
Learning Active Basis Model for Object
Detection and Recognition

Ying Nian Wu1, Zhangzhang Si1, Haifeng Gong1,2, and Song-Chun Zhu1,2

1 Department of Statistics, University of California, Los Angeles
2 Lotus Hill Research Institute, Ezhou, China
{ywu, zzsi, hfgong, sczhu}@stat.ucla.edu

Revised April 1, 2009

Abstract

This article proposes an active basis model, a shared sketch algorithm, and a compu-

tational architecture of sum-max maps for representing, learning, and recognizing de-

formable templates. In our generative model, a deformable template is in the form of

an active basis, which consists of a small number of Gabor wavelet elements at selected

locations and orientations. These elements are allowed to slightly perturb their locations

and orientations before they are linearly combined to generate the observed image. The

active basis model, in particular, the locations and the orientations of the basis elements,

can be learned from training images by the shared sketch algorithm. The algorithm se-

lects the elements of the active basis sequentially from a dictionary of Gabor wavelets.

When an element is selected at each step, the element is shared by all the training images,

and the element is perturbed to encode or sketch a nearby edge segment in each training

image. The recognition of the deformable template from an image can be accomplished

by a computational architecture that alternates the sum maps and the max maps. The

computation of the max maps deforms the active basis to match the image data, and

the computation of the sum maps scores the template matching by the log-likelihood of

the deformed active basis.

Keywords: Deformable template; Generative model; Shared sketch algorithm; Sum maps and
max maps; Wavelet sparse coding.

Reproducibility page: www.stat.ucla.edu/∼ywu/ActiveBasis.html

1

1 Introduction

Deformable template is an important element in object recognition [17, 22, 11, 2, 19, 1]. In this
article, we propose a generative model, a model-based algorithm, and a computational architecture
for representing, learning and recognizing deformable templates.

1.1 Form of representation

Figure 1: Active basis. Each basis element is illustrated by a thin ellipsoid at a certain location and
orientation. The upper half shows the perturbation of one basis element. By shifting its location
or orientation or both within a limited range, the basis element (illustrated by a black ellipsoid)
can change to other Gabor wavelet elements (illustrated by the blue ellipsoids).

We call our model the active basis model. An active basis consists of a small number of Gabor
wavelet elements at selected locations and orientations. These elements are allowed to slightly
perturb their locations and orientations before they are linearly combined to generate the observed
image. Figure (1) illustrates the basic idea. The lower half of Figure (1) shows an active basis, where
each element is illustrated by a thin ellipsoid at a certain position and with a certain orientation.
The upper half of Figure (1) illustrates the perturbation of one basis element. Intuitively, each
Gabor wavelet element can be considered a “stroke.” The template is formed by a composition of
a number of strokes. These strokes can be slightly perturbed, so that the template is deformable.

Figure (2) shows a real example. It displays 7 images of cars at the same scale and in the
same pose. These images are defined on a common image lattice, which is the bounding box of the
cars. These images are represented by an active basis consisting of 60 Gabor wavelet elements, as
displayed in the first block of Figure (2). Each wavelet element is represented symbolically by a bar
at the same location and with the same length and orientation as the wavelet element. The length
of each element is about 1/10 of the length of the image patch. These elements do not have much
overlap and are well connected. They form a common template or an average sketch of the training
image patches. The 60 elements of the active basis in the first block of Figure (2) are allowed to
locally change their locations and orientations to code each observed image, as illustrated by the

2

Figure 2: Active basis formed by 60 Gabor wavelet elements. The first block displays the 60
elements, where each element is represented by a bar. For each of the other 7 blocks, the left plot
is the observed image, and the right plot displays the 60 Gabor wavelet elements resulting from
locally shifting the 60 elements in the first block to fit the corresponding observed image.

remaining 7 blocks of Figure (2). Within each block, the left plot displays the observed car image,
and the right plot displays the 60 Gabor wavelet elements that are actually used for encoding the
corresponding observed image. They form the deformed active basis that sketches the observed
image.

1.2 Scheme of learning

The active basis, in particular, the locations and the orientations of the basis elements, can be
learned from training image patches by the shared sketch algorithm. The algorithm selects the
elements of the active basis sequentially from a dictionary. The dictionary consists of Gabor
wavelets at a dense collection of locations and orientations. Figure (3) illustrates the selection of
three elements by learning from a sample of training images of cars. When an element is selected,
the element is shared by all the training images in the sense that a perturbed version of this
element is added to improve the encoding of each image. Specifically, the element is perturbed to
a location and orientation that achieves the local maximum response within a small neighborhood
of the selected element, that is, the perturbed version of the selected element seeks to sketch a
nearby edge segment in each training image. For instance, when the green element is selected, it is
attracted to the nearby edge in each training image. The same is true for the red element and the
blue element.

For each element, a distribution of filter responses is pooled over all the training images at
the perturbed locations and orientations. The elements are selected in an order according to
the Kullback-Leibler divergence between the pooled distribution (solid curve) and a background
distribution (dotted curve). The background distribution is pooled over natural images. With
proper parametrization, the Kullback-Leibler divergence is equivalent to a pursuit index that drives
the selection of the elements. This index takes the form of the sum of the transformed filtered

3

Figure 3: Shared sketch algorithm. A selected element (colored ellipsoid) is shared by all the train-
ing images. For each image, a perturbed version of the element seeks to sketch a local edge segment
near the element by a local maximization operation. The elements of the active basis are selected
sequentially according to the Kullback-Leibler divergence between the pooled distribution (colored
solid curve) of filter responses and the background distribution (black dotted curve). The diver-
gence can be simplified into a pursuit index, which is the sum of the transformed filter responses.
The sum essentially counts the number of edge segments sketched by the perturbed versions of the
element.

responses, summed over all the training images. The transformation is an increasing function that
discounts large filter responses. So the pursuit index can be interpreted as a voting of the training
images, and the index favors the element whose perturbed versions sketch as many edge segments
as possible. After an element is selected, its perturbed version explains away a small part of each
training image, and thereby inhibits nearby Gabor wavelet elements from coding the same part of
the image. So the selected elements of the active basis are well spaced, and usually form a clear
template.

The active basis displayed in Figure (2) is learned by the shared sketch algorithm. It is worth
noting that for the last two examples in Figure (2), the strong edges in the background are not
sketched, because these edges are not shared by other examples, and such edges are ignored by the
shared sketch algorithm.

1.3 Architecture of inference

After learning the active basis from training images, the detection and recognition of the deformable
template from a testing image can be accomplished by a computational architecture of sum-max
maps. Figure (4) illustrates this architecture. It starts from convolving the image with Gabor

4

Figure 4: Sum-max maps. The SUM1 maps are obtained by convolving the input image with Gabor
filters at all the locations and orientations. The ellipsoids in the SUM1 maps illustrate the local
filtering or summation operation. The MAX1 maps are obtained by applying a local maximization
operator to the SUM1 maps. The arrows in the MAX1 maps illustrate the perturbations over which
the local maximization is taken. The SUM2 maps are computed by applying a local summation
operator to the MAX1 maps, where the summation is over the elements of the active basis. This
operation computes the log-likelihood of the deformed active basis, and can be interpreted as a
shape filter.

filters at all the locations and orientations. The filtered images become the first layer of the sum
maps, or SUM1 maps, because each Gabor filter is a local summation operator. In Figure (4),
the thin ellipsoids in the SUM1 maps illustrate the local filtering or summation operation. Then a
layer of max maps, or MAX1 maps, is computed by applying a local maximization operator to the
SUM1 maps. In Figure (4), the arrows in the MAX1 maps illustrate that the local maximization
is taken over small perturbations of the Gabor wavelets. This local maximization tells us how to
deform the active basis to match the image data.

On top of that, a sum map, or SUM2 map, is computed by applying a local summation operator
to the MAX1 maps. Specifically, we scan the active basis template over the whole image lattice,
and for each pixel of the SUM2 map, we compute a weighted sum of the values of the MAX1 maps,
where the summation is over the locations and orientations of the elements of the active basis

5

centered at this pixel. So this is another layer of filtering operation, and can be considered a shape
filter. It computes the log-likelihood of the deformed active basis. In Figure (4), the car template
in the SUM2 map illustrates the active basis centered at one pixel. We scan this template over all
the pixels to obtain the SUM2 map, which scores the template matching.

The SUM2 map is obtained by a local summation operator of fixed shape. However, because
the local summation is applied to the MAX1 maps, shape deformation is automatically accounted
for, and the template matching score is invariant to shape deformation.

Besides the log-likelihood scoring for template matching, we also develop a non-probabilistic
scoring method based on active correlation between the template and the image.

1.4 Review of literature

Our work cultivates key insights from three major theories on biological and computer vision,
namely, Olshausen and Field’s theory of linear sparse coding using Gabor wavelets [14], Riesenhuber
and Poggio’s theory on local maximum pooling of Gabor filter responses [15], and Viola and Jones’s
application of adaboost learning [7] using Harr wavelets as weak classifiers [18].

The active basis model is based on Olshausen and Field’s linear representation. Inspired by
Riesenhuber and Poggio’s operator, we add local perturbations to the basis elements. Motivated
by Viola and Jones’s work, we apply the model to images of object shapes, so that the training
images share the same set of selected elements, which form a common deformable template [22].
This connects Olshausen and Field’s work to shape models such as active contours [10] and active
appearance model [2].

The algorithmic architecture of sum-max maps is a variation on the theme of Riesenhuber and
Poggio’s cortex-like hierarchical structure of simple and complex cells [15]. See also the recent
work of Mutch and Lowe [13] for further improvement. Our architecture is essentially the same
as Riesenhuber and Poggio’s structure up to the MAX1 maps. However, our operator for com-
puting the SUM2 map for template matching is different from the template matching scheme of
Riesenhuber and Poggio. Our operator is a local summation over highly selected locations and
orientations. Moreover, the computation is not entirely a bottom-up process. After the bottom-up
scoring process, a top-down retrieving process traces the locations and orientations of the perturbed
elements, which form the deformed template that is matched to the input image. Furthermore,
since the local summation is taken over a small number of selected locations and orientations, it
may be more efficient than comparing all the intensities of the MAX1 maps.

The shared sketch algorithm is similar to the learning scheme in Viola and Jones’s application of
adaboost. However, the algorithm is guided by a generative model, where the selection of the basis
elements is based on explaining away the image data instead of fitting the classification boundary.
Our learning algorithm can be considered a parallel version of the matching pursuit algorithm [12]
where we select the basis elements to simultaneously code all the training images. It can also be
considered a variation of the projection pursuit algorithm for density estimation [8], where we add
to it the local maximization and local inhibition operations of the matching pursuit algorithm. The

6

exponential family model we adopt is related to the feature induction schemes of Della Piatra et
al. [5] and Zhu et al. [26].

This work is a continuation of our long term search for generative models of visual patterns, as
well as our attempt to understand these models within a common information-theoretical framework
[20]. The active basis model can be considered a revision of our previous model on textons [24].
It can also be viewed as an inhomogeneous version of the Markov random field model that we
previously developed for textures [26], as we show in [20]. More important, the active basis model
is a simplest instance of the and-or graph [25] in the compositional framework [9] that we have
been studying. The and-or grammar naturally suggests that we can further compose multiple active
bases to represent more articulate shapes.

Our approach is very simple for the vision tasks that we have studied in this article. The model
is no much more complex than a wavelet expansion, except that we add local perturbations to the
wavelet elements. The learning algorithm is no much more complex than edge detection, except
that we perform it in a parallel fashion on multiple images. The inference algorithm only involves
two consecutive operations on top of Gabor filtering. One is a local max filtering and the other is
a local sum filtering.

2 Representation, Learning, and Inference

This section presents the active basis representation, and describes the shared sketch algorithm and
the sum-max maps. We leave theoretical underpinnings and justifications to the next section.

2.1 Gabor wavelets and sparse coding

A dictionary of Gabor wavelets. A Gabor function [4] is of the form

G(x, y) ∝ exp{−[(x/σx)2 + (y/σy)2]/2}eix.

We can translate, rotate, and dilate G(x, y) to obtain a general form of Gabor wavelets:

Bx,y,s,α(x′, y′) = G(x̃/s, ỹ/s)/s2,

where
x̃ = (x′ − x) cos α− (y′ − y) sinα,

ỹ = (x′ − x) sin α + (y′ − y) cosα.

(x, y) is the central position, s is the scale parameter, and α is the orientation. The Gabor wavelets
give good fit to the receptive fields of the simple cells in V1 [4].

The central frequency of Bx,y,s,α is ω = 1/s. Bx,y,s,α = (Bx,y,s,α,0, Bx,y,s,α,1), where Bx,y,s,α,0

is the even-symmetric Gabor cosine component, and Bx,y,s,α,1 is the odd-symmetric Gabor sine
component. We always use Gabor wavelets as pairs of cosine and sine components. We normalize
both the Gabor sine and cosine components to have zero mean and unit `2 norm. For each Bx,y,s,α,
Bx,y,s,α,0 and Bx,y,s,α,1 are orthogonal to each other.

7

Operation. Let D be the domain of image lattice. The dictionary of Gabor wavelet elements is
Dictionary = {Bx,y,s,α, ∀(x, y, s, α)}, where (x, y, s, α) are densely sampled: (x, y) ∈ D with a fine
sub-sampling rate (e.g., every 1 pixel or every 2 pixels), and α ∈ {aπ/A, a = 0, ..., A − 1} (e.g.,
A = 15).

For an image I defined on domain D, the projection coefficient of I onto Bx,y,s,α,η, or the filter
response, is

〈I, Bx,y,s,α,η〉 =
∑

x′,y′
I(x′, y′)Bx,y,s,α,η(x′, y′).

