top 5 templates and their neighbors

Fig. 45 Experiment 8.1. Some other templates and their neighbors

Fig. 46 Experiment 8.1. Templates of cats at two slightly different poses

Int J Comput Vis

Figure 44 shows the top 5 templates and their nearest
neighbors.

Figure 45 shows another 4 templates and their nearest
neighbors.

In Experiment 8.1, we pool q(r) from negative images in
Experiment 4. Pooling q(r) from the two natural images in
Sect. 3.1 leads to slightly different result. For other experi-
ments in this paper, the two q(r) lead to essentially the same
results.

The locally learned templates may represent distinct ob-
ject categories, but they may also represent different poses
of the same object category. Figure 46 shows two templates
of cats of slightly different poses.

In Experiment 8.2, we mix the images in Experiments 1.3
and 1.4, and the first 12 images in Experiment 3.2. The im-
age length is 120. All the images share the same central hor-
izontal line. The number of elements is 60. All the other
parameters are the same as Experiment 8.1. The local learn-
ing algorithm returns 3 prototypes after trimming. Figure 47
displays the three prototypes. Figure 48 displays the three
prototypes and their nearest neighbors.

In Experiment 8.3, we apply the same algorithm to 200
images of handwritten digits from the MNIST data set (Le-
Cun et al. 1998), where we take the first 20 images for each

Fig. 47 Experiment 8.2. The 3 representative templates locally
learned. They are ordered by the total alignment scores. The image
length is 120. All the images share the same central horizontal line.
Number of elements is 60. All the other parameters are the same as
Experiment 8.1

Fig. 49 Experiment 8.3. The 21 locally learned templates. Number of
images is 200. The images are resized to 60 × 60. Original images are
taken from MNIST data set. Number of elements is 15

digit. We obtain 21 locally learned templates, as shown in
Fig. 49.

In Experiment 8.4, we perform local learning on 912
images of horses. Some of the images are taken from the
Weizmann data set (Borenstein and Ullman 2002) and the
INRIA data set (Ferrari et al. 2007). The number of near-
est neighbors K = 20. We sequentially select the tem-
plates {B(l), l = 1, . . . ,L} by maximizing a truncated log-
likelihood score

∑M
m=1 truncate(maxl SUM2(l)

m , T), where

SUM2(l)
m is the template matching score of Im matched to

template B(l), and maxl SUM2(l)
m is the score of Im matched

to its closest template. truncate(s, T) = s if s > T , and
truncate(s, T) = 0 otherwise. That is, we only count the
template matching scores where the images and the tem-
plates are good matches, in the hope that the selected tem-
plates and the images matched to them form the cores of the
clusters. In this experiment, we let the number of elements
be 40, and we set the threshold T = 80. Figure 50 shows the
first 20 templates sequentially selected by maximizing the
truncated log-likelihood score.

We are still unclear what is the principled way of select-
ing the locally learned templates. The selected templates can
be used to initialize the EM algorithm for fitting the mixture
model (we may also need to merge some of the similar clus-
ters). It remains to be seen whether the mixture model fit this
way can help the classification task or not.

Fig. 48 Experiment 8.2. The 3 templates and their corresponding 5 nearest neighbors

Int J Comput Vis

Fig. 50 Experiment 8.4. The 20 locally learned templates sequentially selected by maximizing a truncated log-likelihood score. The number of
nearest neighbors is 20. The 912 images are 84 × 105. The number of elements is 40. Other parameters are the same as in Experiment 8.1

Fig. 51 Experiment 9.1. The selected Gabor elements (illustrated by
bars) at 3 different scales and the selected DoG elements (illustrated
by circles, and larger circles are darker than smaller ones). The lengths
of the Gabor elements are 35, 25, and 17 pixels respectively. The sizes
of the DoG elements are 77 and 55 respectively. The allowed activity
of location is 4 pixels for both Gabor and DoG elements

7 Synthesis by Multi-scale Gabors and DoGs

Edges and regions can be considered two relative concepts
in the frequency domain. While edges can be captured by
high frequency Gabor wavelets, the regional contrasts can
be encoded by low frequency wavelets, including the differ-
ence of Gaussian (DoG) wavelets. To account for both edges
and regions, we need to combine Gabor and DoG wavelet
elements at multiple frequency bands.

