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ABSTRACT

Sparse coding is a key principle that underlies wavelet rep-
resentation of natural images. In this paper, we explain
that the effort of seeking a common wavelet sparse coding
of images from the same object category leads to an active
basis model, where the images share the same set of selected
wavelet elements, which form a linear basis for represent-
ing the images. The selected wavelet elements are allowed
to perturb their locations and orientations to account for
shape deformations, so that the basis becomes active, and
the active basis serves as a mathematical representation of a
deformable template. We show that a recursive application
of the strategy underlying the active basis model leads to a
shape script model, which is a composition of shape motifs
such as ellipsoids, parallel bars, angles, etc. These shape
motifs are allowed to change their locations, orientations,
scales and aspect ratios, and the shape motifs themselves
are modeled by active bases. Compared to the active basis
model, the shape script model is a sparser representation
and therefore has stronger generalization power. It can also
be considered another layer of sparse coding of the selected
wavelet elements that themselves provide sparse coding of
the image intensities.
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1. INTRODUCTION
Wavelet sparse coding. Wavelet representation has proven

to be immensely useful for image analysis and processing.
The key principle that underlies wavelet representation is
sparsity. That is, an image can typically be represented by
a linear superposition of a small number of wavelet elements
selected from an appropriate dictionary of wavelet elements.
As proposed by Olshausen and Field [12], such a sparse cod-
ing strategy may also be employed by the primary visual
cortex or V1 for representing retina images. The so-called
simple cells in V1 form a dictionary of representational ele-
ments. For each retina image, these simple cells compete to
explain away the image intensities. By enforcing the sparsity
of the representation, Olshausen and Field [12] were able to
learn from natural image patches a dictionary of elongated
wavelet elements tuned to different locations, orientations
and scales. These wavelet elements resemble Gabor wavelets
that have been proposed as mathematical models for simple
V1 cells [3].

Object template. The discovery of Olshausen and Field
[12] naturally begs the question: what is the purpose of
wavelet sparse coding in V1, and what is beyond wavelet
sparse coding? We argue that a simple excise may pro-
vide an answer to this question. Instead of pursuing wavelet
sparse coding for generic natural images, we may consider
what happens if we pursue a wavelet sparse coding for the
image patches of visual objects from the same category, such
as images of horses, or images of birds, etc. To start with,
we may assume that the objects in these images are roughly
aligned, so that they appear at roughly the same locations,
scales and poses in these images. Then we may pursue a
common wavelet sparse coding simultaneously for these im-
ages, so that these images share the same set of wavelet
elements. These wavelet elements form a common template
of the objects, where each element is like a “stroke” that
sketches the template. Mathematically, these wavelet ele-
ments form a linear basis for generating the images.

Active basis. In order to account for shape deformations of
objects, we may allow the wavelet elements to perturb their
locations and orientations before they are linear combined to
code each individual image. With such perturbations, the
linear basis becomes what we call the active basis, which
serves as a mathematical representation of deformable tem-
plate [19]. The active basis template can be learned from a
small number of training images. The learned template can
then be used to recognize similar objects from testing im-
ages by template matching. In both template learning and
template matching, there is a local maximization step that



estimates the optimal perturbation of each selected wavelet
element to represent each training or testing image. Such
local maximum pooling has been proposed by Riesenhuber
and Poggio [13] as the function of the complex cells in V1. In
the context of the active basis model, such local maximum
pooling serves to deform the active basis template to match
the image. The computation of template matching can be
implemented by a cortex-like structure of sum-max maps.
Such a structure is a variation of the structure proposed by
Riesenhuber and Poggio [13].

Shape script. By a recursion of the strategy that under-
lies the active basis model, we can further generalize it to
what we call a shape script model. A shape script model is a
linear composition of a small number of what we call shape
motifs selected from a dictionary of motifs. The shape mo-
tifs are simple geometric shapes such as ellipsoids, parallel
bars, angles, etc. In the shape script model, we may al-
low the constituent shape motifs to change their locations,
orientations, sales, and aspect ratios. Each shape motif is
modeled by an active basis, which consists of a small number
of Gabor wavelet elements that can change their locations
and orientations. Such a shape script model is a highly sym-
bolic and sparse representation of object shapes. We may
allow big changes in the parameters of the constituent shape
motifs, so that the shape script model has stronger gener-
alization power than the active basis model. The matching
of a shape script template to a testing image can be ac-
complished by a cortex-like structure of recursive sum-max
maps, which again is a variation of the structure proposed
by Riesenhuber and Poggio [13].

