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Abstract.

This article proposes an unsupervised method for learning compositional sparse code

for representing natural images. Our method is built upon the original sparse coding

framework where there is a dictionary of basis functions often in the form of localized,

elongated and oriented wavelets, so that each image can be represented by a linear com-

bination of a small number of basis functions automatically selected from the dictionary.

In our compositional sparse code, the representational units are composite: they are

compositional patterns formed by the basis functions. These compositional patterns can

be viewed as shape templates. We propose an unsupervised learning method for learning

a dictionary of frequently occurring templates from training images, so that each training

image can be represented by a small number of templates automatically selected from

the learned dictionary. The compositional sparse code approximates the raw image of a

large number of pixel intensities using a small number of templates, thus facilitating the

signal to symbol transition and allowing a symbolic description of the image. The current

form of our model consists of two layers of representational units (basis functions and

shape templates). It is possible to extend it to multiple layers of hierarchy. Experiments

show that our method is capable of learning meaningful compositional sparse code, and

the learned templates are useful for image classification.
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1. Introduction.

1.1. Motivation and objectives. As illustrated by Figure 1, the ancient Chinese devel-

oped the early form of Chinese characters as a coding scheme for representing natural

images where each character is a pictorial description of a pattern. The early pictorial

form then gradually evolved into the form that is in use today. The system of Chinese

characters can be considered a compositional sparse code: each natural image can be de-

scribed by a small number of characters selected from the dictionary, and each character

is a composition of a small number of strokes (the strokes become more pronounced in

the more evolved forms of the Chinese characters).

Fig. 1. Chinese characters evolved from representations of natural

images of objects and scenes [19]. In each row, the first block shows

a picture of the object, and the rest four blocks display the evolution
of the corresponding Chinese character over time. Left panel: bird,

chicken, fish, elephant and goat. Right panel: sun, moon, water,

mountain and wood.

The goal of this paper is to develop a compositional sparse code for natural images.

Our coding scheme can be viewed as a mathematical realization of the system of the

Chinese characters. In our compositional sparse code, each “stroke” is a linear basis

function such as a Gabor wavelet [6] (see Figure 2 for an illustration), and each “charac-

ter” is a compositional pattern or a shape template formed by a small number of basis

functions. We propose an unsupervised learning method for learning frequently occur-

ring templates from training images, so that each training image can be represented by

a small number of templates automatically selected from the learned dictionary. Our

current compositional sparse code is not a lossless code yet, and it provides approxima-

tions to the original images. It translates the original raw image of a large number of

pixel intensities into a small number of templates, thus facilitating the signal to symbol

transition and allowing a symbolic description of the image. Our experiments show that

our method is capable of learning meaningful compositional sparse code. Experiments

also show that the learned templates can be useful for image classification. For example,

it enables us to learn meaningful “words” in the so-called “bag-of-words” classification

scheme.
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(a) (b) (c)

Fig. 2. The Gabor wavelets are Gaussian modulated sine and cosine

waves. They serve as basis functions that can be linearly combined to
represent natural images. (a) A sample of Gabor wavelets at different

locations, orientations and scales. (b) A Gabor sine wavelet. (c) A
Gabor cosine wavelet. The Gabor wavelets can be truncated to have

finite support (and length).

(a) (b) (c) (d) (e)

Fig. 3. Unsupervised learning of compositional sparse code (a,b,c)

and using it for recognition and segmentation (d,e). (a) Training im-
age of 480 × 768 pixels. (b) Above: 2 compositional patterns (twig

and leaf) in the form of shape templates learned from the training

image. Size of each template is 100 × 100 pixels. Number of basis
functions in each template is no more than 40 and is automatically

determined. Below: Representing the training image by translated,
rotated, scaled and deformed copies of the 2 templates. (c) Super-

posing the deformed templates on the original image. Green squared

boxes are bounding boxes of the templates. (d) Testing image. (e)
Representation (recognition) of the testing image by the 2 templates.

Figure 3 illustrates the basic idea. We start with a dictionary of Gabor wavelets

centered at a dense collection of locations and tuned to a collection of scales and ori-

entations. In Figure 3, each Gabor wavelet is illustrated by a bar at the same location

and with the same length and orientation as the corresponding wavelet. Figure 3.(a)

displays the training image. (b) displays a mini-dictionary of 2 compositional patterns

of wavelets learned from the training image. Each compositional pattern is a template

formed by a group of a small number of wavelets at selected locations and orientations.

