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Outline
 Active Basis model as a generative model

 Supervised and unsupervised learning

 Hidden variables and maximum likelihood

 Discriminative adjustment after generative learning

 Logistic regression, SVM and AdaBoost

 Over-fitting and regularization

 Experiment results



Active Basis – Representation
 An active basis consists of a small number of Gabor 

wavelet elements at selected locations and orientations
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Active Basis – Learning and Inference

 Shared sketch algorithm

 Local normalization

 measures the 
importance of Bi

 Inference: matching the 
template at each pixel, and 
select the highest score.
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Active Basis – Example





General Problem – Unsupervised Learning
 Unknown categories – mixture model

 Unknown locations and scales

 Basis perturbations ………………

 Active plates – a hierarchical active basis model

Hidden variables



Starting from Supervised Learning

 Data set: head_shoulder, 131 positives, 631 negatives.

………………



Active Basis as a Generative Model
 Active basis – Generative model

 Likelihood-based learning and inference

 Discover hidden variables – important for unsupervised 
learning.

 NOT focus on classification task (no info from negative 
examples.)

 Discriminative model

 Not sharp enough to infer hidden variables 

 Only focus on classification

 Over-fitting. 



Discriminative Adjustment
 Adjust λ’s of the template 

 Logistic regression – consequence of generative model

 Loss function:
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Logistic Regression Vs. Other Methods

Loss Logsitic regression
SVM
AdaBoost

y f



Problem: Over-fitting
 head_shoulder; svm from svm-light, logistic regression from matlab.

 template size 80, training negatives 160, testing negatives 471.

 active basis
 active basis + logistic regression
 active basis + SVM
 active basis + AdaBoost



Regularization for Logsitic Regression

 Loss function for

 L1-regularization

 L2-regularization

 Corresponding to a Gaussian prior

 Regularization without the intercept term
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Experiment Results
 head_shoulder; svm from svm-light, L2-logistic regression from liblinear.

 template size 80, training negatives 160, testing negatives 471.

 active basis
 active basis + logistic regression
 active basis + SVM
 active basis + AdaBoost

Tuning parameter C=0.01.

Intel Core i5 CPU, RAM 4GB, 64bit windows

# pos Learning time (s) LR time (s)

5 0.338 0.010 

10 0.688 0.015 

20 1.444 0.015 

40 2.619 0.014 

80 5.572 0.013 



With or Without Local Normalization
 All settings same as the head_shoulder experiment

With Without



Tuning 
Parameter

All settings the same.

Change C, see effect of

L2-regularization



Experiment Results – More Data
 horses; svm from svm-light, L2-logistic regression from liblinear.

 template size 80, training negatives 160, testing negatives 471.

 active basis
 active basis + logistic regression
 active basis + SVM
 active basis + AdaBoost

Dimension reduction by active 
basis, so speed is fast.

Tuning parameter C=0.01.



Experiment Results – More Data
 guitar; svm from svm-light, L2-logistic regression from liblinear.

 template size 80, training negatives 160, testing negatives 855.

 active basis
 active basis + logistic regression
 active basis + SVM
 active basis + AdaBoost

Dimension reduction by active 
basis, so speed is fast.

Tuning parameter C=0.01.



Future Work
 Extend to unsupervised learning – adjust mixture model

 Generative learning by active basis

 Hidden variables

 Discriminative adjustment on feature weights

 Tighten up the parameters,

 Improve classification performances

 Adjust active plate model
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