Another layer of sparse coding. The shape script model
can be considered another layer of sparse coding on top of
wavelet sparse coding. The wavelet sparse coding represents
an image in terms of a small number of wavelet elements at
different locations and orientation. The shape script model
further codes these locations and orientations by a small
number of shape motifs of elementary geometric shapes. The
shape motifs are represented by active bases, where the ac-
tivities code the residuals in the locations and orientations.
In an analogy to language, if the wavelet elements are letters,
then the shape motifs are words.

Relationship with our previous papers. This article is a
follow-up to our recent papers [14] [18]. It reports new ex-
perimental results on active basis model. The part on the
shape script model with shape motifs is new.

2. FROM WAVELET SPARSE CODING TO

ACTIVE BASIS

2.1 Wavelet sparse coding
Linear additive model. Let (I(x), x = (x1, x2) ∈ D) be an

image defined on a rectangular lattice or domain D, where
x = (x1, x2) indexes the pixels of I. The linear additive
model is of the following form:

I(x) =
n

X

i=1

ciBi(x) + U(x), (1)

where (Bi(x), i = 1, ..., n) are a small number of basis ele-
ments selected from a dictionary of such elements, (ci, i =
1, ..., n) are the coefficients, and U(x) is the unexplained
residual image.

Dictionary of basis elements. The basis elements (Bi, i =
1, ..., n) are selected from a large dictionary of basis elements.
In our work, the basis elements are localized, elongated, and
oriented Gabor wavelets [3].

The Gabor wavelets are translated, rotated, and dilated
versions of the following function: G(x1, x2) ∝ exp{−[(x1/σ1)

2+
(x2/σ2)

2]/2}eix1 , which is sine-cosine wave multiplied by
a Gaussian function. This Gaussian function is elongated
along the x2-axis, with σ2 > σ1, and the sine-cosine wave
propagates along the shorter x1-axis. We truncate the func-
tion to make it locally supported on a finite rectangular
range, so that it has a well defined length and width, and
the function is 0 outside this rectangular range.

We can translate, rotate and dilate G(x1, x2) to obtain
a general form of a Gabor wavelet, Bx1,x2,s,α, located at
x = (x1, x2) and tuned to orientation α and scale s. Bx,s,α

= (Bx,s,α,0, Bx,s,α,1), where Bx,s,α,0 is the even-symmetric
Gabor cosine component, and Bx,s,α,1 is the odd-symmetric
Gabor sine component. We always use Gabor wavelets as
pairs of cosine and sine components. We normalize both the
Gabor sine and cosine components to have zero mean and
unit ℓ2 norm.

For an image I(x), with x ∈ D, we can project it onto
a Gabor wavelet Bx,s,α,η, η = 0, 1. The projection of I
onto Bx,s,α,η, or the Gabor filter response at (x, s, α), is
〈I, Bx,s,α,η〉 =

P

x′ I(x
′)Bx,s,α,η(x′). We write 〈I, Bx,s,α〉 =

(〈I, Bx,s,α,0〉, 〈I, Bx,s,α,1〉). The local energy is |〈I, Bx,s,α〉|
2 =

〈I, Bx,s,α,0〉
2 + 〈I, Bx,s,α,1〉

2.
The dictionary of Gabor wavelets is Ω = {Bx,s,α,∀(x, s, α)}.

We can discretize the orientation so that α ∈ {oπ/O, o =
0, ..., O − 1}, that is, O equally spaced orientations (e.g., O
is 15 or 16 in our experiments).

Over-completeness and sparsity. The dictionary Ω is called
“over-complete” because the number of wavelet elements in
Ω is larger than the number of pixels in the image domain,
since at each pixel x, there can be many wavelet elements
Bx,s,α tuned to different orientations α and scales s.

For an image (I(x), x ∈ D) we seek to represent it by

I(x) =
n

X

i=1

ciBxi,s,αi
(x) + U(x), (2)

where, corresponding to Equation (1), Bi(x) = Bxi,s,αi
(x),

and (Bxi,s,αi
, i = 1, ..., n) ⊂ Ω is a set of Gabor wavelet el-

ements selected from the dictionary Ω. In the experiments
described in this paper, we mostly fix the scale parame-
ter s (e.g., the length of the Gabor wavelets is 17 pixels).
Even though each Bxi,s,αi

has the same size as the image I,
Bxi,s,αi

is non-zero only on a small rectangular support, so
we may consider each Bxi,s,αi

to be a“stroke”for“sketching”
the image I. Thus the linear additive model (2) translates
an image with a large number (e.g., 100×100) of pixels into
a sketch of a small number (e.g., 50) of strokes, and these
strokes capture geometric information in image I.