The learning is unsupervised in the sense that the images are not labeled or annotated.

The number of templates in the dictionary is automatically determined by an adjusted

Bayesian information criterion. The 2 templates are displayed in different colors, so that

it can be seen clearly how the translated, rotated, scaled and deformed copies of the 2
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templates are used to represent the training image, as shown in (b). In (c), the tem-

plates are overlaid on the original image, where each green squared box is the bounding

box of the template. In our current implementation, we allow some overlap between the

bounding boxes of the templates. The templates learned from the training image can be

generalized to testing images, as shown in (d) and (e).

Fig. 4. Another example. Four compositional patterns (templates)
are learned unsupervisedly from 20 training images (just 6 of them

are shown in figure). The bounding box size for each of the tem-

plates is 100× 100. The numbers of basis functions (Gabor wavelets
in our experiments) are less than 40, and the actual numbers are

automatically determined.

Figure 4 shows another example, where part templates of egrets and templates of

water waves and grasses are learned from 20 training images without supervision. That

is, the training images are not registered, in that we do not assume that the objects in

the training images appear at the same location and scale. It is interesting to observe

that in this example, the unsupervised learning also accomplishes image segmentation,

object detection and perceptual grouping (e.g., grass pattern), which are important tasks

in vision.

Our compositional sparse code combines two fundamental principles in image rep-

resentation and computational vision, namely, sparsity and compositionality. We shall

briefly review these two principles below and then give an overview of our methodology.

1.2. Sparsity and its limitation. Recent years have seen a flurry of research activities

on sparsity in applied mathematics, statistics and machine learning. Sparsity also plays

a fundamental role in representing natural images (mathematically, each image can be

considered a function defined on a two-dimensional domain, such as a lattice). According

to the sparsity principle [26], there is a dictionary of basis functions defined on the same

image domain, so that each natural image can be represented by a linear superposition

of a small number of basis functions automatically selected from the dictionary. By

enforcing sparsity, Olshausen and Field [26] were able to learn a dictionary of basis

functions from natural image patches, and these basis functions resemble Gabor wavelets

at different locations, orientations and scales. The Gabor wavelets are considered a

mathematical model for the so-called simple cells in the primary visual cortex or V1 [6].
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Olshausen and Field proposed that the role of V1 is to infer sparse representations of

natural images.

The dictionary learned by Olshausen and Field is over-complete, meaning that the

number of basis functions in the dictionary is greater than the number of pixels in

the image domain. An advantage of such an over-complete dictionary is that the basis

functions in this redundant dictionary can afford to be specific enough so that each image

can be represented by only a small number of basis functions selected from the dictionary.

A popular method for selecting the basis functions from a given dictionary is matching

pursuit [22], which is a greedy algorithm that selects one basis function in each iteration,

which seeks the maximal reduction in the least squares reconstruction error. A related

method is basis pursuit [3] or Lasso [33], which selects the basis functions by solving a

penalized least squares problem where the penalty is in the form of the `1 norm of the

coefficients of the basis functions.

In the sparse coding framework, the basis functions in the dictionary exist individually

without any structures imposed on them, and the coefficients of these basis functions

are usually assumed to be independent of each other. Such simplified independence

assumption is clearly inadequate for modeling the wide varieties of patterns in natural

images. It is necessary to discover patterns and structures in the selected basis functions.

1.3. Compositionality and structured sparsity. The compositionality principle was pro-

posed in the context of computer vision by Geman, Potter, and Chi [15] and Zhu and

Mumford [42]. The principle holds that patterns in natural images are compositions of

parts, which are themselves compositions of sub-parts, and so on. An interesting example

cited by Geman et al. is Laplace’s remark that one strongly prefers to view the string

CONSTANTINOPLE as a single word, rather than 14 individual letters. This is also

the case with the basis functions in the sparse coding of natural images. Like letters

forming the words, the basis functions in the sparse representations of natural images

also form various compositional patterns in terms of their spatial arrangements. We call

such sparsity the compositional sparsity, which is a special form of structured sparsity.

Structured sparsity has received considerable attention in statistics and machine learn-

ing in recent years. The most prominent example is the group Lasso [38], which replaces

the `1 penalty of Lasso by a composite penalty based on the group structure among the

basis functions. In the group Lasso, the collection of the groups is assumed given. In

our work, however, we do not assume that the groups are given, and we seek to learn

dictionaries of the recurring compositional patterns in the spatial grouping of the basis

functions.