We write 〈I, Bx,y,s,α〉 = (〈I, Bx,y,s,α,0〉, 〈I, Bx,y,s,α,1〉). The local energy is

|〈I, Bx,y,s,α〉|2 = 〈I, Bx,y,s,α,0〉2 + 〈I, Bx,y,s,α,1〉2.

In the computation of 〈I, Bx,y,s,α〉, Bx,y,s,α is a linear filtering operator, which can serve as edge
detector or local spectral analyzer.

To make filter responses comparable between different training images, we need to normalize
the images. Let

σ2(s) =
1

|D|A
∑
α

∑

(x,y)∈D

|〈I, Bx,y,s,α〉|2, (1)

where |D| is the number of pixels in I, and A is the total number of orientations. For each input
image I, we normalize it to I ← I/σ(s).

Representation. A deeper perspective is offered by the sparse coding theory of Olshausen and
Field [14], where Bx,y,s,α serves as a representational element. Specifically, for an image I, we can
represent it by

I =
n∑

i=1

ciBi + U, (2)

where Bi = Bxi,yi,si,αi , ci are the coefficients, and U is the unexplained residual image. Recall
that each Bi is a pair of Gabor cosine and sine components. So Bi = (Bi,0, Bi,1). Accordingly,
ci = (ci,0, ci,1) and ciBi = ci,0Bi,0 + ci,1Bi,1. The set of Gabor wavelet elements {Bi, i = 1, ..., n}
are selected from the dictionary. If the {Bi, i = 1, ..., n} are orthogonal, i.e., if they do not overlap
in spatial domain or frequency domain, then ci = 〈I, Bi〉.

Sparse coding means that for a typical natural image I, we can usually select a small number n

of elements from the dictionary, so that a linear combination of these elements can represent I with
a small residual U . Of course, for different images, we usually select different sets of elements. The
wavelet sparse coding representation (2) reduces an image of tens of thousands of pixels to a small
number of wavelet elements or strokes. Using the sparse coding principle, Olshausen and Field [14]
were able to learn from natural image patches a dictionary of Gabor-like wavelet elements that
closely resemble the properties of the receptive fields of the simple cells in V1.

8

2.2 Representation: active basis model

The sparse coding model (2) is constructed for the whole ensemble of natural images, where for
different I, we may represent them with completely different wavelet elements (Bi, i = 1, ..., n) with
different n. In the active basis model, we apply the sparse coding model (2) to image ensembles of
various object categories. Then for each category, we require that the images share the same set of
wavelet elements (Bi, i = 1, ..., n) , and these elements form a common template. However, when
we use (Bi, i = 1, ..., n) to encode each individual image, we allow the template to slightly deform,
by allowing the elements or strokes to perturb their locations and orientations.

Let {Im,m = 1, ..., M} be a set of training image patches defined on a common rectangle lattice
D. We assume that D is the bounding box of the objects in Im, and these objects are from the
same category and in the same pose. We shall relax this assumption later.

Our method is scale specific. We fix s so that the length of Bx,y,s,α (e.g., 17 pixels) is fixed. It
is possible to learn multiple templates at multiple scales and then combine them.

The active basis model is a composition of strokes that are perturbable:

Composition : Im =
n∑

i=1

cm,iBm,i + Um, (3)

Perturbations : Bm,i ≈ Bi, i = 1, ..., n, (4)

where Bi ∈ Dictionary, Bm,i ∈ Dictionary, (cm,i, i = 1, ..., n) are the coefficients, and Um is the
unexplained residual image. To define the perturbation Bm,i ≈ Bi, suppose

Bi = Bxi,yi,s,αi , (5)

Bm,i = Bxm,i,ym,i,s,αm,i , (6)

then Bm,i ≈ Bi if and only if there exists (dm,i, δm,i) such that

xm,i = xi + dm,i sinαi, (7)

ym,i = yi + dm,i cosαi, (8)

αm,i = αi + δm,i, (9)

dm,i ∈ [−b1, b1], δm,i ∈ [−b2, b2]. (10)

That is, we allow Bi to shift its location along its normal direction, and we also allow Bi to shift
its orientation. See Figure (1) for an illustration. We call (dm,i, δm,i) the activity or perturbation
of Bi in image Im. b1 and b2 are the bounds for the allowed activities (e.g., b1 = 6 pixels, and
b2 = π/15).

In the above notation, the active basis B = (Bi, i = 1, ..., n) forms a deformable template. The
deformed active basis is Bm = (Bm,i, i = 1, ..., n) ≈ B. See Figure (2) for an illustration.

It is important to distinguish between B and Bm. B is the common “average” template shared
by all the examples {Im}. Bm is the image specific template that only describes Im. B is learned
from all the training images {Im}, and it can generalize to testing images, because the basis elements
in B are active.

9

Because we fix the scale s in the representation (3) to (10), the linear superposition
∑n

i=1 cm,iBm,i

only explains the frequency band of Im around the frequency ω = 1/s, while leaving the remaining
frequency components to the unexplained Um. Um can be further explained by templates at other
scales or resolutions.

2.3 Learning: shared sketch algorithm

Given the set of training images {Im, m = 1, ..., M}, the shared sketch algorithm sequentially selects
Bi and perturbs it to Bm,i ≈ Bi to sketch each image Im. The basic idea is to select those Bi so
that its perturbed versions {Bm,i,m = 1, ..., M} sketch as many edge segments as possible in the
training images {Im}.

Description of the shared sketch algorithm

Input : Training images {Im,m = 1, ..., M}.

Output : Template B = (Bi, i = 1, ..., n), and deformed template Bm = (Bm,i, i = 1, ..., n) that is
matched to Im for m = 1, ..., M .

1. Convolution: For each m = 1, ..., M , and for each B ∈ Dictionary, compute [Im, B] =
h(|〈Im, B〉|2). Set i ← 1.

2. Local maximization: For each putative candidate Bi ∈ Dictionary, do the following: For
each m = 1, ..., M , choose the optimal Bm,i that maximizes [Im, Bm,i] among all possible
Bm,i ≈ Bi.

3. Selection: Choose that particular candidate Bi whose corresponding
∑M

m=1[Im, Bm,i] achieves
the maximum among all possible Bi ∈ Dictionary. Record this Bi and retrieve the corre-
sponding optimal Bm,i ≈ Bi for m = 1, ..., M .

4. Non-maximum suppression: For each m = 1, ...,M , if [Im, Bm,i] > 0, then for every B ∈
Dictionary such that corr(B, Bm,i) > ε, set [Im, B] ← 0.

5. Stop if i = n. Otherwise let i ← i + 1, and go back to 2.

In the above description, h() is a monotone increasing (or non-decreasing) transformation that
discounts large value of |〈Im, B〉|2. [Im,B] records the response of B to Im. It can change during
the algorithm because of the non-maximum suppression.

For two Gabor elements B1 and B2,

corr(B1, B2) =
1∑

η1=0

1∑

η2=0

〈B1,η1 , B2,η2〉2

measures their correlation or overlap in spatial and frequency domains. B1 and B2 are orthogonal
as long as they do not overlap in either spatial domain or frequency domain.

10

See Figure (3) for an illustration of the above algorithm. The algorithm can be considered a
parallel version of edge detection. For a putative Bi, the local maximization step seeks to sketch a
local edge segment in image Im by a perturbed version Bm,i ≈ Bi. The selection step seeks to find
Bi with the strongest overall response

∑M
m=1[Im, Bm,i], which pools the edge strengths from the

training images around Bi. After Bi is selected, we retrieve the corresponding Bm,i, and let Bm,i

suppress or inhibit nearby overlapping Gabor elements B by setting the response [Im, B] ← 0. So
for each image Im, the selected (Bm,i, i = 1, ..., n) are approximately orthogonal to each other.

If M = 1 and if we forbid perturbations in locations and orientations by setting b1 = b2 = 0,
then the algorithm reduces to usual edge detection.

Transformation of responses. To understand the transformation h(), let us consider a simplified
discontinuous one: h(r) = 1r>ξ, where ξ is a threshold for edge detection. More specifically, h(r) = 1
if r > ξ, and h(r) = 0 otherwise. Then

∑M
m=1 h(rm,i) simply counts the number of detected edge

segments in the training images {Im, m = 1, ..., M}. That is, we select Bi and perturb it to {Bm,i},
so that {Bm,i} sketch as many edge segments as possible.

In this article we entertain the following designs of continuous transformations. The learned
templates are not very sensitive to the choice of the transformation.

(1) Sigmoid transformation. The transformation is characterized by a saturation level ξ (e.g.,
ξ = 6),

h(r) = sigmoid(r) = ξ

[
2

1 + e−2r/ξ
− 1

]
, (11)

which increases from 0 to ξ.
(2) Whitening transformation. Let q(r) be the marginal distribution of 〈I, Bx,y,s,α〉 where I is

a random sample from the ensemble of natural images. Let F (t) = q(r > t), i.e., the probability
that r > t under q(r). The non-linear whitening transformation is

h(r) = whiten(r) = − log F (r). (12)

(3) Thresholding transformation. A crude but simple approximation to whiten(r) is

h(r) = threshold(r) = min(r, T), (13)

where T is a threshold (e.g., T = 16).
Scoring template matching. Let B = (Bi, i = 1, ..., n) be the template. For each training image

Im, the template matching is scored by

MATCH(Im,B) =
n∑

i=1

(λi[Im, Bm,i]− log Z(λi)) . (14)

λi can be calculated directly from
∑M

m=1[Im, Bm,i] in the selection step. Z() is a non-linear function.
This template matching score is actually a log-likelihood ratio for an exponential family model, and
the weight vector Λ = (λi, i = 1, ..., n) is estimated by maximum likelihood method. See the next
section for details.

11

Active correlation. We can also use a linear score for template matching:

MATCH(Im,B) =
n∑

i=1

θi[Im, Bm,i], (15)

where h(r) = whiten(r)1/2 or h(r) = threshold(r)1/2, and Θ = (θi, i = 1, ..., n) is a unit vector,
with ‖Θ‖2 =

∑n
i=1 θ2

i = 1. The elements are still selected by the shared sketch algorithm, with the
aforementioned new definition of h(). To estimate Θ, we first calculate θi =

∑M
m=1[Im, Bm,i]/M ,

then we normalize Θ = (θi, i = 1, ..., n) to be a unit vector.
The template matching score (15) can be considered the active correlation between the template

B and the image Im, because B is deformed to Bm = (Bm,i, i = 1, ..., n) before the inner product
is calculated. We may also consider (15) as the inner product between Im and the vector V =
∑n

i=1 θiBi. V is an active vector because Bi can be perturbed to Bm,i when we correlate V with
Im.

2.4 Inference: sum-max maps

After training the active basis model, specifically, after selecting B = (Bi = Bxi,yi,s,αi , i = 1, ..., n),
and computing the weighting vector Λ = (λi, i = 1, ..., n) or Θ = (θi, i = 1, ..., n), we can use the
trained model to detect and sketch the object in a testing image.

Let I be a testing image defined on a lattice D. Here we use the notation D to denote the
lattice of I instead of the bounding box of the template B, which is usually smaller than D. We
assume that the bounding box of the template B is centered at origin (x = 0, y = 0). We can scan
the template over D, and at each position (x, y) ∈ D, we fit the active basis model to the image
patch of I within the bounding box centered at (x, y), and calculate the template matching score
according to Equation (14) or (15).

Pseudo-code for inference algorithm

Input : Template B = (Bi = Bxi,yi,s,αi , i = 1, ..., n), Λ = (λi, i = 1, ..., n), and testing image I.

Output : Location (x̂, ŷ) of the detected object, and the deformed template (Bx̂i,ŷi,s,α̂i
, i = 1, ..., n)

that is matched to I.

Up-1 For all (x, y) ∈ D, and for all α, compute the SUM1 maps:

SUM1(x, y, s, α) = |〈I, Bx,y,s,α〉|2.

Up-2 For all (x, y) ∈ D, and for all α, compute the MAX1 maps:

MAX1(x, y, s, α) = max
d ∈ [−b1, b1]

δ ∈ [−b2, b2]

SUM1(x + d sinα, y + d cosα, s, α + δ). (16)

12

Up-3 For all (x, y) ∈ D, compute the SUM2 map:

SUM2(x, y) =
n∑

i=1

[λih(MAX1(x + xi, y + yi, s, αi))− log Z(λi)] .

Up-4 Compute the MAX2 score: MAX2 = max(x,y)∈D SUM2(x, y).

Down-4 Retrieve (x̂, ŷ) that achieves the maximum in the computation of Up-4.

Down-3 Retrieve (x̂ + xi, ŷ + yi, αi) in the computation of MAX1(x + xi, y + yi, s, αi) for i = 1, ..., n
in Up-3.

Down-2 Retrieve x̂i, ŷi, α̂i for i = 1, ..., n, such that

MAX1(x̂ + xi, ŷ + yi, s, αi) = SUM1(x̂i, ŷi, s, α̂i) (17)

in the local maximization operation (16) of Up-2.