We select the wavelet elements of active basis from a dic-
tionary of Gabor and DoG wavelets at different scales. We
use the same shared sketch algorithm with sigmoid pursuit
index, except that we normalize the filter responses by mar-
ginal variance. After selecting the elements and recording
their responses, we use matching pursuit (Mallat and Zhang
1993) to reconstruct the images. We need to use matching
pursuit for reconstruction because the selected elements are
only approximately orthogonal to each other, so the pro-
jection coefficients and the reconstruction coefficients are
slightly different. The matching pursuit algorithm computes
the reconstruction coefficients from the projection coeffi-
cients.

Experiment 9. In Experiment 9.1, we use the same train-
ing images as in Experiment 1.3, except that we resize these
images to make them smaller. Figure 51 displays the se-
lected Gabor and DoG elements. The Gabor elements are
illustrated by bars of different sizes. The DoG elements are
illustrated by circles. The radius of a circle is about half of
that of the blob represented by the corresponding DoG ele-
ments. Larger circles are darker than smaller ones.

Figure 52 displays the reconstructed images. The DoG
elements are necessary to account for the large regional con-
trasts.

Figure 53 displays the reconstructed images with 150
wavelet elements. The reconstructed images have more de-
tails than those in Fig. 52. Alongside each reconstructed im-
age, the corresponding residual image is also displayed. One
can still recognize the objects from the residual images, sug-
gesting that the model only explains away parts of the im-
ages.

Figures 54–57 display more examples. Ideally, the large
Gabor and DoG elements gauge the breadths of the edges,
while the small Gabor elements gauge the sharpness of the
edges. The very large DoG elements may gauge the sizes
of the regions, which are to be contoured by the Gabor ele-
ments.

Despite the fact that DoG elements can account for the
regional intensity contrast, we still need to add local appear-
ance variables to represent the local smoothness or textures
in the interiors of the regions.

8 Composing Multiple Part-Templates

For articulate objects, we need to represent them as com-
positions of part-templates at different locations and resolu-
tions.

Recursive active basis and recursive sum-max maps.
An active basis is a composition of multiple Gabor wavelet
elements, where each element is allowed to shift its loca-
tion and orientation. We can further compose multiple ac-
tive bases, where each active basis serves as a part-template
that is allowed to change its overall location, orientation and
scale. We call such a structure a “recursive active basis,”
which is a template that consists of multiple part-templates.
The following experiment illustrates the basic idea.

Experiment 10. Figure 58(a) displays an observed image
of size 330 × 496 of Experiment 10.1. Figure 58(b) displays
the superposed sketch. The template is learned in Experi-
ment 3.1 from the bicycle images. See Fig. 23. We split
the bicycle template in Fig. 23 horizontally into two part-
templates. The bounding box for the part-template of the

Int J Comput Vis

Fig. 52 Experiment 9.1. The first block displays all the 50 selected Gabor and DoG elements. The smaller Gabors are illustrated by darker bars.
The remaining blocks display the original images and the corresponding reconstructed images. The image size is 102 × 100

Fig. 53 Experiment 9.1. The first block displays all the 150 selected Gabor and DoG elements. The remaining blocks display the reconstructed
images and the corresponding residual images

Fig. 54 Experiment 9.2. The
first block displays all the 50
selected Gabor and DoG
elements. The remaining blocks
display the original 95 × 100
images and the corresponding
reconstructed images

Fig. 55 Experiment 9.3. The
first block displays all the 40
selected Gabor and DoG
elements. The remaining blocks
display the 100 × 70 original
images and the corresponding
reconstructed images

Int J Comput Vis

Fig. 56 Experiment 9.4. The
first block displays all the 40
selected Gabor and DoG
elements. The remaining blocks
display the original 100 × 110
images and the corresponding
reconstructed images

Fig. 57 Experiment 9.5. The
first block displays all the 50
selected Gabor and DoG
elements. The remaining blocks
display the original 100 × 100
images and the corresponding
reconstructed images