Any hierarchical compositional model will necessarily end with constituent elements

that cannot be further decomposed, and such elements may be called “atoms.” Interest-

ingly, the basis functions are commonly referred to as atoms in sparse coding literature,

and the sparse representation based on atoms is usually called “atomic decomposition”

[22, 8]. Compositionality enables us to compose atoms into composite representational

units, which leads to much sparser and thus more meaningful representations of the

signals.

The current form of our model consists of two layers of representational units (basis

functions and shape templates). It is possible to extend it to multiple layers of hierarchy.
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(a)

(b)

Fig. 5. (a) An active basis model is a composition of a small number

of basis functions, each is a Gabor wavelet and is illustrated by a bar

with the same location, orientation and length. Each basis function
can perturb its location and orientation. (b) Supervised learning of

active basis model from aligned images. In this example, two active

basis models are learned using Gabor wavelets at two different scales
(there is no variation in the aspect ratio of the Gabor wavelets used).

The first row displays the 9 training images. The second row: the

first plot is the nominal template formed by 50 basis functions. The
rest of the plots are the deformed templates matched to the images.

The third row: the same as the second row, except that the scale
of the Gabor wavelets is about twice as large, and the number of

wavelets is 14. The last row displays the linear reconstruction of
each training image from 100 selected and perturbed basis functions.

1.4. Overview of our methodology. In this article, we assume that the dictionary of

basis functions is given, and they are Gabor wavelets at a dense collection of locations,

orientations and scales. We focus on learning compositional patterns formed by these

basis functions. In principle, the basis functions can also be learned from training images.

We represent each compositional pattern of basis functions by an active basis model of

Wu et al. [37], which is a composition of a small number of basis functions automatically

selected from a given dictionary. The selected basis functions are allowed to perturb their

locations and orientations so that the linear basis formed by the selected basis functions

become active and the active basis can be viewed a deformable template. Figure 5

illustrates the basic idea of the active basis model.

Wu et al. mainly studied the problem of learning a single active basis model from a

set of aligned training images, where the images are defined on the same bounding box,
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and the objects in the images are from the same category, in the same pose, and appear

at the same location and scale. The learning of the active basis model in this situation

can be called supervised learning.

Our work goes far beyond Wu et al. In our work, the training images are not assumed

to be aligned, and each image can be represented by multiple active basis templates.

That is, the active basis models serve as the composite representational units in our

compositional sparse code. For a given set of training images, our method is to learn a

dictionary of active basis templates, so that each training image can be represented by

a small number of templates that are translated, rotated, scaled and deformed copies of

the learned templates in the dictionary.

The unsupervised learning algorithm is initialized from random templates. The algo-

rithm then iterates the following two steps:

(1) Image encoding: Encode each training image by translated, rotated, scaled and

deformed copies of the templates in the current dictionary, by a template match-

ing pursuit process.

(2) Dictionary learning: Re-learn each template from image patches currently en-

coded by this template, by a shared matching pursuit process.

The rest of the paper is organized as follows. Section 2 reviews the original sparse

coding framework and the active basis model. Section 3 presents our representational

scheme and the unsupervised learning algorithm. Section 4 describes experimental results

on image representation and classification. Section 5 concludes with a discussion.

2. Background: sparse coding model and active basis model. This section

reviews sparse coding model and the active basis model in order to fix the notation and

set the stage for presenting our model and learning algorithm in the next section.

2.1. Olshausen-Field model for sparse coding. Olshausen and Field [26] proposed that

the role of simple V1 cells is to compute sparse representations of natural images. Let

{Im,m = 1, ...,M} be a set of small image patches. For example, they might be 12× 12

patches, in which case Im ∈ R12×12. We may think of each Im as a two-dimensional

function defined on the 12 × 12 lattice. The Olshausen-Field model seeks to represent

these images by

Im =

N∑

i=1

cm,iBi + Um, (2.1)

where (Bi, i = 1, ..., N) is a dictionary of basis functions defined on the same image lattice

(e.g., 12× 12) as Im, cm,i are the coefficients, and Um is the unexplained residual image.