Variable selection. The selection of Bxi,s,αi
from the over-

complete dictionary Ω and the estimation of ci is the famil-
iar variable selection problem in linear regression. The set of
wavelet elements B = (Bxi,s,αi

, i = 1, ..., n) can be selected
from Ω by the matching pursuit algorithm [11], which seeks
to minimize ‖I−

Pn
i=1 ciBxi,s,αi

‖2 by a greedy scheme.

0 Initialize i← 0, U ← I.

1 Let i← i + 1. Let (xi, αi) = arg maxx,α |〈U, Bx,s,α〉|
2.



2 Let ci = 〈U,Bxi,s,αi
〉. Update U ← U − ciBxi,s,αi

.

3 Stop if i = n, else go back to 1.

Currently we hand pick n. n can be selected by principled
criteria.

Primary visual cortex. Why do we use a dictionary of
localized, elongated and oriented wavelet elements such as
Gabor wavelets as representational units? The answer is
that they give sparse coding of natural images, which con-
tain edges, and edges can be efficiently represented by such
wavelets. A formal mathematical justification is given by
the work of Donoho and Candes (1999) on curvelets [2]. A
statistical justification is given Olshausen and Field (1996)
[12]. They collect a large sample of image patches of natu-
ral scenes, and then learn the dictionary of basis elements
by minimizing a lasso-like criterion [15] over both the coef-
ficients and the basis elements. The learned basis elements
closely resemble the Gabor wavelets. Olshausen and Field
(1996) propose that sparse coding in the form of the model
(2) is used by the primary visual cortex, where the basis el-
ements {Bx,s,α} corresponds to the simple cells in primary
visual cortex.

The question is, what is the purpose of sparse coding and
what is beyond model (2)?

2.2 Active basis model
A simple exercise may offer an answer to the above ques-

tion. Suppose we want to represent image patches of objects
of the same category, and for simplicity let us assume for the
present that these image patches are defined on the same lat-
tice, and the objects in these images appear at roughly the
same location, scale, and pose. See, for instance, the three
deer images in Figure (1.b). Then let us consider what hap-
pens if we pursue a sparse coding for these images simulta-
neously.

Multiple images sharing common basis elements. To fix
notation, let {Im, m = 1, ..., M} be the set of training im-
ages defined on a common lattice D. Since the objects in
{Im} are from the same category, we may want to rep-
resent them by Im =

Pn
i=1 cm,iBxi,s,αi

+ Um, where the
multiple images {Im} share the same set of basis elements
B = (Bxi,s,αi

, i = 1, ..., n). This B can be considered a com-
mon template for the training images. Because there can be
shape deformations in the objects, we may allow the basis el-
ements in B to perturb their locations and orientations. We
call such B an active basis, which is a mathematical model
for a deformable template [19]. The model then becomes

Im =
n

X

i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i
+ Um, m = 1, ..., M. (3)

For each image Im, the wavelet element Bxi,s,αi
is perturbed

to Bxi+∆xm,i,s,αi+∆αm,i
, where ∆xm,i is the perturbation

in location, and ∆αm,i is the perturbation in orientation.
Bm = (Bxi+∆xm,i,s,αi+∆αm,i

, i = 1, ..., n) is the deformed
template for representing image Im.

Sparse coding for generalization. We call (∆xm,i, ∆αm,i, i =
1, ..., n) the activities or perturbations of the basis elements
for image m. The sparse coding in terms of Gabor wavelets
enables us to generalize to similar shapes by perturbing the
parameters of the Gabor wavelets, i.e., locations, orienta-

tions, and coefficients. Let

A(α) =
˘

(∆x = (d cos α, d sin α), ∆α) :

d ∈ [−b1, b1], ∆α ∈ [−b2, b2]
¯

be the set of all possible activities for a basis element tuned
to orientation α (e.g., b1 = 3 pixels, and b2 = π/15). Figure
(1.a) illustrates an active basis template of a deer, where
each basis element is illustrated by an elongated ellipsoid.