Down-1 Retrieve the coefficients in the computation of SUM1(x̂i, ŷi, s, α̂i) for i = 1, ..., n in Up-1

The inference algorithm consists of two processes. The first process is a bottom-up scoring
process, which calculates SUM1, MAX1, SUM2, MAX2 scores consecutively. The following are the
questions that these scores seek to answer:

SUM1 maps: Is there an edge segment at this location and orientation?
MAX1 maps: Is there an edge segment at a nearby location and orientation?
SUM2 map: Is there a certain composition of edge segments that form the template at this

location?
MAX2 score: Is there a certain composition within the whole image?
These maps are soft scores, not hard decisions. They are computed in a bottom-up process,

SUM1 → MAX1 → SUM2 → MAX2.
This is to be followed by a top-down retrieving process, which retrieves the central location of

the template and then retrieves the locations and orientations of the basis elements of the deformed
template. The following are the questions to be answered:

Back to MAX2 score: If there is a template, where is it?
Back to SUM2 map: What are the locations and orientations of the elements of the template

before deformation?
Back to MAX1 maps: What are the nearby locations and orientations that these elements are

perturbed to?
Back to SUM1 maps: What are the coefficients of these perturbed elements?
The top-down retrieving process follows the sequence MAX2 → SUM2 → MAX1 → SUM1.

The process detects and deforms the template to interpret the observed image.
The SUM2 map in Up-3 scores template matching. The computation of SUM2 can be considered

a shape filter for template matching. Like Gabor filters, it is also a local weighted summation
operator. See Figure (4) for an illustration. The shape filter in Up-3 has fixed (xi, yi, αi, i =

13

1, ..., n). But it is computed on the MAX1 maps instead of SUM1 maps, so it is invariant to shape
deformation.

For an input image, we can apply the above algorithm at multiple resolutions of the input
image. Then we can choose the resolution that achieves the maximum MAX2 score as the optimal
resolution.

When scanning the template over the image, we may allow the template to be partially outside
the image. We only need to set the filter responses of those elements that are outside the image to
be 0.

Normalization within scanning window. Recently we notice that it can be important to normal-
ize the filter responses within the scanning window, instead of normalizing over the whole image.
Specifically, σ2(s) in Equation (1) should be computed for each scanning window, so that the filter
responses or the SUM1 maps are normalized by the within-window σ2(s) before the SUM2 score is
computed for the scanning window. The computation of within-window σ2(s) can be accomplished
by integral image technique. For the experiments in this paper, we use global normalization for
simplicity.

2.5 Shared sketch algorithm based on sum-max maps

The shared sketch algorithm in Subsection (2.3) can be expressed more precisely in terms of the
sum maps and max maps.

Pseudo-code for shared sketch algorithm

Input : Training images {Im,m = 1, ..., M}.

Output : Template B = (Bi = Bxi,yi,s,αi , i = 1, ..., n), weighting vector Λ = (λi, i = 1, ..., n), and
deformed template Bm = (Bm,i = Bxm,i,ym,i,s,αm,i , i = 1, ..., n) that is matched to Im for
m = 1, ...,M .

1. Convolution: For each m = 1, ..., M , for all (x, y) ∈ D, and for all α, compute the SUM1
maps:

SUM1m(x, y, s, α) = |〈Im, Bx,y,s,α〉|2.

2. Local maximization: For each m = 1, ..., M , for all (x, y) ∈ D, and for all α, compute the
MAX1 maps:

MAX1m(x, y, s, α) = max
d ∈ [−b1, b1]

δ ∈ [−b2, b2]

SUM1m(x + d sinα, y + d cosα, s, α + δ). (18)

For each m = 1, ...,M , set SUM2m ← 0. Set i ← 1.

14

3. Selection: Find (xi, yi, αi) by maximizing
∑M

m=1 h(MAX1m(x, y, s, α)) over all (x, y, α).

For each m = 1, ...,M , retrieve (xm,i, ym,i, αm,i) so that

rm,i = MAX1m(xi, yi, s, αi) = SUM1m(xm,i, ym,i, s, αm,i)

in the local maximization computation in (18). That is, we perturb Bi = Bxi,yi,s,αi to
Bm,i = Bxm,i,ym,i,s,αm,i to fit Im.

Compute λi from
∑M

m=1 h(rm,i). For each m = 1, ..., M , compute SUM2m ← SUM2m +
λih(rm,i)− log Z(λi).

4. Non-maximum suppression: For each m = 1, ...,M , if rm,i > 0, then for all those (x, y, α)
such that corr(Bxm,i,ym,i,s,αm,i , Bx,y,s,α) > ε, set SUM1m(x, y, s, α) ← 0.

Re-compute the MAX1 maps according to (18).

5. Stop if i = n. Otherwise let i ← i + 1, and go back to Step 3.

The above algorithm can be easily mapped to computer code. The following are some remarks
on implementing it.

(1) In updating the SUM1 maps and the MAX1 maps in Step 4, we only need to update the
parts of the maps that are affected.

(2) The correlation corr(Bxm,i,ym,i,s,αm,i , Bx,y,s,α) in Step 4 only depends on (xm,i − x, ym,i −
y, αm,i−α). We can store a correlation function corr(∆x,∆y, ∆α) = corr(Bx+∆x,y+∆y,s,α+∆α, Bx,y,s,α)
before running the algorithm.

(3) After selecting (xi, yi, αi), we need to go back to retrieve (xm,i, ym,i, αm,i). We can record this
information for every (x, y, α) when performing the local maximization in (18), and then retrieve
the information for (xi, yi, αi). If we choose not to store this information beforehand, we can re-do
the local maximization in (18) for (xi, yi, αi) to retrieve (xm,i, ym,i, αm,i).

The SUM2m score evaluates the matching of Im to the learned template B according to Equation
(14). The total score

∑M
m=1 SUM2m measures the overall alignment of all the training images. This

alignment score is very useful for unsupervised learning, where the objects in the training images
are of unknown locations, scales, and categories. The alignment score

∑M
m=1 SUM2m is the criterion

that determines these hidden variables.
We would like to point out a subtle difference between the computation of SUM2m in the

learning algorithm and the computation of SUM2 map in the inference algorithm. In the learning
algorithm, there is a non-maximum suppression step, where Bm,i suppresses nearby overlapping
elements. This is necessary for selecting the basis elements. In the inference algorithm, we omit this
step for efficiency. This is because the elements selected by the learning algorithm are already well
spaced due to the non-maximum suppression in learning, so there is no much need for non-maximum
suppression in inference.

15

3 Theoretical Underpinning

This section presents theoretical underpinnings of the model and the algorithms presented in the
previous section. Readers who are more interested in applications and experiments can jump to
the next section.

3.1 Probability distribution on image intensities

With multiple training images {Im,m = 1, ..., M} represented by (3) to (10), we can pool the prob-
ability distribution of {(cm,i, i = 1, ..., n)} as well as the distribution of {Um} over m = 1, ..., M .
With these two distributions, we can obtain the distribution of Im, or more specifically, the distri-
bution of Im given Bm, p(Im | Bm). The probability density p(Im | Bm) can be used for maximum
likelihood learning of B and {Bm} from training images. It can also be used for finding Bm ≈ B
and scoring the template matching in recognition after B is learned from training images.

We first simplify the notation using matrices and vectors. Im can be treated as a |D|×1 column
vector, where |D| is the number of pixels. B = (Bi,0, Bi,1, i = 1, ..., n) can be treated as a |D| × 2n

matrix, where each Bi,η (η = 0, 1) is a |D|×1 vector. Each Bm can be treated as a |D|×2n matrix
in the same way. We can write C = (cm,0, cm,1, i = 1, ..., n)′ as a 2n × 1 vector. Thus in matrix
notation, Equation (3) becomes Im = BmCm + Um.

Linear decomposition. We assume that BmCm is the projection of Im onto the subspace spanned
by the column vectors of Bm, so Cm = (B′

mBm)−1B′
mIm. If Bm is orthogonal, then Cm = B′

mIm.
Um resides in the |D| − 2n dimensions that are orthogonal to the columns of Bm. There is no loss
of generality in such an assumption, because if Um is not orthogonal to Bm, we can always project
Um onto Bm, and let BmCm absorb this projection. We can write Um = B̄mC̄m, where B̄m is a
|D| × (|D| − 2n) matrix whose columns are orthogonal to those of Bm, and C̄m is a (|D| − 2n)× 1
vector. Thus, Im = BmCm + B̄mC̄m. There is a one-to-one linear mapping between Im and
(Cm, C̄m). B̄m and C̄m can be made implicit in statistical modeling.

Shape and texture. Now we are ready to specify the probability density p(Im | Bm). For the
linear representation Im = BmCm + B̄mC̄m,

p(Im | Bm) = p(Cm, C̄m)|Jm| = p(Cm)p(C̄m | Cm)|Jm|, (19)

where |Jm| is the absolute value of the determinant of the Jacobian matrix of the linear transfor-
mation from Im to (Cm, C̄m). p(Cm) is the distribution of the coefficients for coding the foreground
shape, and p(C̄m | Cm) is the distribution of the residual background given the foreground coeffi-
cients. The distribution p(Im | Bm) is fully determined by p(Cm) and p(C̄m | Cm).

Let q(Im) be a reference distribution. Similar to Equation (19), we can write q(Im) = q(Cm)q(C̄m |
Cm)|Jm| with the same Jacobian Jm. We want to construct p(Im | Bm) by modifying q(Im). Specif-
ically, we assume that p(C̄m | Cm) = q(C̄m | Cm), i.e., the conditional distribution of the residual
background in p(Im | Bm) is assumed to be the same as that in q(Im). Then

p(Im | Bm) = q(Im)
p(Cm)
q(Cm)

= q(Im)
p(cm,1, ..., cm,n)
q(cm,1, ..., cm,n)

, (20)

16

where we substitute p(Cm) for q(Cm) to construct a density p(Im) from q(Im).
We assume q(Im) to be stationary. The following are some choices of q(Im).
(1) White noise distribution. This is the distribution that is often assumed in linear additive

model, and is implicitly assumed in the least squares criterion for model fitting. Under this reference
distribution, q(cm,1, ..., cm,n) is multivariate Gaussian.

(2) The distribution of natural image patches. This is the distribution that we shall use in this
paper. In particular, we make use of the marginal distribution of filter responses 〈Im, Bx,y,s,α〉 in
natural images. It is a heavy tail distribution that allows occasional strong edges. We do not need
to specify q(Im) beyond this marginal distribution.

(3) The Markov random field distribution that matches the marginal distributions of filter
responses of the observed image Im. Such a model has been developed by Zhu, Wu, and Mumford
[26]. The marginal distributions are pooled from the observed image Im over (x, y) ∈ D.

The model (20) combines both texture and shape. q(Im) models the background texture, and
Bm and p(Cm) model the foreground shape. The foreground shape pops out from the background
texture, as modeled by the probability ratio p(Cm)/q(Cm).

Log-likelihood and Kullback-Leiber divergence. To learn B and {Bm ≈ B,m = 1, ..., M}, we can
maximize the average log-likelihood

1
M

M∑

i=1

log
p(Im | Bm)

q(Im)
=

1
M

M∑

i=1

log
p(cm,1, ..., cm,n)
q(cm,1, ..., cm,n)

. (21)

The average log-likelihood converges to KL(p(Cm)||q(Cm)) as M → ∞, provided that p(Cm) can
be consistently estimated from the training images. Here KL(p||q) denotes the Kullback-Leibler
divergence from p to q. In order to maximize the log-likelihood, we want to choose B and deform it
to {Bm ≈ B} to maximize KL(p(Cm)||q(Cm)), so that we achieve the maximum contrast between
the foreground shape and the background texture. KL(p(Cm)||q(Cm)) also measures the coding
gain achieved by coding Cm by p(Cm) instead of q(Cm), while continuing to code the residual
background by q(C̄m|Cm).

It is impossible to select B and {Bm} all at once. In the next subsection, we present an
algorithm that sequentially pursues Bi and perturbs it to {Bm,i}.

3.2 Coupling matching pursuit with projection pursuit

In this subsection, we describe a shared matching pursuit process for selecting the basis elements
B = (Bi, i = 1, ..., n). The process couples matching pursuit [12] with projection pursuit [8]. The
shared sketch learning algorithm is an approximation to it.

The matching pursuit is a process that sequentially adds elements Bm,i, i = 1, ..., n to improve
the encoding of image Im. It has the following form:

1. For m = 1, ...,M , set Um ← Im. Set i ← 1.

2. For m = 1, ...,M , choose Bm,i. Let cm,i = 〈Um, Bm,i〉.

17

3. For m = 1, ..., M , update Um ← Um−cm,iBm,i. Represent Im = cm,1Bm,1+...+cm,iBm,i+Um.

4. If i = n, stop. Otherwise, set i ← i + 1, go back to Step 2.

We need to add the following three components to the above matching pursuit process.
(1) The selection of Bm,i given Bi. The original matching pursuit algorithm selects Bm,i =

arg maxB |〈Um, B〉|2 in Step 2, where the maximization is over all B ∈ Dictionary, so that Bm,i

achieves the best fit to the unexplained residual image Um. In shared matching pursuit process,
however, the Bm,i are constrained to be perturbed versions of a commonly shared Bi. Therefore,
for each putative Bi, we need to select Bm,i = arg maxB≈Bi |〈Um, B〉|2.

(2) The updating of p(Im). After computing cm,i = 〈Um, Bm,i〉 in each iteration i, we can pool
a distribution pi(c) over {cm,i,m = 1, ..., M}. We can use such pooled densities p1(c), ..., pn(c) to
construct the density p(Im).