N is often assumed to be greater than the number of pixels in Im, so the dictionary is

said to be over-complete and is therefore redundant. However, the number of coefficients

(cm,i, i = 1, ..., N) that are non-zero (or significantly different from zero) is assumed to

be small (e.g., less than 10) for each image Im.

Geometric attributes. One may also assume that the basis functions in the dictionary

are translated, rotated and dilated versions of one another, as in [27], so that each Bi can

be written as Bx,s,α, where x is the location (a two-dimensional vector), s is the scale,
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and α is the orientation. We call such a dictionary self-similar, and we call (x, s, α) the

geometric attribute of Bx,s,α.

Model (2.1) then becomes

Im =
∑

x,s,α

cm,x,s,αBx,s,α + Um, (2.2)

where Bx,s,α are translated, rotated and dilated copies of a single basis function, e.g.,

B = Bx=0,s=1,α=0, and (x, s, α) are properly discretized (default setting: α is discretized

into 16 equally spaced orientations). B can be learned from training images {Im} [27].

Assumption on basis functions in this paper. From now on, we assume that the dic-

tionary of basis functions is self-similar, and {Bx,s,α,∀(x, s, α)} is already given. In the

following, we assume that Bx,s,α is a Gabor wavelet, and we also assume that Bx,s,α
is normalized to have unit `2 norm so that |Bx,y,α|2 = 1. Bx,s,α may also be a pair

of Gabor sine and cosine wavelets, so that for each Gabor wavelet B, B = (B0, B1).

The corresponding coefficient c = (c0, c1), and cB = c0B0 + c1B1. The projection

〈I, B〉 = (〈I, B0〉, 〈I, B1〉), and |〈I, B〉|2 = 〈I, B0〉2 + 〈I, B1〉2.

Spatial point process. Given the dictionary (Bx,s,α,∀(x, s, α)), the encoding of an

image Im amounts to inferring (cm,x,s,α,∀(x, s, α)) in (2.2) under the sparsity constraint,

which means that only a small number of (cm,x,s,α) are non-zero. That is, we seek to

encode Im by

Im =

n∑

i=1

cm,iBxm,i,sm,i,αm,i + Um, (2.3)

where n � N is a small number, and (xm,i, sm,i, αm,i, i = 1, ..., n) are the geometric

attributes of the selected basis functions whose coefficients (cm,i) are non-zero. The

attributes (xm,i, sm,i, αm,i, i = 1, ..., n) form a spatial point process (we continue to use i

to index the basis functions, but here i only runs through the n selected basis functions

instead of all the N basis functions as in (2.1)).

2.2. Active basis model for shared sparse coding of aligned image patches. The active

basis model was proposed by Wu et al. [37] for modeling deformable templates formed

by basis functions.

Suppose we have a set of training image patches {Im,m = 1, ...,M}. This time we

assume that they are defined on the same bounding box, and the objects in these images

come from the same category. In addition, these objects appear at the same location,

scale and orientation, and in the same pose. See Figure 5 for 9 image patches of deer.

We call such image patches aligned.

The active basis model is of the following form

Im =

n∑

i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i
+ Um, (2.4)

where B = (Bxi,s,αi , i = 1, ..., n) form the nominal template of an active basis model

(sometimes we simply call B an active basis template). Here we assume that the scale s

is fixed and given. Bm = (Bxi+∆xm,i,s,αi+∆αm,i
, i = 1, ..., n) is the deformed version of

the nominal template B for encoding Im, where (∆xm,i,∆αm,i) are the perturbations of

the location and orientation from the nominal location xi and the nominal orientation αi
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respectively. The perturbations are introduced to account for shape deformation. Both

∆xm,i and ∆αm,i are assumed to vary within limited ranges (default setting: ∆xm,i ∈
[−3, 3] pixels, and ∆αm,i ∈ {−1, 0, 1} × π/16).

2.3. Prototype algorithm. Given the dictionary of basis functions {Bx,s,α,∀x, s, α}, the

learning of the active basis model from the aligned image patches {Im} involves the se-

quential selection ofBxi,s,αi
and the inference of its perturbed versionBxi+∆xm,i,s,αi+∆αm,i

in each image Im. We call the learning as supervised, because the bounding boxes of

the objects are given and the images are aligned. See Figure 5 for an illustration of the

learning results.

In this subsection, we consider a prototype version of the shared matching pursuit

algorithm, which is to be revised in the following subsections. The reason we start from

this prototype algorithm is that it is simple and yet captures the key features of the

learning algorithm.