Density substitution. To simplify notation, let xm,i = xi+
∆xm,i, and αm,i = αi+∆αm,i, and Bm,i = Bxm,i,s,αm,i

. We
can write the deformed template Bm = (Bm,i, i = 1, ..., n).
For simplicity, we assume that the basis elements in the de-
formed template (Bm,i, i = 1, ..., n) are orthogonal to each
other (in practice, we allow small overlap). This is often the
case for the linear representation produced by the match-
ing pursuit algorithm. Then cm,i = 〈Im, Bm,i〉, and Um

lies in the subspace that is orthogonal to Bm. Let Cm =
(cm,i, i = 1, ..., n), and with slight abuse of notation, we also
use Um to denote the coordinate of I in the subspace orthog-
onal to Bm. Then p(Im | Bm) = p(Cm)p(Um | Cm), where
the linear mapping between Im and (Cm, Um) is orthogo-
nal. p(Cm) can be estimated from the training images. To
model p(Um | Cm), we introduce a reference model q(I), so
that q(Im) = q(Cm)q(Um | Cm) under the same linear map-
ping. We assume that p(Um | Cm) = q(Um | Cm). Then
p(Im | Bm) = q(Im)p(Cm)/q(Cm). This is a density substi-
tution scheme that has been used by Friedman (1987) [6] for
projection pursuit density estimation. Such a scheme also
works if Cm is non-orthogonal, or non-linear, or a discrete
reduction of Im [18].

We assume a q(I) that reproduces the marginal distribu-
tion of c = 〈I, Bx,s,α〉 in natural images, while maintain-
ing the independence of (cm,i, i = 1, ..., n) for orthogonal
Bm, like the Gaussian white noise model. Let q(c) be this
marginal distribution, which can be pooled from natural im-
ages, such as the two images of rural and urban scenes in
Figure (1). Under q(c), r = |c|2 has a very long tail, reflect-
ing the fact that there are strong edges in natural images or
residual background Um. We then further assume that given
Bm, (cm,i, i = 1, ..., n) are also independent under p(Cm).
This gives us the following model:

p(Im | Bm) = q(Im)
n

Y

i=1

pi(cm,i)

q(cm,i)
. (4)

Figure (1.b) illustrates this idea, where pi and q in this fig-
ure are the distributions of r = |c|2 under pi(c) and q(c)
respectively.

Exponential tilting. We further parametrize pi(c) to be
the following exponential family distribution:

p(c; λ) =
1

Z(λ)
exp{λh(|c|2)}q(c), (5)

where λ > 0 is the parameter. Let r = |c|2,

Z(λ) =

Z

exp{λh(r)}q(c)dc = Eq [exp{λh(r)}]

is the normalizing constant, and µ(λ) = Eλ[h(r)] is the mean
parameter. h(r) is a monotone increasing function. We
assume pi(c) = p(c; λi).



(a) (b)

Figure 1: (a) An active basis template B = (Bxi,s,αi
, i = 1, ..., n) of a deer, where each Gabor wavelet element

Bxi,s,αi
is illustrated by an elongated ellipsoid. An element Bxi,s,αi

(black ellipsoid) can slightly shift its
location and orientation and change to Bxi+∆xm,i,s,αi+∆αm,i

(blue ellipsoids) for coding image Im. (b) The
elements of the active basis B are shared by all the training images {Im, m = 1, ..., M} of deer, subject to local
perturbations (∆xm,i, ∆αm,i, i = 1, ..., n) that deform the active basis template B. The elements are selected
in the order of the Kullback-Leibler divergence between the foreground distribution pi of the Gabor filter
responses pooled from training images of deer, and the background distribution q pooled from the two natural
images of rural and urban scenes.

Sufficient statistics. We use the following function for the
sufficient statistics h(r):

h(r) = ξ(
2

1 + e−2r/ξ
− 1). (6)

h(r) behaves like h(r) = r for small r, but h(r) → ξ (e.g.,
ξ = 6) as r → ∞, i.e., h(r) saturates at ξ. See [18] for a
statistical justification of the saturation effect.

Local normalization. For each filter response |〈Im, Bx,s,α〉|
2,

we need to normalize it by dividing it by the average re-
sponse within a local window.