Specifically, we update p(Im) sequentially using projection pursuit. Let p0(Im) = q(Im), i.e.,
the distribution of background texture. At each iteration i, after selecting {Bm,i,m = 1, ...,M},
we need to update pi−1(Im) to pi(Im). We can apply the density substitution scheme of projection
pursuit, and let

pi(Im) = pi−1(Im)
pi(cm,i)

qi−1(cm,i)
, (22)

where qi−1(c) is the density of cm,i = 〈Um, Bm,i〉 under the current model pi−1(Im). This density
substitution scheme is very similar to the model construction scheme of Equation (20), except that
we use pi−1(Im) as the current background, and we only replace the density of cm,i = 〈Um, Bm,i〉
under pi−1(Im). cm,i = 〈Um, Bm,i〉 can also be written as cm,i = 〈Im, B̃m,i〉, where B̃m,i can be
constructed from Bm,1, ..., Bm,i−1 and Bm,i. So pi(Im) is a legitimate density function.

(3) The selection of Bi. We select Bi sequentially by the maximum likelihood principle. The
increase in the average log-likelihood is

1
M

M∑

m=1

log
pi(Im)

pi−1(Im)
=

1
M

M∑

m=1

log
pi(cm,i)

qi−1(cm,i)
,

which converges to KL(pi(c)||qi−1(c)). So we want to select Bi that achieves the maximum
KL(pi(c)||qi−1(c)). That is, KL(pi(c)||qi−1(c)) is the pursuit index that drives the selection of
Bi. Intuitively, this means that we want to select Bi so that the distribution of the responses of
the perturbed versions {Bm,i ≈ Bi} is most different from what is predicted by the current model
pi−1(Im).

With the above components (1), (2), and (3) incorporated into the matching pursuit process, we
will eventually reach the model p(Im) = q(Im)

∏n
i=1 pi(cm,i)/qi−1(cm,i). This is an approximation to

the model (20) in the previous subsection. See Figure (3) for an illustration of the shared matching
pursuit process.

The computational burden in the shared matching pursuit process lies in the computation of
qi−1(c) in Equation (22), which requires Monte Carlo sampling from pi−1(Im). If we have negative
training images from q(Im), we can re-weight these negative examples after each iteration, and use
these re-weighted examples as samples from pi−1(Im).

18

3.3 Shared sketch as an approximation

We can simplify the shared matching pursuit process into a shared sketch process with the following
two approximations.

(1) Non-maximum suppression. After selecting Bm,i and computing cm,i = 〈Um, Bm,i〉, we need
to update Um ← Um − cm,iBm,i, i.e., Bm,i explains away part of Um or Im. This can be considered
a soft inhibition. If an element B has a high correlation with Bm,i, in other words, if B heavily
overlaps with Bm,i in both spatial domain and frequency domain, then such a redundant B can
add little to further explaining Im, in that after the updating Um ← Um − cm,iBm,i, |〈Um, B〉|2
can be very small. Therefore, we may simply enforce that, for each Im, the selected elements of
{Bm,i, i = 1, ..., n} do not overlap with each other, or the selected {Bm,i, i = 1, ..., n} are orthogonal
to each other. Then, after Bm,i is selected, we let Bm,i suppress any B that overlaps with Bm,i.
For such non-overlapping (Bm,i, i = 1, ..., n), cm,i = 〈Um, Bm,i〉 = 〈Im, Bm,i〉. In practice, we allow
small correlations between the elements (Bm,i, i = 1, ..., n).

(2) Background density. The current density pi−1(Im) results from sequentially updating the
densities of cm,1, ..., cm,i−1, starting from q(Im). If Bm,i has no overlap with Bm,1, ..., Bm,i−1,
then the distribution of cm,i under pi−1(Im), i.e., qi−1(c), can be approximated by q(c), which is
the marginal distribution of cm,i under q(Im). Because q(Im) is stationary, q(c) is the same for all
cm,i, i = 1, ..., n. Therefore, the pursuit index is KL(pi(c)||q(c)), where again, pi(c) is the density
pooled over {cm,i,m = 1, ..., M}.

If we stop the process after n iterations, then the resulting model is

p(Im | Bm) = q(Im)
n∏

i=1

pi(cm,i)
q(cm,i)

. (23)

The pursued model (23) is an approximation to the model (20). q(c) can be pooled from natural
images before we start the shared sketch process. We do not need negative examples beyond q(c).

3.4 Parametrization by exponential family model

Parametric model. We can further simplify the Kullback-Leibler divergence by assuming the fol-
lowing exponential family model:

p(c; λ) =
1

Z(λ)
exp{λh(r)}q(c), (24)

where λ > 0 is the parameter, r = |c|2, and

Z(λ) =
∫

exp{λh(r)}q(c)dc = Eq[exp{λh(r)}] (25)

is the normalizing constant. h(r) is an increasing function, so p(c; λ) puts more probability than
q(c) on those c with large r, thus model (24) is more encouraging towards large r. The above model
can be justified by the maximum entropy principle [5, 26].

Let p(r; λ) and q(r) be the densities of r = |c|2 under p(c; λ) and q(c) respectively, then
p(c; λ)/q(c) = p(r;λ)/q(r) = exp{λh(r)}/Z(λ). More specifically, let c = (c0, c1), and let ϕ =

19

arctan(c1/c0) be the local phase, then the conditional distributions of the local phase ϕ given the
local energy r are the same under both p(c; λ) and q(c).

Estimating pi. We estimate q(c) by pooling a histogram from natural images. We estimate pi(c)
from {cm,i = 〈Im, Bm,i〉,m = 1, ..., M} by fitting the density p(c; λi) to {cm,i}. Specifically, let us
define the mean parameter

µ(λ) = Eλ[h(r)] =
∫

h(r)
1

Z(λ)
exp{λh(r)}q(r)dr. (26)

We estimate the natural parameter λi by solving the following estimating equation

µ(λi) =
1
M

M∑

m=1

h(rm,i), (27)

where rm,i = |cm,i|2, so that λ̂i = µ−1(
∑M

m=1 h(rm,i)/M). λ̂i is the maximum likelihood estimate
that maximizes the concave function

∑M
m=1 log[p(cm,i; λi)/q(cm,i)] over λi [5]. Thus, we estimate

pi(c) by p(c; λ̂i).
To avoid over-fitting, we impose an upper bound on λ (e.g., λ < 5). That is, in the rare

case where no value of λ below the upper bound satisfies the estimating equation (27), we then
let the estimated λ be this upper bound. This is restricted maximum likelihood estimate. The
upper bound plays a role mostly in single image learning, which we shall discuss at the end of this
subsection.

Both log Z(λ) in Equation (25) and µ(λ) in Equation (26) are one-dimensional monotone func-
tions. We can store their values over a grid of points of λ values below the upper bound mentioned
above, and use nearest neighbor linear interpolation for points in between. The solution to the
estimating equation (27) can be efficiently obtained by looking up the stored monotone function
µ(λ).

Selecting Bi. The average log-likelihood ratio

1
M

M∑

m=1

log
p(cm,i; λ̂i)

q(cm,i)
= KL(p(c; λ̂i)||q(c)). (28)

It is an increasing function of
∑M

m=1 h(rm,i)/M . Therefore, we choose Bi and perturb it to {Bm,i}
by maximizing the pursuit index

∑M
m=1 h(rm,i).

Perturbing Bi to Bm,i. p(c; λi)/q(c) is a monotone increasing function of r = |c|2. This justifies
that, given Bi, we should perturb Bi to Bm,i to maximize |〈Im, Bm,i〉|2, subject to the approximate
non-overlapping constraint. Such Bm,i is the maximum likelihood estimate given Bi.

Thus, the estimation of λi, the perturbation of Bi to Bm,i, and the selection of Bi all follow the
maximum likelihood principle.

Template matching score. The resulting model is

p(Im | Bm) = q(Im)
n∏

i=1

pi(cm,i)
q(cm,i)

= q(Im)
n∏

i=1

1
Z(λ̂i)

exp{λ̂ih(|〈Im, Bm,i〉|2)}. (29)

20

To score the template matching, we can compute the log-likelihood ratio

log
p(Im | Bm)

q(Im)
=

n∑

i=1

[
λ̂ih(|〈Im, Bm,i〉|2)− log Z(λ̂i)

]
. (30)

The reader is referred to Wu et al. [20] for an information-theoretical perspective of this model,
as well as its connection with Markov random fields [26] and adaboost [7]. The reader is also
referred to Tu [16] on a generative model constructed from adaboost.

Single image learning. Because of the parameterization in the form of the exponential family
model, we can learn the model from a single image. This is important because we often initialize
unsupervised learning by fitting the model to a single image. For single image learning, we set
b1 = b2 = 0, i.e., we do not allow any activity. In that case, the estimated common template B
is the same as the deformed template Bm. However, after learning B in this way, we immediately
re-set b1 and b2 to their normal values to continue the learning process. The B with re-set (b1, b2)
is an active basis that can generalize to other images. The upper bound imposed on λi helps avoid
overfitting in single image learning.

3.5 Transformation of filter responses

The following are explanations why we use the sigmoid and whitening transformations for h(r).
Sigmoid transformation. The saturation in the sigmoid transformation can be justified by

mixture distributions.
Let pon(r) be the density of r = |〈I, Bx,y,s,α〉|2 when the Gabor wavelet Bx,y,s,α is on an edge.

Let poff(r) be the density of r when the Gabor wavelet is off the edge. We assume that pon(r)
has a much longer tail than poff(r). Let q(r) and pi(r) be the densities of r = |c|2 under q(c)
and pi(c) respectively. It is reasonable to assume that q(r) = (1 − ρ0)poff(r) + ρ0pon(r), and
pi(r) = (1−ρi)poff(r)+ρipon(r), that is, both q(r) and pi(r) are mixtures of the same on-distribution
and off-distribution, with ρi > ρ0 > 0. As r →∞, log[pi(r)/q(r)] → log(ρi/ρ0) > 0, i.e., a positive
constant. So we may assume the following log-linear model log[pi(c)/q(c)] = log[pi(r)/q(r)] =
λih(r) + constant, where λi > 0, and h(r) reaches a fixed saturation level as r →∞. This justifies
the choice of the sigmoid transformation.

Whitening transformation. The whitening transformation makes q(Im) closer to the white noise
distribution, which is a simpler null hypothesis. It also leads to explicit expressions of µ(λ) and
log Z(λ).

Let F (t) = q(r > t), i.e., the probability that r > t under q(r) or q(Im). The reason we
call h(r) = − log F (r) the whitening transformation is that Pr(h(r) > t) = Pr(− log F (r) > t) =
Pr(F (r) < e−t) = e−t, i.e., h(r) follows Exponential distribution with unit expectation. This is
the distribution of r if q(Im) is Gaussian white noise. This is because the local energy r is the
sum of the squares of the Gabor sine response and Gabor cosine response, and both of them follow
independent Normal distributions if q(Im) is Gaussian white noise. So their sum of squares follows
a χ2

2 distribution, which is the Exponential distribution. The distribution has expectation 1 because
we normalize the image to have unit σ2(s), see Equation (1).

21

The whitening transformation changes a long tail distribution q(r) to a short tail Exponential
distribution. With the whitening transformation, under p(c; λ) of Equation (24), h(r) ∼ Exp(1−λ),
which is an Exponential distribution with µ(λ) = 1/(1−λ). Z(λ) = 1/(1−λ). λi can be estimated
by λ̂i = 1−M/

∑M
m=1 h(rm,i).

3.6 Adaptive texture background and sketch-texture coupling

Figure 5: For each image Im, at each orientation, an adaptive q is pooled over the Gabor filter
responses at all the pixels in this image. Such adaptive q’s capture texture information in image
Im. Each pi is paired with an adaptive q at the orientation that is the same as Bm,i.

In model (29), p(Im | Bm) = q(Im)
∏n

i=1 pi(cm,i)/q(cm,i), where q(c) is the marginal distribution
of filter responses pooled over natural images. In scoring an image Im, the log-likelihood ratio
score is computed by

∑n
i=1 log[pi(cm,i)/q(cm,i)], according to Equation (30). We can change the

generic q(c) to a background texture model fitted specifically to Im. Specifically, for each image
Im, and for each orientation α, let qm,α(c) be the marginal distribution (or histogram) pooled
over {〈Im, Bx,y,s,α〉,∀(x, y)}. Then we can score the image Im by

∑n
i=1 log[pi(cm,i; λ̂i)/qm,αi(cm,i)],

where αi is the orientation of Bm,i. See Figure (5) for an illustration.
The marginal histogram qm,α captures texture information in Im, and provides the adaptive

image-specific background for scoring the template matching. Such spatially pooled histograms
have been commonly used in literature. For instance, [26] develops a Markov random field model
for textures based on such histograms. In fact, the above scheme amounts to assuming the model
p(Im | Bm) = qm(Im)

∏n
i=1 pi(cm,i)/qm,αi(cm,i), where qm(Im) is the Markov random field model

[26] fitted to Im.
The above consideration also points to the theoretical origin of the texture statistics. In the

context of active basis model, qm,α and pi forms a natural couple. The strength of cm,i is measured
by the log-likelihood ratio log[pi(cm,i)/qm,αi(cm,i)], where qm,αi is the null hypothesis and pi is
the alternative hypothesis. While pi is pooled over all training images at the same location and
orientation (subject to local perturbations), qm,α is pooled over all the pixels of the same image
Im. While pi is a hypothesis of locality, qm,α is a hypothesis of stationarity. So texture statistics

22

emerge naturally as a null hypothesis against which the strengths of sketches are scored.
Just like we can further parametrize pi(c) by the exponential family model p(c;λi) as defined

in Equation (24), qm,α can also be parameterized in the same form. Let

hα(Im) =
1
|D|

∑

(x,y)∈D

h(|〈Im, Bx,y,s,α〉|2)

be the spatially pooled average at orientation α. we can fit a model qm,α(c) = p(c;λm,α) to
match hα(Im). The maximum likelihood estimate λ̂m,α = µ−1(hα(Im)). Then we compute the
log-likelihood ratio score or SUM2 score by

SUM2m =
n∑

i=1

log
p(cm,i; λ̂i)

p(cm,i; λ̂m,αi)

=
n∑

i=1

{
[
λ̂ih(|〈Im, Bm,i〉|2)− log Z(λ̂i)

]

−
[
λ̂m,αih(|〈Im, Bm,i〉|2)− log Z(λ̂m,αi)

]
}, (31)

where αi is the orientation of Bm,i. Our experience suggests that the score (31) is helpful for
classification task.