Fig. 58 Experiment 10.1.
(a) Input image of 330 × 496.
(b) Superposed sketch. The
bounding box of the front wheel
is 112 × 126. The bounding box
of the back wheel is 86 × 76.
The total number of elements
is 60

front wheel is 112 × 126, and the bounding box for the part-
template of the back wheel is 86 × 76 (we give some ex-
tra margin to the bounding box of each part-template at the
splitting point). We allow the two part-templates to locally
shift horizontally, so these two part-templates make up a re-
cursive active basis. We then fit the recursive template to the
tandem bike in Fig. 58(a) and obtain the sketch in Fig. 58(b).

Given the two part-templates, the inference can be ac-
complished by alternating the sum maps and max maps as
illustrated by Fig. 59. Here we have two SUM2 maps, one
for each part-template. On top of each SUM2 map, there is
also a MAX2 map. Then on top of the two MAX2 maps, a
SUM3 maps is computed. After that a MAX3 score is ob-
tained. These scores are computed by a bottom-up process,
and they answer the following questions:

SUM2 maps: Is there a part-template at this location?
MAX2 maps: Is there a part-template at a nearby loca-

tion?
SUM3 map: Is there a certain composition of part-

templates that form the whole template at this location?
MAX3 score: Is there a composite template within the

whole image?

If there is such a composite template, then a top-down
process first retrieves the location of the whole template,
then retrieves the locations of the part-templates, and finally
retrieves the elements of the part-templates.

Inference by recursive sum-max maps

Input: Part-templates (B(j),�(j)), j = 1,2. Their central
locations (xj , yj) for j = 1,2 in the composite
whole template. Testing image I.

Output: Detected location (x̂, ŷ) of the whole template in
the testing image I, as well as the detected loca-
tions (x̂j , ŷj) of the part-templates for j = 1,2.

Up-1 For j = 1,2, compute SUM2(x, y, j) using the in-
ference algorithm of Sect. 2.4.

Up-2 For all (x, y) and j = 1,2, compute

MAX2(x, y, j)

= max−bx≤�x≤bx−by≤�y≤by

SUM2(x + �x,y + �y, j),

j = 1,2. (38)

Int J Comput Vis

Fig. 59 Recursive sum-max
maps. A SUM2 map is
computed for each
part-template. For each SUM2
map, a MAX2 map is computed
by applying a local
maximization operator to the
SUM2 map. Then a SUM3 map
is computed by summing over
the two MAX2 maps. The
SUM3 map scores the template
matching, where the template
consists of two part-templates
that are allowed to locally shift
their locations

Up-3 For all (x, y), compute

SUM3(x, y) =
2∑

j=1

MAX2(x + xj , y + yj , j).

Up-4 Compute MAX3 = maxx,y SUM3(x, y).
Down-4 Retrieve (x̂, ŷ) that achieves the maximum in

Up-4.
Down-3 Retrieve (x̂ + xj , ŷ + yj) in Up-3 for j = 1,2.

Down-2 Retrieve (x̂j , ŷj) so that

MAX2(x̂ + xj , ŷ + yj , j) = SUM2(x̂j , ŷj , j),

in the local maximization operation (38) in Up-2.
Down-1 Retrieve the perturbed elements of j -th part-

template for j = 1,2, as described in the inference
algorithm of Sect. 2.4.

Int J Comput Vis

The retrieval in Down-2 step can be implemented by storing
the TRACK2 maps in Up-2 step.

In Experiment 10.1, in Step Up-2, we take bx = 20 pixels
and by = 4 pixels. Let (x1, y1) and (x2, y2) be the central
positions of the bounding boxes for the two part-templates in
the original template learned from regular bicycles. Assume
x1 < x2, we let x1 ← x1 − bx , x2 ← x2 + bx , and let the
two part-templates shift around the new centers (x1, y1) and
(x2, y2).

The MAX3 score in Up-4 measures the template match-
ing, or the alignments of the two part-templates to the im-
ages. This MAX3 score can be used to decide where we
should split the original bicycle template. Specifically, we
can try different splitting points, and for each splitting point,
we compute the MAX3 score. Figure 60 displays the MAX3
scores for 10 different splitting points. The result shown in
Fig. 58(b) is obtained at the splitting point that achieves the
maximum MAX3 score.