2.3 Learning and inference algorithms
Learning the active basis template from training images.

The learning algorithm is essentially a combination of match-
ing pursuit [11] and projection pursuit [6]. We want to pur-
sue the common template B and deform it to Bm for each
Im, so that there is a big contrast between the distribution
of {cm,i, m = 1, ..., M} and the marginal distribution q(c).
This contrast, or more specifically, the Kullback-Leibler di-
vergence, is monotone in

PM
m=1 h(|cm,i|

2), which serves as
the pursuit index. This index essentially counts the number
of edges sketched by Bi.

0 Initialize i← 0. For m = 1, ..., M , initialize Rm(x,α)←
〈Im, Bx,s,α〉 for all (x, α).

1 i← i + 1. Select

(xi, αi) = arg max
x,α

M
X

m=1

max
(∆x,∆α)∈A(α)

h(|Rm(x + ∆x, α + ∆α)|2).

2 For m = 1, ..., M , retrieve

(∆xm,i, ∆αm,i) = arg max
(∆x,∆α)∈A(αi)

|Rm(xi + ∆x, αi + ∆α)|2.

Let cm,i ← Rm(xi + ∆xm,i, αi + ∆αm,i), and update
Rm(x,α)← 0 if

|〈Bx,s,α, Bxi+∆xm,i,s,αi+∆αm,i
〉|2 > ǫ.

Then estimate λ̂i = µ−1(
PM

m=1 h(|cm,i|
2)/M).

3 Stop if i = n, else go back to 1.

See Figure (1) for illustration. We allow small overlap or
correlation between (Bm,i, i = 1, ..., n) (e.g., ǫ = .1). The
maximum likelihood estimation of λi only involves translat-
ing the mean parameter back to the natural parameter by
µ−1().

Figure (2) illustrates the results of the learning algorithm.
Figure (3) illustrates the learning process.

Matching the active basis template to testing images. Af-
ter learning the template B = (Bxi,s,αi

, i = 1, ..., n) and
estimating Λ = (λi, i = 1, ..., n), we can use the learned de-
formable template to find the object in a testing image I, by
fitting the following model:

I =

n
X

i=1

ciBx+xi+∆xi,s,αi+∆αi
+ U,

where the location of the object, x, is unknown. The max-
imum likelihood estimation of the location of the object is
accomplished by the following inference algorithm:



Figure 2: Learning the active basis model. Each Gabor wavelet element is illustrated by a bar with the same
location, orientation, and length as the element. The first row displays {Im, m = 1, ..., M = 9}. The second
row: the first plot is the active basis template B = (Bi = Bxi,s,αi

, i = 1, ..., n = 50). The rest of the plots are the
deformed templates Bm = (Bm,i = Bxi+∆xm,i,s,αi+∆αm,i

). The third row: the same as the second row, except
that s is about twice as large, and n = 14. The last row displays the linear reconstruction Isyn

m =
Pn

i=1 cm,iBm,i,
where n = 100, and (Bm,i, i = 1, ..., n) contains Gabor wavelet elements and difference of Gaussian elements at
multiple scales.

Figure 3: The learning algorithm sequentially selects the elements of the active basis B = (Bi, i = 1, ..., n).
The first row displays the learned template at the smaller scale with n = 5, 10, 15, 20, 25, 30, 40, 50. The second
row: n = 1, 2, 4, 6, 8, 10, 12, 14 at the larger scale.

1 For every pixel x, compute the log-likelihood ratio
(foreground p versus background q) of x,

l(x) =
n

X

i=1

[λi max
(∆x,∆α)∈A(αi)

h(|〈I, Bx+xi+∆x,s,αi+∆α〉|
2)

− log Z(λi)]. (7)

2 Find the MLE of x: x̂ = arg maxx l(x). For i = 1, ..., n,
retrieve

(∆xi, ∆αi) = arg max
(∆x,∆α)∈A(αi)

|〈I, Bx̂+xi+∆x,s,αi+∆α〉|
2.

3 Return the location x̂, and the translated and deformed
template (Bx̂+xi+∆xi,s,αi+∆αi

, i = 1, ..., n).

Figure (4) shows two examples of inference. In each ex-
ample, we search over multiple resolutions of the testing
image because the scale of the object in the testing image is
unknown. The resolution that achieves the maximum log-
likelihood score is selected.