The texture statistics themselves may be helpful for modeling, and we can naturally incorporate
them into the model. Let H(Im) = {hα(Im), ∀α} be all the texture statistics, the full model can
be written as

p(Im | Bm) = q(Im)
p(H(Im))
q(H(Im))

n∏

i=1

p(cm,i, λi)
p(cm,i, λm,αi)

, (32)

where p(H) is the distribution of H(I) pooled over training images {Im}, and q(H) is the distri-
bution of H(I) pooled over natural images. λm,α is fitted to hα(Im) to account for the fact that
hα(Im) is used for modeling. We may again model p(H) as an exponential family model relative to
q(H). q(Im)p(H(Im))/q(H(Im)) can also be written as p(H(Im))q(Im|H(Im)), where q(Im|H(Im))
is the conditional distribution of Im given the texture statistics H(Im). If q(Im) is the uniform
distribution over the image space, then q(Im|H(Im)) is the uniform distribution over the ensemble
of images {I : H(I) = H(Im)}, i.e., the set of images that share the same texture statistics as Im.
As shown in [21], this uniform distribution is asymptotically equivalent to the Markov random field
model of [26].

We may also introduce more localized texture statistics, i.e., change hα(Im) to hα,x,y(Im), which
is the average pooled over a local window around (x, y), instead of the whole image. Such local
statistics may be important for modeling appearances, and they naturally complement the sketches.
Model (32) suggests that it is possible to merge textures and sketches into a well-defined generative
model. It may even be necessary to do so, because local sketches should be scored against their
respective surrounding local textures.

23

3.7 Active mean vector and active correlation

We can replace the log-likelihood score log[p(Im | Bm)/q(Im)] in Equation (30) by the correlation
between Im and the vector Vm =

∑n
i=1 θiBm,i, which is defined as

〈Im|Vm〉 =
n∑

i=1

θiwhiten(|〈Im, Bm,i〉|2)1/2. (33)

We assume that Im is normalized. The reason we use whitening transformation defined by Equation
(12) is that after such a transformation, the distribution of the natural images is closer to white
noise. Geometrically, the white noise distribution is close to the uniform distribution over a high
dimensional sphere. Image patches (after normalization and whitening transformation) from the
same object category form a cluster on this sphere. Such a simple picture makes the concept of
correlation geometrically meaningful. The correlation score (33) can be considered the length that
Im projects on Vm. In (33), we filter out the local phase information, because phase is irrelevant
for shape. We call (33) the active correlation between Im and the vector V =

∑n
i=1 θiBi, because

we perturb V to Vm in order to best correlate with Im.
For the training images {Im,m = 1, ...,M}, we want to find the vector V =

∑n
i=1 θiBi that best

correlates with {Im,m = 1, ..., M}, by maximizing the sum of the active correlation scores:

m∑

i=1

〈Im | Vm ≈ V 〉 =
n∑

i=1

[
θi

M∑

m=1

whiten(|〈Im, Bm,i〉|2)1/2

]
. (34)

The algorithm for learning B = (Bi, i = 1, ..., n) and Θ = (θi, i = 1, ..., n) is described in Subsection
(2.3) as a variation of the shared sketch algorithm. The resulting V =

∑n
i=1 θiBi can be consider

the mean shape of {Im, m = 1, ...,M}. We call it the active mean vector. Geometrically, V points
to the center of the cluster formed by {Im,m = 1, ..., M}. The active mean vector is a non-linear
average that involves dimension reduction. It can be used in K-mean cluster as we shall show in
Subsection (6.1).

4 Supervised Learning, Detection, and Classification

This section applies the learning and inference algorithms to supervised learning, detection, and
classification.

4.1 Learning with given bounding boxes

In supervised learning, we assume that the training images are defined on the same image lattice
which is the bounding box of the objects in these images.

In the experiments in this article, we hand pick the number of basis elements, n. In prin-
ciple, it can be automatically determined by comparing

∑M
m=1 h(rm,i)/M with the average of

h(MAX1(x, y, s, α)) in natural images or in the observed image Im. If the former is no much
greater than the latter, we should stop the algorithm. We also hand pick the resize factor of the

24

training images. Of course, in each experiment, the same resize factor is applied to all the training
images.

Parameter values. The following are the parameter values that we use in all the experiments
in this paper (unless otherwise stated). Size of Gabor wavelets = 17 × 17. (x, y) is sub-sampled
every 2 pixels or 1 pixel. The orientation α takes A = 15 equally spaced angles in [0, π]. The
orthogonality tolerance is ε = .1. The threshold is T = 16 in the threshold transformation (13).
The saturation level ξ = 6 in the sigmoid transformation (11). The shift along the normal direction
dm,i ∈ [−b1, b1] = [−6, 6] pixels. The shift of orientation δm,i ∈ [−b2, b2] = {−1, 0, 1} × π/15.

Figure 6: Experiment 1.1. The 37 training images are 82 ×164. The first block displays the learned
active basis consisting of 60 elements. Each element is symbolized by a bar. The rest of the blocks
display the observed images and the corresponding deformed active bases. The images are displayed
in the descending order of the log-likelihood ratio, which scores the template matching.

Experiment 1. In this experiment, we take h(r) = threshold(r), as defined by Equation (13), so
that there is no need to pool q(r). Other designs of h(r) produce similar results.

In Experiment 1.1, we apply the shared sketch algorithm to a training set of M = 37 car images.
The car images are 82×164. Figure (6) displays the results, where n = 60. The first block displays
the learned active basis B = {Bi, i = 1, ..., n = 60}, where each Bi is represented symbolically by a
bar at the same location and with the same length and orientation as Bi. The intensity of the bar
that symbolizes Bi is the average

∑M
m=1 h(MAX1m(xi, yi, s, αi))/M . For the remaining M pairs

of plots, the left plot shows Im, and the right plot shows Bm = (Bm,i, i = 1, ..., n). The intensity
of the bar that symbolizes Bm,i is the squared root of h(|〈Im, Bm,i〉|2). These M examples are
arranged in descending order by the SUM2m scores output by the algorithm. We can see that all
the examples with non-typical poses are in the lower end.

25

Figure 7: Experiment 1.2. The 15 images are 179 × 112. Number of elements is 50.

Figure 8: Experiment 1.3. The 12 images are 120 × 167. Number of elements is 50.

Figure 9: Experiment 1.4. The 9 images are 122 × 120. Number of elements is 50.

Figures (7) - (10) display more examples, where the results are obtained by the same algorithm.
Negative experience in Experiment 1. This experiment requires that the training images are

roughly aligned and the objects are in the same pose. If this is not the case, our method cannot
learn clean templates. Also, our method does not do well on objects with strong textures, such as
zebras, leopards, tigers, giraffes, etc. The learning algorithm tends to sketch edges in textures.

In Section (5), we shall show that our method can be extended to learning from non-aligned

26

Figure 10: Experiment 1.5. The 11 images are 133 × 140. Number of elements is 50.

images. In Section (6), we shall show that our method can be used to find clusters in training
images. The adaptive background in Subsection (3.6) may be useful for modeling textures.

4.2 Detection by inference algorithm

This section studies the detection task using the inference algorithm based on sum-max maps.

(a) (b)

Figure 11: Experiment 2.1. (a) Testing image. The recognition algorithm is run on 10 resolutions,
from 270 × 360 to 432 × 536. (b) Superposed with sketch of the 60 elements of the deformed active
basis at the optimal resolution 378 × 504. The bounding box of the template is 82 × 164.

Experiment 2. Figure (11.a) displays the observed image in Experiment 2.1. The deformable
template is learned in Experiment 1.1. The bounding box is 82 × 164. We run the recognition
algorithm on 10 resolutions of the testing image, from 270 × 360 to 432 × 536. Figure (11.b)
displays the superposed sketch of (Bx̂i,ŷi,s,α̂i , i = 1, ..., n = 60) at the optimal resolution 378 × 504.
Again, we let h(r) = threshold(r), the same as in Experiment 1.

Figure (12) displays the MAX2 scores over the 10 resolutions, as well as the SUM2 map at the
optimal resolution.

Figure (13) displays the observed image in Experiment 2.2. The deformable template is learned
in Experiment 1.2. The bounding box is 179 × 112. We run the recognition algorithm on 10
resolutions of the testing image, from 192 × 220 to 322 × 368.

27

2 4 6 8 10

450

500

550

600
MAX2 score vs scale

scale

M
A

X
2

(a) (b)

Figure 12: Experiment 2.1. (a) MAX2 scores at resolutions 1 to 10. (b) SUM2 map at the optimal
resolution 7.

Figure 13: Experiment 2.2. Testing image.

Figure 14: Experiment 2.2. Superposed sketch of 50 elements of the deformed active basis at each
of the 10 resolutions, from 192 × 220 to 322 × 368. The bounding box is 179 × 112.

28

Figure (14) displays the superposed sketch at each of the 10 resolutions.
Negative experience in Experiment 2. Our method can sometimes be distracted by cluttered

edges or strong edges in the background. One may need to combine templates at multiple resolutions
and incorporate local appearance variables such as textures and smoothness into the model, as
suggested in Subsection (3.6).

4.3 Geometric transformation of template

Given a template B = (Bi = Bxi,yi,s,αi , i = 1, ..., n), we can transform this template by dilation,
rotation, and changing the aspect ratio. This amounts to simple transformations of (xi, yi, αi, i =
1, ..., n).

Figure 15: Experiment 3.1. The 27 images are 180 × 180. Number of elements is 60.

Figure (15) displays the bike template learned from 27 images, using the active basis model
with sigmoid transformation.

Figure (16) shows three examples of detection. We transform the template into a collection of
templates as different scales, orientations, and aspect ratios. After that, we use these templates to
detect the object by template matching, using the sum-max maps. We do not need to try multiple
resolutions, because we already scale the template. Finally, we choose the transformed template
that gives the best match in terms of the MAX2 score, and superpose the deformed template on
the input image.

Figures (17) and (18) show another example with the horse template.
Negative experience in Experiment 3. We encountered some difficulty with the bicycle template.

When the viewing distance is close, the size of one wheel can be larger than the size of the other
wheel, so a single scale factor does not give very good fit. An additional difficulty is caused by the
fact the frontal wheel may turn to a different direction than the back wheel.

29

(a) (b) (c)

Figure 16: Experiment 3.1. (a) The image size is 252 × 320. The scale factor is 1.4. The rotation
is 1 ×π/15. The aspect factor is 0.9. (b) The image size is 200 × 250. The scale factor is 1.4. The
rotation is 1 ×π/15. The aspect factor is 1. (c) The image size is 248 × 232. The scale factor is
1.2. The rotation is -1 ×π/15. The aspect factor is 0.6.

Figure 17: Experiment 3.2. The 30 images are 120 × 150. Number of elements is 40.

The above difficulty suggests that we should better split the bicycle template into two part-
templates, and each part-template has its own geometric transformation. We shall study the
composition of multiple part-templates in Section (8).

4.4 Classification

In this section, we evaluate our method on classification tasks and compare it with adaboost and
PCA in terms of the areas under the ROC curves, or the so called AUC scores.

30

(a) (b)

Figure 18: Experiment 3.2. (a) The image size is 166 × 202. The scale factor is 1.2. The rotation
is 0. The aspect factor is 0.8. (b) The image size is 192 × 144. The scale factor is 1. The rotation
is 4 ×π/15. The aspect factor is 1.3.

We learn the active basis B = (Bi, i = 1, ..., n) and estimate Λ = (λi, i = 1, ..., n) from the
training images. Then for each testing image Im, we can compute its score SUM2m according to
Equation (30) or Equation (31). The latter scores the template against the adaptive background.
The testing step can be accomplished by the inference algorithm. We fit the active basis model
with sigmoid transformation. The parameter values are taken to be their default values specified
in Subsection (4.1). The sigmoid transformation outperforms whitening and threshold transforma-
tions.

0 10 20 30 40 50 60 70 80
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

training positives

te
st

in
g

A
U

C

AUC vs. the number of positive training examples

Active Basis Adaptive
PCA
Adaboost on MAX1

Figure 19: Experiment 4.1. AUC scores over the number of positive training examples for active
basis with adaptive background, adaboost, and PCA.

We conduct cross validation experiments with 131 positive images of heads and shoulders, and

31

600+ negative images. The image size is 85 × 127. In total, there are 5 repetitions × 3 methods
× 5 numbers of positive training examples (5, 10, 20, 40, 80). The number of negative training
examples is kept at 160. Figure (19) plots the AUC scores against the number of positive training
examples for the three methods. The dotted lines provide the 95% confidence bounds estimated
from the 5 repetitions.

The adaboost features are obtained by thresholding the MAX1 maps, i.e., 1MAX1(x,y,s,α)>c or
1MAX1(x,y,s,α)<c. In training the adaboost, each step goes through all the (x, y, α), and for each
(x, y, α), an optimal threshold c is searched over a grid. The adaboost features based on MAX1
maps outperform the adaboost features based on SUM1 maps.

For PCA, we first normalize the images to have mean 0 and variance 1. Then we estimate the
mean image and the principal components. In testing, we fit the mean image and the principal
components to each testing image, and score the image by the squared norm of the residual image.
As to the number of principal components, two components give the best performance.