The prototype algorithm is a greedy algorithm that seeks the maximal reduction of

the following least squares reconstruction error in each iteration (recall that the basis

functions are normalized to have unit `2 norm):

M∑

m=1

|Im −
n∑

i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i |2. (2.5)

[0] Initialize i← 0. For m = 1, ...,M , initialize the residual image Um ← Im.

[1] i← i+ 1. Select the next basis function by

(xi, αi) = arg max
x,α

M∑

m=1

max
∆x,∆α

|〈Um, Bx+∆x,s,α+∆α〉|2,

where max∆x,∆α is local maximum pooling within the small ranges of ∆xm,i and ∆αm,i.

[2] For m = 1, ...,M , given (xi, αi), infer the perturbations in location and orientation

by retrieving the arg-max in the local maximum pooling of step [1]:

(∆xm,i,∆αm,i) = arg max
∆x,∆α

|〈Um, Bxi+∆x,s,αi+∆α〉|2. (2.6)

Let cm,i ← 〈Um, Bxi+∆xm,i,s,αi+∆αm,i〉, and update the residual image by explaining

away:

Um ← Um − cm,iBxi+∆xm,i,s,αi+∆αm,i . (2.7)

[3] Stop if i = n, else go back to step [1].

Simultaneous (or collaborative) sparse approximation of multiple signals has been

proposed in harmonic analysis and signal processing literature [4, 32]. However, pertur-

bations of selected basis functions are not considered in [4, 32].

Assumption on orthogonality in this paper. In Equation (2.7), the perturbed basis

function Bxi+∆xm,i,s,αi+∆αm,i
explains away part of Um. As a result, nearby basis func-

tions that overlap with Bxi+∆xm,i,s,αi+∆αm,i tend not to be selected in future iterations.

So the basis functions selected for each deformed template Bm = (Bxi+∆xm,i,s,αi+∆αm,i
, i =

1, · · · , n) usually have little overlap with each other. For computational and modeling

convenience, we shall assume that these selected basis functions are orthogonal to each

other, so that the coefficients can be obtained by projection: cm,i = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i
〉.
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Correspondingly, the explaining-away step can then be carried out by local inhibition.

Specifically, after we identify the perturbed basis function Bxi+∆xm,i,s,αi+∆αm,i
, we sim-

ply prohibit nearby basis functions that are correlated with Bxi+∆xm,i,s,αi+∆αm,i
from

being included in the deformed template Bm. In practice, we allow small correlations

between the basis functions in each Bm.

2.4. Statistical modeling. The above algorithm guided by (2.5) implicitly assumes that

the unexplained background image Um is Gaussian white noise. This assumption can

be problematic because the unexplained background may contain salient structures such

as edges, and the Gaussian white noise distribution clearly cannot account for such

structures. This is why we need to revise the above algorithm which is based on the

Gaussian white noise assumption. A better assumption is to assume that Um follows the

same distribution as that of natural images.

Density substitution. More precisely, the distribution of Im given the deformed tem-

plate Bm = (Bxi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n), i.e., p(Im | Bm), is obtained by modifying

the distribution of natural images q(Im) in such a way that we only change the distribu-

tion of Cm = (cm,i = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i
〉, i = 1, ..., n) from q(Cm) to p(Cm), while

leaving the conditional distribution of Um given Cm unchanged. Here p(Cm) and q(Cm)

are the distributions of Cm under p(Im | Bm) and q(Im) respectively. Thus the model

is in the form of foreground p(Cm) popping out from background q(Im). Specifically,

p(Im | Bm) = q(Im)p(Cm)/q(Cm).

Such a density substitution scheme was first used in projection pursuit density esti-

mation [14], see also [16]. The reason for such a form is as follows. Cm is the projection

of Im into Bm. Let Um be the projection of Im into the remaining subspace that is

orthogonal to Bm. Then p(Im | Bm)/q(Im) = p(Cm, Um)/q(Cm, Um) = p(Cm)/q(Cm).

The second equality follows from the assumption that p(Um|Cm) = q(Um|Cm), i.e., we

keep the conditional distribution of Um given Cm fixed.