Fig. 60 Experiment 10.1. MAX3 scores for different splitting points

The recursive active basis can be considered a constel-
lation model (Weber et al. 2000) whose constituent compo-
nents are active bases. The MAX2 and SUM3 maps may
have been commonly used in part-based models. Thanks to
the work of Riesenhuber and Poggio (1999), we are able to
extend the SUM and MAX operations down to the image
intensities.

Account for large deformations. The recursive active ba-
sis and recursive sum-max maps can account for the exis-
tence of parts, as illustrated in Experiment 10.1. They can
also be used to deal with large deformations.

Figure 61(a) displays the image of horse that we used
in Experiment 3.2, where we change the aspect ratio of the
horse template to fit this image. From a 2D point of view,
this amounts to a large deformation that cannot be han-
dled by a single-layer active basis model. We can use the
same method in Experiment 10.1 to split the original horse
template into two part-templates, and allow these two part-
templates to move relative to each other. Figure 61(b) dis-
plays the result of fitting the recursive active basis at the
optimal splitting point. As a comparison, Fig. 61(c) displays
the result using the original template. The original template
does not fit the head and the rear parts of the horse very well.

Experiment 10 on composing part-templates and Experi-
ment 5c on learning part-templates are only illustrative and
very preliminary. There is still a long way to go to develop
a simple and robust scheme to learn multi-scale and multi-
layer recursive active basis.

9 Discussion

The proposed approach is very simple for the vision tasks
studied in this article. The model is not much more com-
plex than a wavelet expansion, except that local perturba-
tions are added to the wavelet elements. The learning algo-
rithm is not much more complex than edge detection, except
that it is performed simultaneously on multiple images. The

Fig. 61 Experiment 10.2. (a) The observed image of 166 × 202.
(b) Superposed with sketch where the horse template is split horizon-
tally into two part-templates. The total number of elements is 40. The
left part-template is 116 × 76. The right part-template is 104 × 92.

These two part-templates are allowed to move horizontally up to 10
pixels in each direction. (c) Superposed with sketch using the original
horse template. In other words, the two part-templates are not allowed
to move relative to each other

Int J Comput Vis

inference algorithm only involves two consecutive filtering
operations on top of Gabor filtering. One is a local max fil-
tering and the other is a local sum filtering.

We play with the active basis model in a variety of exper-
iments. These experiments are merely illustrative and ex-
plorative. Far more empirical experiences are needed to bet-
ter understand the limitations and inadequacies of the model
and to improve it.

In retrospect, we find the following three principles rele-
vant and helpful.

9.1 Sparsity

Olshausen and Field (1996) propose this principle for under-
standing V1 simple cells, where a typical natural image can
be represented by a linear superposition of a small number
of Gabor-like wavelet elements at different scales, locations,
and orientations, plus a small residual. The reason for such
a sparse representation is that edges are prominent and fre-
quently occurring structures in natural images.

The active basis model can be considered a further step
in sparse coding. In Olshausen-Field representation, each
image is encoded by a sparse set of localized and oriented
wavelet elements of various scales. This effects a key tran-
sition in representation, from raw image intensities to a
geometric representation in terms of locations, orientations,
and scales of the wavelet elements. We can further encode
this geometric representation by a small number of tem-
plates, each being a composition of locations, orientations,
and scales. The reason for such a sparser representation is
that those templates are prominent and frequently occurring
structures in natural images. In Olshausen-Field representa-
tion, we need to allow for small residuals in image intensi-
ties. Similarly, in this geometrical representation, we need
to allow for small residuals in locations, orientations, and
scales. Such small residuals become the perturbations or ac-
tivities of the elements of the active basis model, so that the
templates are deformable.

9.2 Compositionality

Geman et al. (2002) propose this principle for vision. If
we want a compositional representation of image intensi-
ties and if we insist on linear representation for simplicity,
then it is natural to adopt wavelet representation because the
wavelet elements are localized in both spatial and frequency
domains. The active basis model follows such a composi-
tional scheme.