0 10 20 30 40 50 60 70 80
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

basis elements

te
st

in
g

A
U

C

AUC vs the number of basis elements

40 examples
5 examples

Figure 20: Experiment 4.1. AUC scores for active basis with adaptive background versus the
number of elements.

Figure (20) plots the AUC scores of active basis with adaptive background over the number of
basis elements, where the numbers of training examples are 5 and 40 respectively. The optimal
performance is attained around 30 elements.

Figure (21) shows the active basis template (with 30 elements) and adaboost template (with
80 features), as well as mean images and the two principal components learned from the same 40
positive training images during one repetition of the cross validation experiment. For adaboost
template, the red bars symbolize features of the form 1MAX1(x,y,s,α)>c , and the blue bars symbolize
features of the form 1MAX1(x,y,s,α)<c.

32

(a) (b) (c) (d) (e)

Figure 21: Experiment 4.1. (a) Active basis template (with 30 basis elements). (b) Adaboost
template (with 80 features). The red bars illustrate positive features and the blue ones are negative
features. (c) Mean positive image. (d) and (e) The first two principal components.

0 10 20 30 40 50 60 70 80
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

training positives

te
st

in
g

A
U

C

Active Basis with/without adaptive background

Active Basis
Active Basis Adaptive

Figure 22: Experiment 4.1 AUC scores for active basis with and without adaptive background.

Figure (22) displays the AUC scores for active basis without adaptive background and AUC
scores with adaptive background. The adaptive background helps classification performance.

Figure 23: Experiment 4.1. Learning active basis from the first 5 training images. The images are
85 × 127. Number of elements is 30.

As a further illustration, Figure (23) displays the active basis learning results from the first 5
positive images.

We perform the same experiment on a horse data set, and obtain similar results. Figure (24)
displays the active basis template and adaboost template learned from the same 20 horse images.
The active basis template and the adaboost template are different. Adaboost may use similar and

33

Figure 24: Experiment 4.2. Active basis template (with 60 basis elements) and adaboost template
(with 150 features). The red bars illustrate positive features and the blue ones are negative features.

Figure 25: Experiment 4.3. Active basis template (with 60 basis elements) and adaboost template
(with 150 features).

Figure 26: Experiment 4.3. Learning active basis from the first 9 training images. The images are
100 × 150. Number of elements is 50.

even the same basis elements. The active basis templates tend to sketch the whole objects.
We also experiment on a butterfly data set, which is much easier to separate. Both active basis

and adaboost achieve more than .998 AUC scores with five positive training examples. Figure (25)
displays the templates learned from the same 20 butterfly images. Figure (26) displays the active
basis learning results from the first 9 positive images.

The tentative message from Experiment 4 is that active basis model can outperform adaboost
when the sample size is relatively small. But adaboost catches up as the sample size increases. For
generative model to stay competitive with discriminative approach when the sample size is large,
we may need to represent the positive sample by a mixture of multiple prototypes, as in [1]. The
active basis model makes much less use of negative examples. It only pools a marginal histogram
from negative examples.

The exponential family model on the images is equivalent to a logistic regression model for
predicting class labels. From the likelihood perspective, the generative approach targets the full
likelihood of the observed images, whereas the discriminative approach targets the partial likeli-
hood of the class labels conditional on the observed images. This makes the generative approach
more efficient in estimation when the sample size is small, provided that the generative model is
reasonably realistic.

34

In terms of the pursuit strategy, active basis performs matching pursuit to explain away image
data, where the residual images discourage the selection of basis elements that are highly overlap-
ping with selected ones. Adaboost can be considered a matching pursuit procedure to explain away
the class labels, where the notion of residual and explaining away manifests itself by reweighting
the training images.

We tentatively believe that active basis model may be more maneuverable in unsupervised
learning, which involves estimating unknown alignments and clusters.

5 Learning from Non-aligned Images

In this section, we study the problem of learning from images where the objects are of unknown
locations and scales.

5.1 Image alignment

For the training image patches {Im,m = 1, ..., M} defined on the same bounding box, such as those
in the previous section, we can define their overall alignment by

ALIGN(Im,m = 1, ..., M) =
M∑

m=1

MATCH(Im,B), (35)

where B is the template learned from the image patches, and MATCH(Im,B) is the template
matching score defined by either (14) for log-likelihood or (15) for active correlation. The com-
putation is carried out by the shared sketch algorithm in Subsection (2.5), and ALIGN(Im, m =
1, ..., M) =

∑M
m=1 SUM2m, where the SUM2m scores are output by the algorithm.

When the training images {Im,m = 1, ..., M} are of different sizes, and the objects appear at
different locations in the training images, we need to infer the unknown locations. Let box(x, y) be
the rectangular bounding box of the template centered at (x, y). For an image I, let I[box(x, y)] be
the image patch cropped from the image I within box(x, y). We want to maximize the alignment
score

ALIGN (Im[box(xm, ym)],m = 1, ...,M) , (36)

where (xm, ym) is the unknown location of the bounding box in Im.
The alignment score can be maximized by a greedy algorithm that iterates the following two

steps:
(1) Supervised learning: Given {(xm, ym), m = 1, ..., M}, estimate (B, Λ) from {Im[box(xm, ym)],

m = 1, ..., M} using the shared sketch algorithm in Subsection (2.5).
(2) Detection: Given (B,Λ), estimate (xm, ym) from each Im using the inference algorithm in

Subsection (2.4). (xm, ym) achieves the maximum of the SUM2 map.
Experiment 5a: In this experiment, we initialize the algorithm by specifying the bounding box

for the first training image. Then we estimate (B, Λ) from this single image patch. In learning from

35

Figure 27: Experiment 5a. The bounding box of the first image is given. (1) Cats: The size of
the bounding box is 136× 140. The number of elements in the active basis is 60. (2) Wolves: The
bounding box is 116× 116. Number of elements is 50. (3) Swans: The bounding box is 115× 161.
Number of elements is 50. (4) Pigeons: The bounding box is 94× 99. Number of elements is 30.
(5) Horses: The bounding box is 94 × 138. Number of elements is 60. (6) Deers: The bounding
box is 134× 148. Number of elements is 60.

the single image patch, we set b1 = b2 = 0, that is, we do not allow the elements Bi to perturb.
After that, we re-set b1 and b2 to their default values, and iterate Step (2) and Step (1) described
above.

In Step (2), we search over 9 different resolutions (from 0.8 to 1.2 times the input image size).
We crop Im[box(xm, ym)] from the optimal resolution.

We run the algorithm for 3 iterations. Figures (27) display some examples.

36

Experiment 5b. This is a repetition of Experiment 5a, except that we do not assume that the
bounding box of the object in the first image is given. We simply start from the template learned
from the whole image of the first example. Figure (28) displays two examples. In each example,
the first template is learned from the first image, and the template serves as the initialization of the
algorithm. The second template is produced after 3 iterations of the algorithm used in Experiment
5a. We allow the template to be out of the bounds of the images in the detection step.

Figure 28: Experiment 5b. In each example, the first template is the starting template. The second
template is learned after 3 iterations. The number of elements of the active basis is 60 in the left
example, and 50 in the right example.

Negative experience in Experiments 5. When there are cluttered edges in the background, the
detection step may fail to locate the objects. When the objects have large deformations or pose
changes, the learned template may not be clean, and may fail to sketch the objects in the training
images correctly. In Experiments 5b, if the objects do not occupy significant portions of the training
images, our method may fail to establish correct alignment.

5.2 Learning part-templates

The algorithm in Experiment 5a can be used to learn part-templates from training images. In
Experiment 5c, we start from a large number of patches cropped from the training images, and for
each starting patch, we learn a templates using the same iterative algorithm as in Experiment 5a.
Here we use active correlation instead of the log-likelihood for learning and detection.

Then we select the first K templates with the highest alignment scores. We did not perform
spatial inhibition between the part-templates. After that, we double the sizes of the input images,
and use the same procedure to learn part-templates at a higher resolution.

Figure (29) displays the top three part-templates learned from three car images. Because of the
large deformations in these three cars, it is impossible to learn a common template for the whole
cars, but it is still possible to learn meaningful part templates that correspond to frontal, middle
and rear parts of the cars.

Figure (30) displays the top two part-templates learned from these three images after we resize
these images by a factor of 2.

Negative experience in Experiment 5c. When the part-template is small relative to the whole
objects, the method often fails to establish correct correspondence among the images.

The above difficulty suggests that we should add constraints for more reliable learning of the

37

Figure 29: Experiment 5c. The top three part-templates. The size of the bounding box is 100 ×
100. The number of elements is 40. The allowed activity in location is up to 3 pixels. The allowed
activity in orientation is up to π/15.

Figure 30: Experiment 5c. The top two part-templates learned after the sizes of the input images
are doubled. The parameters are the same as in Figure (29)

parts. If the bounding boxes are given as in Experiment 1, we can restrict the ranges of movements
of parts in the training images, so that in the detection step, we do not need to search over the
whole images. If the bounding boxes are not given as in Experiment 5a, we can simultaneously
learn multiple parts while restricting their relative positions, and this is very much like a recursion
of Experiment 5a or 5b.

5.3 Learning moving template from motion sequence

Our method can also be used to learn a moving deformable template from a video sequence. Let
(It, t = 1, ..., M) be a sequence of frames of an object shape that is moving at a speed v = (vx, vy).
We can estimate v and learn a template of the object shape simultaneously.

At the true speed v = (vx, vy), let J(v)
t (x, y) = It(x + vxt, y + vyt), i.e., for frame t, we shift

the image lattice back by vt, then the object shapes in {J(v)
t , t = 1, ..., M} will be well aligned. If

we apply the shared sketch algorithm to {J(v)
t }, we shall learn a clean template that has a high

38

alignment score. We can try all possible v, and choose the v that achieves the maximum alignment
score, i.e., we maximize

ALIGN
(
J(v)

t , t = 1, ..., M
)

(37)

over v. This is actually a simpler problem than learning from non-aligned images.

−4 −3.5 −3 −2.5 −2 −1.5 −1
420

440

460

480

500

520

540

560

580
Alignment score vs Velocity

Velocity

S
co

re

Figure 31: Experiment 6.1. Alignment scores at different speeds of the optimal direction.

In our experiment, we use active correlation (see Subsection (3.7)) to evaluate the alignment
score (37). Before computing this score, we need to do background subtraction. First, we com-
pute the background SUM1: SUM10(x, y, s, α) =

∑M
t=1 SUM1t(x, y, s, α)/M . Then we modify

SUM1t(x, y, s, α) ← [SUM1t(x, y, s, α) − SUM10(x, y, s, α)]+, where [r]+ = r if r > 0 and [r]+ = 0
otherwise. For each v, we compute the alignment score of the background subtracted SUM1 maps
using the shared sketch algorithm.

Experiment 6. We learn the moving template from a sequence of 19 frames of size 204 × 258.
The image sequence is cropped from the PETS 2006 benchmark data. We try 5 different directions
vx/vy, and at each direction, we try 7 different speeds. Figure (31) displays the alignment scores
at different speeds of the optimal direction.

Figure (32) displays the learned template and the superposed sketch for each frame at the
optimal speed and direction.

Figure (33) displays another example.
The method may be extended to learn animated templates, where each basis element is endowed

with its own speed on top of a global velocity of the whole template. An action may be modeled by
a hidden Markov transition through a sequence of animated templates. The learning and inference
involves alignments in both spatial and temporal domains.

6 Clustering and Local Learning

In this section, we study the problem of clustering, where we need to learn multiple templates from
the training sample, which is a mixture of different poses or different categories. Unlike conventional

39

Figure 32: Experiment 6.1. Learned template and superposed sketch for each frame at the optimal
speed and direction. There are 19 frames of size 204 × 258. Number of elements is 70.

Figure 33: Experiment 6.2. Learned template and superposed sketches at the optimal speed. The
image frames are 180 × 186. Number of elements is 80.

clustering problem, we not only need to separate the examples into different clusters, but we also
need to learn the active basis for each cluster. These two tasks can be naturally integrated, and
they actually depend on each other.

6.1 EM and K-mean

Mixture model and EM. Suppose there are K categories, and each category k can be described by
an active basis model B(k) = (B(k)

i , i = 1, ..., n) and Λ(k) = (λ(k)
i , i = 1, ..., n). Let ρ(k) be the

probability that a training image Im comes from cluster k, k = 1, ...,K. So Im ∼ ∑K
k=1 ρ(k)p(k)(Im |

B(k)
m), i.e., a mixture distribution, where each p(k)(Im | B(k)

m) is modeled as in Subsection (3.1).
We can learn {ρ(k),B(k),Λ(k), k = 1, ...,K} by the EM algorithm [6]. For each image Im, we

define (z(k)
m , k = 1, ..., K) as an indictor vector, where z

(k)
m = 1 if Im comes from cluster k, otherwise

40

z
(k)
m = 0.

E-step. For each m = 1, ...,M and k = 1, ...,K, we impute

z(k)
m =

ρ(k) exp{SUM2(k)
m }

∑K
k=1 ρ(k) exp{SUM2(k)

m }
.

This is a soft classification based on the current models of the clusters, where each z
(k)
m becomes a

fraction. The SUM2(k)
m scores are obtained in the M-step.

M-step. For each k = 1, ...,K, we learn B(k) and Λ(k) according to the shared sketch algorithm
in Subsection (2.5). We only need to make the following changes to the original version of the
learning algorithm.