Cortex-like structure. The computation of l(x) in Step 1
of the above inference algorithm can be accomplished by the
following three steps:

1 For all (x, α), compute

SUM1(x,α) = h(|〈I, Bx,s,α〉|
2) = h(|

X

x′

I(x′)Bx,s,α(x′)|2).

2 For all (x, α), compute

MAX1(x, α) = max
(∆x,∆α)∈A(α)

SUM1(x + ∆x,α + ∆α).

3 For all x, compute

SUM2(x) =
n

X

i=1

[λiMAX1(x + xi, αi)− log Z(λi)].

Then l(x) = [I, Bx] = SUM2(x).

These three steps can be implemented by a cortex-like struc-
ture, which computes the SUM1 maps, MAX1 maps, and



Figure 4: Inference by template matching. In each block, the left is the testing image I, and the right is the
translated and deformed template (Bx̂+xi+∆xi,s,αi+∆αi

, i = 1, ..., n).

Figure 5: Sum-max maps. The SUM1 maps are obtained by convolving the input image with Gabor filters at
all the locations and orientations. The ellipsoids in the SUM1 maps illustrate the local filtering or summation
operation. The MAX1 maps are obtained by applying a local maximization operator to the SUM1 maps. The
arrows in the MAX1 maps illustrate the perturbations over which the local maximization is taken. The SUM2
map is computed by a summation operator applied to the MAX1 maps, where the summation is over the
elements of the active basis, and this summation operator can be interpreted as a shape filter.

SUM2 maps consecutively. See Figure (5). Step 1 corre-
sponds to the simple cells of the primary visual cortex or
V1 [12]. Step 2 corresponds to the complex cells of V1 [13].
Step 3 is a consequence of our active basis model. One may
hypothesize that it corresponds to cells beyond V1.

The log-likelihood ratio l(x) is the SUM2 score. Writ-
ing Bx = (Bx+xi+∆xi,s,αi+∆αi

, i = 1, ..., n), we may con-
sider the SUM2 map as a result of convolving I with the
deformable “shape filter” Bx so that SUM2(x) = [I, Bx].

2.4 Experiments on learning active basis tem-
plates

Supervised learning. The active basis model can be learned
from roughly aligned images defined on a common bounding
box, where the objects appear at roughly the same location,
scale, and pose in the images. Figure (6) displays the learned
templates from various training sets.

One can also train the model discriminatively using the
adaboost method [7] [17] with weak classifiers of the form

MAX1m(x,α)1/2 > c, where the threshold c is to be selected
from a grid of 50 equally spaced values at each step. Fig-
ure (6) displays the adaboost templates alongside the active
basis templates. For each experiment, both templates are

learned from the same positive training set with the same
number of elements and under the same parameter setting.

The learning of active basis template does not require
negative training images, except a one-dimensional marginal
histogram pooled from two background images. It is there-
fore faster than adaboost. The 1000+ negative image patches
for training adaboost templates are randomly cropped from
more than 200 large natural images at multiple resolutions.
The adaboost learning is initialized from balanced weights,
i.e., the total weights for positive images and negative im-
ages are both 1/2.

Fitting mixture model by EM algorithm. The training set
may be a mixture of different categories or poses. We can
fit a mixture of active basis models by the EM algorithm
[4], where the M-step learns different active basis templates
for different clusters based on the E-step soft classification.
Figures (7) and (8) display some examples of EM clustering,
initialized by random clustering.

Mixture model and sparse coding. The mixture model may
be considered an extreme of sparse coding, where each image
patch is coded by a single template selected from a dictio-
nary of multiple templates.

Learning with unknown locations and scales. It is possible
to learn the active basis template from non-aligned images



Figure 6: Active basis template (left) and adaboost template (right). Number of elements, number of
positives, and number of negatives: Car: 60, 37, 1065. Fashion: 50, 15, 1147. Deer: 50, 9, 1138. Horse: 40,
280, 1511. Cat: 60, 89, 1493. Wolf: 60, 53, 1493. Butterfly: 50, 223, 1004. Cow: 40, 12, 1241.

Figure 7: Fitting mixture model by EM. Number of images: Cat-cattle-wolf-bear: 320. Horse: 188. Fashion:
57.

Figure 8: EM mixture. Top row is overall clustering: fitting a mixture model to 500 MNIST [10] images,
with the number of clusters set at 10. Bottom row is within digit clustering: fitting a mixture model to 100
or 200 MNIST images from each digit category. Number of clusters is set at 2.

where the objects appear at unknown locations and scales.
Figure (9) displays some examples. We initialize the algo-
rithm by learning a template from the first training image.
Then we detect the objects in the other images using the
learned template. After that we re-learn the template for
the detected objects. We iterate the algorithm for a few
iterations and then output the final template and the detec-
tion results.