Zhu and Mumford (2006) investigate the and-or graph as
a recursive compositional scheme for vision, where “and”
accounts for compositions of constituent elements, while
“or” accounts for variations in the constituent elements. The
active basis model is a simplest form of an and-or graph,

where “and” means composition of wavelet elements, and
“or” means variations in the locations and orientations of
the elements. The and-or graph is a grammar that can be ap-
plied recursively. The recursive active basis follows such a
grammar.

The recursive architecture of sum-max maps is a vari-
ation on the theme of Riesenhuber and Poggio’s cortex-
like structure (Riesenhuber and Poggio 1999). The sum-max
maps form a natural hierarchical structure for parsing an im-
age according to the and-or grammar. The sum maps score
the and-compositions, and the max maps account for the or-
variations. After bottom-up scoring for detection and classi-
fication, the top-down retrieving produces the parsing of the
image. See also the recent work of Zhu et al. (2008) on a
recursive compositional scheme.

9.3 Invariance

Riesenhuber and Poggio (1999) propose this principle for
V1 complex cells. While the V1 simple cells capture the
essence of the image intensities via Olshausen-Field sparse
coding, the local maximization operation of the V1 complex
cells filters out shape deformations, and makes the subse-
quent processing invariant to shape deformations. Of course,
invariance here is only approximate.

The Riesenhuber-Poggio scheme compares intensities of
the MAX1 maps directly for template matching. We mod-
ify their template matching scheme by a weighted sum of
the MAX1 intensities at highly selected locations and ori-
entations. If the locations and orientations of the selected
wavelet elements are at the centers of the local perturbations
that cause shape deformation, then hopefully, the intensities
of the MAX1 maps of these highly selected locations and
orientations are more invariant (and more indicative of the
object shapes) than the intensities of other locations and ori-
entations.

Reproducibility

All the experimental results reported in this paper can be re-
produced by the Matlab and mex-C code that we have posted
on the webpage http://www.stat.ucla.edu/~ywu/ActiveBasis.
html.

Acknowledgements We thank the reviewer for the helpful com-
ments and suggestions. We thank Chuck Fleming for earlier collab-
oration on some of the experiments. We thank Alan Yuille, Stefano
Soatto, Tai Sing Lee, Zhuowen Tu, and Leo Zhu for discussions. The
work is supported by NSF-DMS 0707055, NSF-IIS 0713652, ONR
N00014-05-01-0543, Air Force grant FA 9550-08-1-0489, and Keck
foundation. We acknowledge the use of data sets provided by the Lo-
tus Hill Institute, which is supported by a Chinese National 863 grant
2006AA01Z121 and an NSFC grant 60728203.

http://www.stat.ucla.edu/~ywu/ActiveBasis.html
http://www.stat.ucla.edu/~ywu/ActiveBasis.html

Int J Comput Vis

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Amit, Y., & Trouve, A. (2007). Pop: Patchwork of parts models for
object recognition. International Journal of Computer Vision, 75,
267–282.

Borenstein, E., & Ullman, S. (2002). Class-specific, top-down segmen-
tation. In Proceedings of European conference on computer vi-
sion.

Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance
models. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 23, 681–685.

Daugman, J. (1985). Uncertainty relation for resolution in space, spa-
tial frequency, and orientation optimized by two-dimensional vi-
sual cortical filters. Journal of Optical Society of America, 2,
1160–1169.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum like-
lihood from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, B, 39, 1–38.

Ferrari, V., Jurie, F., & Schmid, C. (2007). Accurate object detection
with deformable shape models learnt from images. In Proceedings
of IEEE conference on computer vision and pattern recognition.

Ferryman, J. M. (2006). In Proceedings of ninth IEEE international
workshop on performance evaluation of tracking and surveillance
(PETS 2006).

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55, 119–139.

Friedman, J. H. (1987). Exploratory projection pursuit. Journal of the
American Statistical Association, 82, 249–266.

Geman, S., Potter, D. F., & Chi, Z. (2002). Composition systems. Quar-
terly of Applied Mathematics, 60, 707–736.