(1) In Step 3, find (xi, yi, αi) by maximizing
∑M

m=1 z
(k)
m h(MAX1(x, y, s, α)), which is a weighted

sum.
(2) In Step 3, compute λ̂i by

λ̂i = µ−1

(∑M
m=1 h(rm,i)z

(k)
m

∑M
m=1 z

(k)
m

)
, (38)

that is, we match µ(λi) to the weighted average.
(3) At the end of the algorithm, attach a superscript (k) to the resulting SUM2m and B.
We initialize the algorithm by randomly generating {z(k)

m }, and then iterate the M-step and the
E-step. We stop the algorithm after a few iterations. Then we classify Im to the cluster k∗ that
maximizes z

(k)
m over all k = 1, ...,K.

(a) (b)

Figure 34: Experiment 7.1. Learned templates from a mixture of 106 training images in Experiment
4. Image size is 120 × 150. Number of elements in each template is 40. Number of iteration is 4.
(a) EM. (b) K-mean.

Experiment 7. Figure (34.a) displays the templates B(k), k = 1, 2, 3, learned from the mixture
of three subsets of positive training images in Experiment 4. The EM algorithm can easily separate
the three clusters.

Figure (35.a) displays the learned templates B(k), k = 1, 2 from a mixture of images of horses
facing different directions. The EM algorithm separates the two clusters.

K-mean clustering. Our K-mean clustering scheme is different than the conventional ones, in
the sense that the mean vector is not a simple average, but obtained by the shared sketch algorithm.
The distance is not simple Euclidean distance, but is defined in terms of active correlation.

41

(a) (b)

Figure 35: Experiment 7.2. Learned templates for 57 images of horses facing two different directions.
Image size is 120 × 150. Number of elements in each template is 50. (a) EM with 4 iterations. (b)
K-mean with 8 iterations.

We can pose the clustering problem as the following alignment problem: find {(z(k)
m , k =

1, ..., K),m = 1, ..., M} to maximize

K∑

k=1

ALIGN
(
Im, z(k)

m = 1
)

, (39)

where ALIGN{Im, z
(k)
m = 1} is the alignment score of the k-th cluster. The computation of the

alignment score by the shared sketch algorithm also produces the template B(k) for the k-th cluster.
If we use active correlation to learn the template for each cluster and score the alignment within
each cluster, then the learned (B(k), Θ(k)) gives us an active mean vector V (k) =

∑n
i=1 θ

(k)
i B

(k)
i for

each cluster. The mean vector V (k) points to the center of the k-th cluster. The K-mean algorithm
is a greedy scheme that maximizes (39), and it iterates the following two steps:

(1) Given {(z(k)
m , k = 1, ..., K),m = 1, ..., M}, estimate the mean vector (B(k), Θ(k)) from

{Im, z
(k)
m = 1} for each k = 1, ..., K.

(2) Given {B(k), θ(k), k = 1, ..., K}, classify each image Im to a cluster k∗ that maximizes
〈Im | V (k)

m 〉 (see Equation (33)) over all k = 1, ..., K. Set z
(k∗)
m = 1, and set z

(k)
m = 0 for k 6= k∗.

The implementation of this K-mean algorithm is similar to the EM algorithm. We only need
to make the following modifications.

(1) Change the E-step: let z
(k∗)
m = 1 if k∗ achieves the maximum of SUM2(k)

m among all k =
1, ..., K, and set the the rest of z

(k)
m to 0.

(2) Change the M-step: for each k = 1, ..., K, compute SUM2m and estimate B and Θ for each
cluster k using the shared sketch algorithm that maximizes the active correlation (see Equation
(34)).

Figure (34.b) and Figure (35.b) display the learned templates B(k), k = 1, ...,K using K-mean
algorithm. We initialize the algorithm with random {z(k)

m }.
We also did a third experiment where we mix the positive training examples of head-shoulder

images and negative training examples. The EM and K-mean algorithms can still separate out many
of the positive training examples, although they also mistakenly include some negative examples
into the positive cluster.

Negative experience in Experiment 7. When the object shapes of different categories are not
very different, our method often fails to distinguish them if we start from random clustering.

42

The above difficulty is not caused by the model or the EM or K-mean iteration, but mainly
by the fact that random clustering gives poor initialization. We address this issue in the next
subsection.

6.2 Local learning of prototype templates

The EM and the K-mean clustering methods assume that the number of clusters is given. They
also assume that the clusters should be distinct from each other. The results of the algorithms
seem to be severely dependent on initialization. To address these problems, we develop a local
learning scheme by modifying the K-mean method in the previous subsection. Here the word
“local” means being local in the high dimensional image space. It does not mean being local in the
two-dimensional image lattice.

Local learning algorithm

Input: Training images {Im,m = 1, ...,M}.

Output: A prototype template (Bm, Λm) around each image Im.

1. Initialize template (Bm, Λm) by learning from the single image Im using the shared sketch
algorithm, with b1 = b2 = 0, i.e., no activity is allowed. Then restore b1 and b2 to their
normal values (e.g., b1 = 2 pixels, b2 = π/15).

2. Use (Bm,Λm) to score all the images, using the sum-max maps. Find the K (e.g., K = 5)
images with the highest SUM2 scores.

3. Re-learn (Bm,Λm) from the K images identified in Step 2, using the shared sketch algorithm.

4. Go back to Step 2, and stop after t iterations (e.g., t = 3).

In the above algorithm, Step 2 can be very fast, because it is only a linear combination of a
small number of MAX1 scores for each image. Step 3 can also be fast because learning is done on
a small number of nearest neighbors.

In Experiment 8.1, we learn local prototypes from an ensemble of 123 images of animal heads,
where K = 5. After learning all the 123 templates, we trim them to satisfy the constraint that the
K nearest neighbors of the remaining templates should not overlap (this may be too aggressive).
This leaves 15 templates.

Figure (36) shows the 15 templates. They are ordered by the alignment scores computed from
their respective K nearest neighbors.

Figure (37) shows the top 5 templates and their nearest neighbors.
Figure (38) shows another 4 templates and their nearest neighbors.
In Experiment 8.2, we mix the images in Experiments 1.3 and 1.4, and the first 12 images in

Experiment 3.2. The image length is 120. All the images share the same central horizontal line.

43

Figure 36: Experiment 8.1. The 15 locally learned prototypes. They are ordered by the alignment
scores computed from their respective nearest neighbors. Image size is 100 × 100. Number of
elements is 40. Number of iterations is 3 for learning each template. The allowed activity of
location is up to 2 pixels. The allowed activity of orientation is up to π/15.

Figure 37: Experiment 8.1. The top 5 templates and their neighbors.

Number of elements is 60. All the other parameters are the same as Experiment 8.1. The local
learning algorithm returns 3 prototypes after trimming. Figure (39) displays the three prototypes.
Figure (40) displays the three prototypes and their nearest neighbors.

In Experiment 8.3, we apply local learning to the images in Experiment 1.1. Again the allowed
activity in location is up to 2 pixels. The trimming is less aggressive. We only require that the
selected templates do not share their first 2 nearest neighbors. This leaves 10 prototypes, as shown
in Figure (41).

We can use such templates to initialize the EM algorithm or K-mean clustering. We can also
perform hierarchical clustering by merging clusters.

44

Figure 38: Experiment 8.1. Some other templates and their neighbors.

Figure 39: Experiment 8.2. The 3 representative templates locally learned. They are ordered by the
total alignment scores. The image length is 120. All the images share the same central horizontal
line. Number of elements is 60. All the other parameters are the same as Experiment 8.1

Figure 40: Experiment 8.2. The 3 templates and their corresponding 5 nearest neighbors.

The locally learned models may not represent distinct clusters, but they may actually define
local “patches” that can be embedded into a continuous “manifold.” Each locally learned active
basis identifies the local dimensions of this “manifold,” and these dimensions are non-linear in the
image space because of the allowed activities of the basis elements.

In local learning, we reduce the range of allowed activity, in order to get tighter clusters.

45

Figure 41: Experiment 8.3. The 10 locally learned templates. They are ordered by the total
alignment scores. The images are the same as in Experiment 1.1. The allowed activity in location
is up to 2 pixels. Here we require that the selected templates do not share their first 2 nearest
neighbors.

Specifically, we set b1 = 2 pixels, instead of 6 pixels as in Experiment 1. Even if a single template
with larger range of activities can account for most of the training data, the locally learned templates
with smaller range of activities may provide finer descriptions. Recognition happens at multiple
levels. For example, when we recognize a car, we may also recognize the type of the car. It is
unclear at which level the active basis model is most relevant.

Local learning seems very suitable for generative models. On the one hand, generative models
should be learned locally because they can only be expected to be locally correct. On the other
hand, generative models can be learned locally from a small number of neighboring examples,
because of the efficiency of generative learning. Local learning appears to lie between adaboost [7],
which is rule based, and SVM [3], which is example based. Unlike adaboost, the dimensions or
features are abstracted locally instead of globally. Unlike SVM, where the kernel functions are pre-
defined, the model and similarity are learned by abstracting from a local neighborhood. However,
it is still not entirely clear how to make use of local learning for various vision tasks.

7 Synthesis by Multi-scale Gabors and DoGs

In most of the experiments so far, we only analyze the images at a single scale. This may not be
sufficient for detection and classification, where we should learn templates at multiple scales and
combine the template matching scores. For instance, Figure (42) displays the template learned
from the deer images, where the basis elements are twice the size of the elements in Experiment 1.
We may combine these two templates for detection and classification.

In computer vision, researchers often distinguish between edges and regions. Actually, these
are two relative concepts in the frequency domain. While edges can be captured by high frequency
Gabor wavelets, the regions can be encoded by low frequency wavelets, including the difference of
Gaussian (DoG) wavelets. To account for both edges and regions, we need to combine Gabor and
DoG wavelet elements at multiple frequency bands.

In Experiment 9, we select the wavelet elements of active basis from a dictionary of Gabor and
DoG wavelets at different scales. We use the same shared sketch algorithm with sigmoid pursuit
index, except that we normalize the filter responses by marginal variance. After selecting the el-

46

Figure 42: The size of the Gabor wavelet elements are twice the size of the elements in Experiment
1. The number of elements is 15.

ements and record their responses, we use matching pursuit [12] to reconstruct the images. We
need to use matching pursuit for reconstruction because the selected elements are only approxi-
mately orthogonal to each other, so the projection coefficients and the reconstruction coefficients
are slightly different. The matching pursuit algorithm computes the reconstruction coefficients
from the project coefficients.

Figure 43: Experiment 9.1. The selected Gabor elements (illustrated by bars) at 3 different scales
and the selected DoG elements (illustrated by circles, and larger circles are darker than smaller
ones). The lengths of the Gabor elements are 35, 25, and 17 pixels respectively. The sizes of the
DoG elements are 77 and 55 respectively. The allowed activity of location is 4 pixels for both Gabor
and DoG elements.

Figure (43) displays the select Gabor and DoG elements. The Gabor elements are illustrated
by bars at different sizes, and the DoG elements are illustrated by circles. The radius of a circle is
about half of that of the blob represented by the corresponding DoG elements. Larger circles are
darker than smaller ones.

Figure (44) displays the reconstructed images. The DoG elements are necessary to account for
the large regional contrasts.

Figure (45) displays the reconstructed images with 150 wavelet elements. The reconstructed
images have more details than those in Figure (44). Alongside each reconstructed image, the
corresponding residual image is also displayed. One can still recognize the objects from the residual
images, suggesting that the model only explains away parts of the images.

Figures (46) - (49) display more examples. Ideally, the large Gabor and DoG elements gauge
the breadths of the edges, while the small Gabor elements gauge the sharpness of the edges. The
very large DoG elements may gauge the sizes of the regions, which are to be contoured by the
Gabor elements.

47

Figure 44: Experiment 9.1. The fist block displays all the 50 selected Gabor and DoG elements.
The smaller Gabors are illustrated by darker bars. The remaining blocks display the original images
and the corresponding reconstructed images. The image size is 102 × 100.

Figure 45: Experiment 9.1. The fist block displays all the 150 selected Gabor and DoG elements.
The remaining blocks display the reconstructed images and the corresponding residual images.

Despite the fact that DoG elements can account for the regional intensity contrast, we still need
to add local appearance variables to represent the local textures and smoothness in the interiors of
the regions.

48

Figure 46: Experiment 9.2. The fist block displays all the 50 selected Gabor and DoG elements.
The remaining blocks display the original 95 × 100 images and the corresponding reconstructed
images.

Figure 47: Experiment 9.3. The fist block displays all the 40 selected Gabor and DoG elements.
The remaining blocks display the 100 × 70 original images and the corresponding reconstructed
images.

8 Composing Multiple Part-Templates

For articulate objects, we need to represent them as compositions of part-templates at different
locations and resolutions.

8.1 Recursive active basis and recursive sum-max maps

An active basis is a composition of multiple Gabor wavelet elements, where each element is allowed
to shift its location and orientation. We can further compose multiple active bases, where each

49

Figure 48: Experiment 9.4. The fist block displays all the 40 selected Gabor and DoG elements.
The remaining blocks display the original 100 × 110 images and the corresponding reconstructed
images.

Figure 49: Experiment 9.5. The fist block displays all the 50 selected Gabor and DoG elements.
The remaining blocks display the original 100 × 100 images and the corresponding reconstructed
images.

active basis serves as a part-template that is allowed to change its overall location, orientation
and scale. We call such a structure a “recursive active basis,” which is a template that consists of
multiple part-templates. The following experiment illustrates the basic idea.