3. FROMACTIVEBASIS TO SHAPE SCRIPT

3.1 Shape script and shape motifs
What is beyond wavelets? The wavelet representations

take advantage of the fact that natural images or images of
geometric shapes mostly contain edges at different scales.
The question is: What is beyond these elements? In an
analogy to language, if these elements are “letters,” then
what are the “words” so that these “words” lead to even
sparser representations?

Artists’ intuition. The question may have already been
answered by artists. Figure (10) shows three examples taken

from two recent books on teaching children how to draw an-
imals and other objects by sketching a very small number of
elementary geometric shapes [8] [16]. In particular, the first
row displays the steps of drawing a horse using an ellipsoid
for the body and parallel bars for the legs and so on. The sec-
ond row displays the drawing of deer and pelican, where for
each animal, the first plot illustrates a sparse representation
based on elementary shapes. The artists’ intuition is essen-
tially a highly sparse and symbolic representation of animal
shapes. We call such a representation the “shape script,” a
term coined by Dubinsky and Zhu [5]. A shape script is a
highly sparse and symbolic representation that can be use-
ful for learning and inference of object patterns because it
captures essential dimensions of the object shapes.

Active basis model for elementary shapes. The shape script
can still be described in the linear additive framework, ex-
cept that the elements are not Gabor wavelets, but elemen-
tary shapes, such as ellipsoids, angles, parallel bars, etc.
These elementary shapes can be described by active basis
templates. We call such elementary active bases “shape mo-
tifs,” which are compositions of Gabor wavelet elements.



Figure 9: Learning from non-aligned images. Number of training images (3 shown here for each example): Bike: 7.

Cat: 9. Lion: 13. Bear: 7.

Figure 10: Drawing animals using a very small number of elementary geometric shapes [8][16].

Shape motifs with hyper-parameters. An active basis model
can be written in the following form

Im =
n

X

i=1

cm,iBxm,i,s,αm,i
+ Um = CmBm + Um,

where Bm is a deformed template that is composed of Gabor
wavelet elements. By a recursion of the above model, we
propose the following model that is a composition of K shape
motifs which are themselves active basis models:

Im =
K

X

k=1

Cm,kB
(tk)
xm,k,sm,k,ρm,k,αm,k

+ Um, (8)

where tk is the type of the k-th shape motif (e.g., ellipsoid,
angle, parallel bars, etc.), which is endowed with hyper-
parameters, such as the overall location x, scale s, aspect
ratio ρ and orientation α. Similar to the active basis, we may
allow perturbations of these hyper-parameters, and the per-
turbations can be quite large because the sizes of the shape
motifs are much larger than the Gabor wavelets. Such per-
turbations cause global deformations of the shape motifs, so
that the model is more capable of modeling large deforma-
tions and articulations of object shapes. In addition, on top

of the hyper-parameters, we also allow the perturbations of
the location, scale, and orientation parameters of the Gabor
elements that belong to each shape motif. This causes the
local deformations of the shape motifs. So model (9) is a
recursive compositional model [9] [21].

3.2 Object recognition by shape script
This subsection illustrates the idea of shape script by a

simple experiment of detecting egrets from testing images.
We design the shape script template by following the artists’
intuition illustrated in Figure (10). The detection process
is illustrated in Figure (11) where the shape script template
consists of four shape motifs: one ellipsoid for the body, two
parallel bars for the neck, and one angle for the beak.

In the current implementation, we assume the following
model for each testing image I:

I =
K

X

k=1

CkB
(tk)
x+xk+∆xk,sk+∆sk,ρk+∆ρk,αk+∆αk

+ U,

where K = 4 is the number of shape motifs, tk ∈ { el-
lipsoid, parallel bars, angle } indexes the type of motif k,
(xk, sk, ρk, αk) are the location, scale, aspect ratio, and ori-



Figure 11: Recursive sum-max maps. The SUM2 maps score the matching of the shape motifs. The MAX2
maps are obtained by local maximum pooling of the SUM2 maps. The SUM3 map scores the matching of the
shape script template.

entation of the k-th shape motif. In this article, we design
the shape script template by giving the values of the param-
eters of the four shape motifs. Given the shape script, we
will estimate x, the location of the object in the testing im-
age I, as well as the deformation of the template, i.e., (∆xk,
∆sk, ∆ρk, ∆αk, k = 1, ..., K).

