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Active basis model is a generative model seeking a common wavelet sparse

coding of images from the same object category, where the images share the

same set of selected wavelet elements, which are allowed to perturb their

locations and orientations to account for shape deformations. This work applies

discriminative methods to adjust λ’s of selected basis elements, including logistic

regression, SVM and AdaBoost. Results on supervised learning show that

discriminative post-processing on active basis model improves its classification

performance in terms of testing AUC. Among the three methods the L2-regularized

logistic regression is the most natural one and performs the best.

 Active Basis – Generative Model

a common template for a set of images:

perturbed to match each image. where

Basis perturbation A set of images share an active basis

Unsupervised Learning

Unknown categories:

Unknown locations and scales:
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Discriminative Adjustment

Adjust λ’s of the template by:

L2-regularized logistic regression:

SVM and AdaBoost:

Over-fitting without regularization.
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Hidden 

variables

Model:

Loss function:

Classification Experiment

Template size = 80. Tuning parameter = 0.01.

Head_shoulder data: training negatives 160, testing negatives 471.

Guitar data: training negatives 160, testing negatives 855.

Intel Core i5 CPU, RAM 4GB, 64bit windows

# pos Learning time (s) LR time (s)

5 0.338 0.010 

10 0.688 0.015 

20 1.444 0.015 

40 2.619 0.014 

80 5.572 0.013 

Tuning Parameter

Small tuning parameters

imply high regularization

guarantee high performances

Future Work

Extend to unsupervised learning – adjust mixture model

Generative learning by active basis

Discriminative adjustment on feature weights
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Intel Core i5 CPU, RAM 4GB, 64bit windows

# pos Learning time (s) LR time (s)

5 0.478 0.011 

10 0.852 0.014 

20 1.749 0.015 

40 2.643 0.015 

80 5.827 0.014 