Figure (50.a) displays an image of size 330 × 496. Figure (50.b) displays the superposed sketch.
The template is learned in Experiment 3.1 from the bicycle images. See Figure (15). We split
the bicycle template in Figure (15) horizontally into two part-templates. The bounding box for
the part-template of the front wheel is 112 × 126. The bounding box for the part-template of the
back wheel is 86 × 76. We allow the two part-templates to locally shift horizontally, so these two
part-templates make up a recursive active basis. We then fit recursive template to the tandem bike
in Figure (50.a) and obtain the sketch in Figure (50.b).

Given the two part-templates, the inference can be accomplished by alternating the sum maps
and max maps as illustrated by Figure (51). Here we have two SUM2 maps, one for each part-
template. On top of each SUM2 map, there is also a MAX2 map. Then on top of the two MAX2
maps, a SUM3 maps is computed. After that a MAX3 score is obtained. These scores are computed
by a bottom-up process, and they answer the following questions:

50

(a) (b)

Figure 50: Experiment 10.1. (a) Input image of 330 × 496. (b) Superposed sketch. The bounding
box of the front wheel is 112 × 126. The bounding box of the back wheel is 86 × 76. The total
number of elements is 60.

SUM2 maps: Is there a part-template at this location?
MAX2 maps: Is there a part-template at a nearby location?
SUM3 map: Is there a certain composition of part-templates that form the whole template at

this location?
MAX3 score: Is there a composite template within the whole image?
If there is such a composite template, then a top-down process retrieves the location of the

whole template, and then retrieves the locations of the part-templates, and finally the elements of
the part-templates.

Inference by recursive sum-max maps

Input: Part-templates (B(j),Λ(j)), j = 1, 2. Their central locations (xj , yj) for j = 1, 2 in the
composite whole template. Testing image I.

Output: Detected location (x̂, ŷ) of the whole template in the testing image I, as well as the detected
locations (x̂j , ŷj) of the part-templates for j = 1, 2.

Up-1 For j = 1, 2, compute SUM2(x, y, j) using the inference algorithm of Subsection (2.4).

Up-2 For all (x, y) and j = 1, 2, compute

MAX2(x, y, j) = max
−bx ≤ ∆x ≤ bx

−by ≤ ∆y ≤ by

SUM2(x + ∆x, y + ∆y, j), j = 1, 2. (40)

Up-3 For all (x, y), compute

SUM3(x, y) =
2∑

j=1

MAX2(x + xj , y + yj , j).

51

Figure 51: Sum-max maps. A SUM2 map is computed for each part-template. For each SUM2
map, a MAX2 map is computed by applying a local maximization operator to the SUM2 map.
Then a SUM3 map is computed by summing over the two MAX2 maps. The SUM3 map scores the
template matching, where the template consists of two part-templates that are allowed to locally
shift their locations.

Up-4 Compute MAX3 = maxx,y SUM3(x, y).

Down-4 Retrieve (x̂, ŷ) that achieves the maximum in Up-4.

Down-3 Retrieve (x̂ + xj , ŷ + yj) in Up-3 for j = 1, 2.

52

Down-2 Retrieve (x̂j , ŷj) so that

MAX2(x̂ + xj , ŷ + yj , j) = SUM2(x̂j , ŷj , j),

in the local maximization operation (40) in Up-2.

Down-1 Retrieve the perturbed elements of j-th part-template for j = 1, 2, as described in the inference
algorithm of Subsection (2.4).

In our experiment, in Step Up-2, we take bx = 20 pixels and by = 4 pixels. Let (x1, y1) and
(x2, y2) be the central positions of the bounding boxes for the two part-templates in the original
template learned from regular bicycles. Assume x1 < x2, we let x1 ← x1 − bx, x2 ← x2 + bx, and
let the two part-templates shift around the new centers (x1, y1) and (x2, y2).

20 40 60 80 100 120 140 160
180

190

200

210

220

230

240
MAX3 score vs Split point

Split point

M
A

X
3

Figure 52: Experiment 10.1. MAX3 scores for different splitting points.

The MAX3 score in Up-4 measures the template matching, or the alignments of the two part-
templates to the images. This MAX3 score can be used to decide where we should split the original
bicycle template. Specifically, we can try different splitting points, and for each splitting point, we
compute the MAX3 score. Figure (52) displays the MAX3 scores for 10 different splitting points.
The result shown in Figure (50.b) is obtained at the splitting point that achieves the maximum
MAX3 score.

In this experiment, we set the response of a basis element to 0 if it is outside the boundary of the
image. The SUM2 maps are of the same size as the original image. If the center of a part-template
is outside the image boundary, we set the responses of all its basis elements to 0. The SUM3 map
is also of the same size as the original image.

The recursive active basis can be considered a constellation model [19] whose constituent com-
ponents are active basis. The MAX2 and SUM2 maps may have been commonly used in part-based
models. Thanks to the work of Riesenhuber and Poggio [15], we are able to extend the SUM and
MAX operations down to the image intensities.

53

8.2 Account for large deformations

The recursive active basis and recursive sum-max maps can account for the existence of parts, as
illustrated in Experiment 10.1. They can also be used to deal with large deformations.

(a) (b) (c)

Figure 53: Experiment 10.2. (a) The observed image. (b) Superposed with sketch where the horse
template is split horizontally into two part-templates. These two part-templates are allowed to
move horizontally up to 10 pixels in each direction. (c) Superposed with sketch using the original
horse template. In other words, the two part-templates are not allowed to move relative to each
other.

Figure (53.a) displays the image of horse that we used in Experiment 3.2, where we change the
aspect ratio of the horse template to fit this image. From a 2D point of view, this amounts to a large
deformation that cannot be handled by a single-layer active basis model. However, we still can use
the same method in Experiment 10.1 to split the original horse template into two part-templates,
and allow these two part-templates to move relative to each other. Figure (53.b) displays the result
of fitting the recursive active basis at the optimal splitting point. As a comparison, Figure (53.c)
displays the result using the original template. The original template does not fit the rear part of
the horse very well.

Correlated activities. In active basis model, we assume that the perturbations are independent
and uniformly distributed within a small range. This leads to the simple inference algorithm based
on the sum-max maps. The computational complexity is linear in the size of the image. The
recursive active basis can be considered a scheme to account for correlated activities, where those
elements that belong to the same part-template share a common overall movement, in addition to
their perturbations relative to the overall location of the part-template.

9 Discussion

In this paper, we illustrate the potential of the active basis model with a variety of examples.
These examples are merely suggestive. Far more empirical experiences are needed in order to better
understand the limitations and inadequacies of the model, so that the model can be improved and

54

fine-tuned. For one thing, the current model focuses on the sketch variables of the image, and
ignores the appearance variables such as textures, smoothness and lighting.

In retrospect, we find the following three principles relevant and helpful.

9.1 Sparsity

Olshausen and Field [14] propose this principle for understanding V1 simple cells, where a typical
natural image can be represented by a linear superposition of a small number of Gabor-like wavelet
elements at different scales, locations, and orientations, plus a small residual image. The reason
for such a sparse representation is that edges are prominent and frequently occurring structures in
natural images.

The active basis model can be considered a further sparsification. The reason is as follows.
In Olshausen-Field representation, each image is encoded by a set of locations, orientations, and
scales of wavelet elements. We can further encode these locations, orientations, and scales by an
even smaller number of templates, each being a composition of locations, orientations, and scales.
The reason for such a sparser representation is that those templates are prominent and frequently
occurring structures in natural images. In Olshausen-Field representation, we need to allow for
small residuals in image intensities. Similarly, in this template representation, we need to allow for
small residuals in locations, orientations, and scales. Such small residuals become the perturbations
in the active basis model, so that the templates are deformable.

9.2 Compositionality

S. Geman et al. [9] propose this principle for vision. If we want a compositional representation of
image intensities and if we insist on linear representation for simplicity, then it is natural to adopt
wavelet representation because the wavelet elements are localized in both spatial and frequency
domains. The active basis model follows such a compositional scheme.

Zhu and Mumford [25] investigate the and-or graph as a recursive compositional scheme for
vision, where “and” accounts for compositions of constituent elements, while “or” accounts for
variations in the constituent elements. The active basis model is a simplest form of an and-or
graph, where “and” means composition of wavelet elements, and “or” means variations in the
locations and orientations of the elements. The and-or graph is a grammar that can be applied
recursively. The recursive active basis follows such a grammar.

The recursive sum-max maps is a variation of the cortex-like structure proposed by Riesenhuber
and Poggio [15]. It is a natural hierarchical structure for parsing an image according to the and-
or grammar. The sum maps score the and-compositions, and the max maps account for the
or-variations. After bottom-up scoring for detection and classification, the top-down retrieving
produces the parsing of the image. See also the recent work of L. Zhu et al. [23] on a recursive
compositional scheme.

55

9.3 Invariance

Riesenhuber and Poggio [15] propose this principle for V1 complex cells. While the V1 simple cells
capture the essence of the image intensities via Olshausen-Field sparse coding, the local maximiza-
tion operation of the V1 complex cells filters out shape deformations, and makes the subsequent
processing invariant to shape deformations. Of course, invariance here is only approximate.

The Riesenhuber-Poggio scheme compares intensities of the MAX1 maps directly for template
matching. We modified their template matching scheme by a weighted sum of the MAX1 intensities
at highly selected locations and orientations. If the locations and orientations of the selected wavelet
elements are at the centers of the local perturbations that cause shape deformation, then hopefully,
the intensities of the MAX1 maps of these highly selected locations and orientations are more
invariant (and more indicative of the object shapes) than the intensities of other locations and
orientations.

Acknowledgement

We are grateful to the reviewer for the helpful comments and suggestions. We thank Chuck Flem-
ing for earlier collaboration on some of the experiments. We thank Alan Yuille, Stefano Soatto,
Zhuowen Tu, and Leo Zhu for discussions. The work is supported by NSF-DMS 0707055, NSF-
IIS 0713652, ONR N00014-05-01-0543, and Keck foundation. We acknowledge the use of data
sets provided by the Lotus Hill Institute, which is supported by a Chinese National 863 grant
2006AA01Z121 and an NSFC grant 60728203.

References

[1] Y. Amit, and A. Trouve, “POP: Patchwork of parts models for object recognition,” International Journal
of Computer Vision, 75, 267-282, 2007.

[2] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23, 681-685, 2001.

[3] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, 20, 273-297, 1995.

[4] J. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized
by two-dimensional visual cortical filters,” Journal of Optical Society of America, 2, 1160-1169, 1985.

[5] S. Della Pietra, V. Della Pietra, and J. Lafferty, “Inducing features of random fields,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19, 380-393, 1997.

[6] A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelihood from incomplete data via the EM
algorithm,” Journal of the Royal Statistical Society, B, 39, 1-38, 1977.

[7] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application
to boosting,” Journal of Computer and System Sciences, 55, 119-139, 1997.

[8] J. H. Friedman, “Exploratory projection pursuit,” Journal of the American Statistical Association, 82,
249-266, 1987.

56

[9] S. Geman, D. F. Potter, and Z. Chi, “Composition system,” Quarterly of Applied Math, 60, 707-736,
2002.

[10] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of
Computer Vision, 1, 321-331, 1988.

[11] M. Lades, J. C. Vorbrggen, J. M. Buhmann, J. Lange, C. von der Malsburg, R. P. Wrtz, and W.
Konen, “Distortion invariant object recognition in the dynamic link architecture,” IEEE Transactions
on computers, 42, 300-311, 1993

[12] S. Mallat and Z. Zhang, “Matching pursuit in a time-frequency dictionary,” IEEE Transactions on
Signal Processing, 41, 3397-415, 1993.

[13] J. Mutch and D. G. Lowe, “Multiclass object recognition with sparse, localized features,” Proceedings
of Computer Vision and Pattern Recognition, 2006.

[14] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a
sparse code for natural images,” Nature, 381, 607-609, 1996.

[15] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in cortex,” Nature Neuro-
science, 2, 1019-1025, 1999.

[16] Z. Tu, “Learning generative models via discriminative approaches,” Proceedings of IEEE Computer
Vision and Pattern Recognition, 2007.

[17] S. Ullman, High-Level Vision: Object Recognition and Visual Cognition, The MIT Press, 1996.

[18] P. A. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer
Vision, 57, 137-154, 2004.

[19] M. Weber, M. Welling and P. Perona, “Towards automatic discovery of object categories,” Proceedings
of Computer Vision and Pattern Recognition, 2000.

[20] Y. N. Wu, C. Guo, S. C. Zhu, “From information scaling of natural images to regimes of statistical
models,” Quarterly of Applied Math, 66, 81-122, 2008.

[21] Y. N. Wu, S.C. Zhu, and X. Liu, “Equivalence of Julesz ensemble and FRAME models,” International
Journal of Computer Vision, 38, 245-261, 2000.

[22] A. L. Yuille, P. W. Hallinan, and D. S. Cohen, “Feature extraction from faces using deformable tem-
plates,” International Journal of Computer Vision, 8, 99-111, 1992.

[23] L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille, “Unsupervised structure learning: hierarchical recur-
sive composition, suspicious coincidence and competitive exclusion,” Proceedings of European Conference
of Computer Vision, 2008.

[24] S. C. Zhu, C. E. Guo, Y. Z. Wang, and Z. J. Xu, “What are textons,” International Journal of Computer
Vision, 62, 121-143, 2005.

[25] S. C. Zhu and D. B. Mumford, “A stochastic grammar of images,” Foundations and Trends in Computer
Graphics and Vision, 2, 259-362, 2006.

[26] S. C. Zhu, Y. N. Wu, and D. B. Mumford, “Minimax entropy principle and its applications in texture
modeling,” Neural Computation, 9, 1627-1660, 1997.

57