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour
models. International Journal of Computer Vision, 1, 321–331.

Lades, M., Vorbrggen, J. C., Buhmann, J., Lange, J., von der Malsburg,
C., Wrtz, R. P., & Konen, W. (1993). Distortion invariant object
recognition in the dynamic link architecture. IEEE Transactions
on Computers, 42, 300–311.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86, 2278–2324.

Mallat, S., & Zhang, Z. (1993). Matching pursuit in a time-frequency
dictionary. IEEE Transactions on Signal Processing, 41, 3397–
3415.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natural im-
ages. Nature, 381, 607–609.

Pietra, S. D., Pietra, V. D., & Lafferty, J. (1997). Inducing features of
random fields. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19, 380–393.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2, 1019–1025.

Tu, Z. (2007). Learning generative models via discriminative ap-
proaches. In Proceedings of IEEE conference on computer vision
and pattern recognition.

Ullman, S. (1996). High-level vision: object recognition and visual
cognition. Cambridge: MIT Press.

Viola, P., & Jones, M. J. (2004). Robust real-time face detection. Inter-
national Journal of Computer Vision, 57, 137–154.

Weber, M., Welling, M., & Perona, P. (2000). Towards automatic dis-
covery of object categories. In Proceedings of IEEE conference
on computer vision and pattern recognition.

Wu, Y. N., Shi, Z., Fleming, C., & Zhu, S. C. (2007). Deformable tem-
plate as active basis. In Proceedings of international conference
on computer vision.

Wu, Y. N., Guo, C., & Zhu, S. C. (2008). From information scaling
of natural images to regimes of statistical models. Quarterly of
Applied Mathematics, 66, 81–122.

Yuille, A. L., Hallinan, P. W., & Cohen, D. S. (1992). Feature extraction
from faces using deformable templates. International Journal of
Computer Vision, 8, 99–111.

Zhu, L., Lin, C., Huang, H., Chen, Y., & Yuille, A. (2008). Unsuper-
vised structure learning: hierarchical recursive composition, sus-
picious coincidence and competitive exclusion. In Proceedings of
European conference on computer vision.

Zhu, S. C., & Mumford, D. B. (1997). Prior learning and Gibbs
reaction-diffusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19, 1236–1250.

Zhu, S. C., & Mumford, D. B. (2006). A stochastic grammar of im-
ages. Foundations and Trends in Computer Graphics and Vision,
2, 259–362.

Zhu, S. C., Wu, Y. N., & Mumford, D. B. (1997). Minimax entropy
principle and its applications to texture modeling. Neural Compu-
tation, 9, 1627–1660.

Zhu, S. C., Guo, C. E., Wang, Y. Z., & Xu, Z. J. (2005). What are
textons? International Journal of Computer Vision, 62, 121–143.

	Learning Active Basis Model for Object Detection and Recognition
	Abstract
	Introduction
	Form of Representation
	Scheme of Learning
	Architecture of Inference
	Review of Literature

	Representation, Learning, and Inference
	Gabor Wavelets and Sparse Coding
	Representation: Active Basis Model
	Learning: Shared Sketch Algorithm
	Inference: Sum-Max Maps
	Shared Sketch Algorithm Based on Sum-Max Maps

	Theoretical Underpinning
	Probability Distribution on Image Intensities
	Coupling Matching Pursuit with Projection Pursuit
	Shared Sketch Algorithm
	Parametrization by Exponential Family Model
	Transformation and Normalization
	Adaptive Texture Background
	Active Mean Vector and Active Correlation

	Supervised Learning, Detection, and Classification
	Learning with Given Bounding Boxes
	Detection by Inference Algorithm
	Geometric Transformation of Template
	Classification

	Learning from Non-aligned Images
	Multiple Image Alignment
	Learning Part-templates
	Learning Moving Template from Motion Sequence

	Clustering and Local Learning
	EM and K-mean
	Local Learning of Prototype Templates

	Synthesis by Multi-scale Gabors and DoGs
	Composing Multiple Part-Templates
	Discussion
	Sparsity
	Compositionality
	Invariance

	Reproducibility
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

