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Outline

Active Basis model as a generative model
Supervised and unsupervised learning

e Hidden variables and maximum likelihood
Discriminative adjustment after generative learning

 Logistic regression, SVM and AdaBoost

e Over-fitting and regularization

e Experiment results



Active Basis — Representation

® An active basis consists of a small number of Gabor
wavelet elements at selected locations and orientations
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Common template: B=(B,,i1=1,...,n)
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Active Basis — Learning and Inference

mmm) Template:B=(B,i=1..,n),and A=

Shared sketch algorithm
e Local normalization

e 4 measures the
importance of Bi

Inference: matching the
template at each pixel, and
select the highest score.

(4.1=1..,n)
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Active Basis — Example







General Problem — Unsupervised Learning

Unknown categories — mixture model —
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Active plates — a hierarchical active basis model
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Starting from Supervised Learning

* Data set: head shoulder, 131 positives, 631 negatives.
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Active Basis as a Generative Model

Active basis — Generative model
e Likelihood-based learning and inference

e Discover hidden variables — important for unsupervised
learning.

e NOT focus on classification task (no info from negative
examples.)

Discriminative model
e Not sharp enough to infer hidden variables
e Only focus on classification
e Over-fitting.



Discriminative Adjustment

Adjust As of the template B=(B;:i=1...,n)
Logistic regression — consequence of generative model

1 p
P(y=+1) = . ]
- 1+exp(-y(b+21'x))
or equivalently logit(p) =In (1&) “br)'x
% 6 4 Se 2 4 6 Y°f
; N+P % :
Loss function: > log(l+e™ ) f=(b+17x)

-~ depends on different method



Logistic Regression Vs. Other Methods

4 — Logsitic regression
- SVM

AdaBoost

Loss

n =1 ] -yt

Figure 3: Loss functions for learning: Black: 0-1 loss. Blue: Hinge Loss. Red: Logistic regression.
Green: Exponential loss. (Figure from Pattern Recognition and Machine Learning by Chris Bishop.)



Problem: Over-fitting

head_shoulder; svm from svm-light, logistic regression from matlab.
template size 80, training negatives 160, testing negatives 471.

discriminative adjustments

1 ® active basis
o

® active basis + SVM
® active basis + AdaBoost

== active basis (AB)
092r  |mmm= AB + AdaBoost
----- AB + SVM

AB + logistic regression without regularization
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Regularization for Logsitic Regression

Loss function for

N+P
e Li-regularization [A, +C D log@+e ¢ %)
i=1

N+P
e L2-regularization 1 THae Z log(1+e™” 2% o
2 i1

Corresponding to a Gaussian prior
Regularization without the intercept term
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Experiment Results

head_shoulder; svm from svm-light, L2-logistic regression from liblinear.

template size 80, training negatives 160, testing negatives 471.
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discriminative adjustments

0.98¢
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097

== active basis
== active basis + AdaBoost
----- active basis + SVM
active basis + logistic regression

® active basis

® active basis + SVM
® active basis + AdaBoost

Tuning parameter C=0.01.

Intel Core 15 CPU, RAM 4GB, 64bit windows

20 40 60 80
# training positives

#pos | Learningtime (s) | LR time (s)
5 0.338 0.010
10 0.688 0.015
20 1.444 0.015
40 2.619 0.014
80 5.572 0.013




With or Without Local Normalization

All settings same as the head_shoulder experiment

With Without

discriminative adjustments discriminative adjustments without local normalization
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C=0.0001 (regularization is high) C=0.01

[ ]
Tunin g adjustment by regularized logistic regression: C=0.0001  adjustment by regularized logistic regression: G=0.01
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Experiment Results — More Data

* horses; svm from svm-light, L2-logistic regression from liblinear.

* template size 80, training negatives 160, testing negatives 471.
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== active basis
LI I O] ac‘tive basis + AdaBOOSt
----- active basis + SVM

active basis + logistic regression |

20 40 60 80
# training positives

® active basis
o

® active basis + SVM
@® active basis + AdaBoost

Dimension reduction by active
basis, so speed is fast.

Tuning parameter C=0.01.
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Experiment Results — More Data

guitar; svm from svm-light, L2-logistic regression from liblinear.

template size 80, training negatives 160, testing negatives 855.

0.995 |
0.99}
09851 i

testing AUC

0.965¢
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0.98¢
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discriminative adjustments

== active basis
= ===gctive basis + AdaBoost
----- active basis + SVM

active basis + logistic regression |

20 410 60
# training positives

80

® active basis
o

® active basis + SVM
® active basis + AdaBoost

Dimension reduction by active
basis, so speed is fast.

Tuning parameter C=0.01.
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Future Work

Extend to unsupervised learning — adjust mixture model
e Generative learning by active basis
» Hidden variables

e Discriminative adjustment on feature weights
 Tighten up the parameters,

» Improve classification performances

Adjust active plate model
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