The log-likelihood of x is computed by

l(x) =

K
X

k=1

max
(∆x,∆s,∆ρ,∆α)

[I,B
(tk)
x+xk+∆x,sk+∆s,ρk+∆ρ,αk+∆α], (9)

where [I, B
(tk)
x+xk+∆x,sk+∆s,ρk+∆ρ,αk+∆α] is computed in the

same way as in Equation (7).
Cortex-like structure. Equation (9) can be implemented

by a recursive structure of sum-max maps illustrated in Fig-
ure (11), which is a recursion of the sum-max maps in Figure
(5). In this recursive cortex-like structure, the SUM2 maps
score the matching of the shape motifs. The MAX2 maps
compute the local maxima of the SUM2 maps. The local
maximization computation estimates the shape deformation
(∆xk, ∆sk, ∆ρk, ∆αk, k = 1, ..., K). The SUM3 map scores
the overall matching of the shape script template.

One may hypothesize that the operators for computing
the SUM2 maps of the motifs may correspond to neurons
beyond V1. These neurons compete to explain away the
retina images by the shape motifs.

Bottom-up and top-down. The cortex-like structures in
both Figures (11) and (5) are as top-down as they are bottom-
up. The bottom-up computation only serves to detect the
location of the object. After the detection, a top-down pro-
cess retrieves the locations, orientations, scales, and aspect
ratios of the shape motifs, and then retrieves the locations
and orientations of the Gabor wavelet elements of the shape
motifs.

Figure (12) displays some examples of detecting egrets by
the designed shape script template using the recursive sum-
max maps. For each testing image, we superpose the de-
formed template obtained by the aforementioned top-down
retrieval process, where the deformation involves changing
the parameters of the shape motifs as well as the parameters
of the Gabor wavelet elements of the shape motifs. Because
we allow big changes in the parameters of the shape motifs,

the shape script model can account for large deformations,
articulations, and pose changes. The SUM3 scores of the
detected objects are generally higher than those of natural
background images.

The current experiment only serves as a proof of concept.
There is still a long way to go to make the model and algo-
rithm robust. For one thing, the current model is a “dislo-
cated” one, where the shape motifs can shift freely. We may
need to incorporate “joints” into the model.

The recursive sum-max maps was proposed by Wu, et al.
[18] as a variation of the cortex-like structure of Riesenhuber
and Poggio [13]. The sum-max maps were also used by Bai,
et al. [1] for matching active skeleton template.

We may learn the shape script model from training images
using a learning algorithm similar to the one that learns the
active basis model. We leave this to future investigation. See
also Zhu, et al. [20] on a method for learning hierarchical
recursive template.

4. DISCUSSION
The Gabor wavelets provide sparse coding of the image

data Im =
Pn

i=1 cm,iBxm,i,s,αm,i
+ Um, with residual Um.

The locations and orientations (xm,i, αm,i, i = 1, ..., n) can
be considered the “shape data,” which can be further coded.
The active basis model codes the shape data by (xm,i, αm,i,
i = 1, ..., n)=(xi, αi, i = 1, ..., n) + (∆xm,i, ∆αm,i, i =
1, ..., n), where (xi, αi, i = 1, ..., n) can be considered “mean
shape,” and (∆xm,i, ∆αm,i, i = 1, ..., n) is the residual in
coding the shape data, just like Um is the residual in coding
the image data. So the active basis model is a natural tool
if we want to code the shape data, because the activities in
the active basis model account for the residual in coding the
shape data.

The shape script model is to code the shape data by a
small number of shape motifs, where each shape motif is an
active basis model. So the shape script model is another
layer of sparse coding. It would be interesting to learn the
shape motifs from natural images or images of specific cat-
egories, either by sparse coding or by mixture modeling.

It is worth noting that both the active basis model and
the shape script model are built on intensity images directly.
There is no need for any pre-processing steps such as edge



Figure 12: Detecting the objects in the testing images using the designed shape script template.

detection or image segmentation to obtain the shape data
in the forms of contours or silhouettes. The shape data is
obtained simultaneously when we fit the active basis model
or the shape script model to the raw intensity image data.
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