For computational simplicity, we further assume (cm,i = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i
〉, i =

1, ..., n) are independent given Bm, under both p and q, so

p(Im | Bm) = q(Im)

n∏

i=1

pi(cm,i)

q(cm,i)
,

where q(c) is assumed to be the same for i = 1, ..., n because q(Im) is translation and

rotation invariant. q(c) can be pooled from natural images in the form of a histogram

of Gabor filter responses. This histogram is heavy-tailed because of the edges in natural

images.

Exponential family model. For parametric modeling, we model pi(cm,i)/q(cm,i) in

the form of exponential family model. Specifically, we assume the following exponential

family model pi(c) = p(c;λi), which is in the form of exponential tilting of the reference

distribution q(c):

p(c;λ) =
1

Z(λ)
exp{λh(|c|2)}q(c), (2.8)

so that p(c;λ)/q(c) is in the exponential form. We assume λi > 0. h(r) is a sigmoid-

like function of the response r = |c|2 that saturates for large r (recall that the Gabor
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filter response c = (c0, c1) consists of responses from the pair of Gabor sine and cosine

wavelets, and |c|2 = c20 + c21). Specifically, we assume that h(r) = ξ[2/(1 + e−2r/ξ) − 1],

so h(r) ≈ r for small r, and h(r) → ξ as r → ∞ (default setting: ξ = 6). The reason

we want h(r) to approach a fixed constant for large r is that there can be strong edges

in both the foreground and background, albeit with different frequencies. p(c;λ)/q(c)

should approach the ratio between these two frequencies for large r = |c|2. In (2.8),

Z(λ) =

∫
exp{λh(r)}q(c)dc = Eq[exp{λh(r)}]

is the normalizing constant.

µ(λ) = Eλ[h(r)] =

∫
h(r)p(c;λ)dc

is the mean parameter. Both Z(λ) and µ(λ) can be computed beforehand from a set of

natural images.

Information theoretical interpretation. The exponential family model can be justi-

fied by the maximum entropy principle [28, 43, 16, 36]. Given the deformed template

Bm = (Bxi+∆xm,i,s,αi+∆αm,i
, i = 1, ..., n), consider the coefficients obtained by projec-

tion: (cm,i(Im) = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i
〉, i = 1, ..., n). Suppose we want to find a

probability distribution p(Im | Bm) so that E[h(|cm,i(Im)|2)] = µi for some fixed µi,

i = 1, ..., n, where µi can be estimated from the training images. Then among all the

distributions that satisfy the constraints on E[h(|cm,i(Im)|2)], the distribution that is

closest to q(Im) in terms of the Kullback-Leibler divergence is given by

p(Im | Bm) =
1

Z(Λ)
exp{

n∑

i=1

λih(|cm,i(Im)|2)}q(Im),

where Λ = (λi, i = 1, ..., n), Z(Λ) = Eq[exp{∑n
i=1 λih(|cm,i(Im)|2)] is the normalizing

constant, and Λ is chosen to satisfy the constraints on E[h(|cm,i(Im)|2)]. If we further

assume that cm,i(Im) are independent of each other for i = 1, ..., n under q(Im), then

cm,i(Im) are also independent under p(Im | Bm), and their distributions are of the form

(2.8).

In order to choose the nominal template B and the deformed templates {Bm,m =

1, ...,M}, we want p(Im | Bm) to be farthest from q(Im) in terms of Kullback-Leibler

divergence. From a classification point of view, we want to choose B and {Bm} so that

the features {h(|cm,i|2), i = 1, ..., n} lead to the maximal separation between training

images (e.g., images of deer) and generic natural images.

Log-likelihood ratio. The log-likelihood ratio between the current model p(Im|Bm)

and the reference model q(Im) is

l({Im} | B, {Bm},Λ) =

M∑

m=1

log
p(Im|Bm)

q(Im)
(2.9)

=

M∑

m=1

n∑

i=1

[
λih(|〈Im, Bxi+∆xm,i,s,αi+∆αm,i〉|2)− logZ(λi)

]
. (2.10)

The expectation of the above log-likelihood ratio is the Kullback-Leibler divergence be-

tween p(Im | Bm) and q(Im).
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Given the training images {Im,m = 1, ...,M}, ∑M
m=1 log q(Im) is a constant. Thus

maximizing the log-likelihood ratio
∑M
m=1 log p(Im | Bm,Λ)/q(Im) is equivalent to maxi-

mizing the log-likelihood
∑M
i=1 log p(Im | Bm,Λ). So in the following, with a slight abuse

of terminology, we occasionally refer to the log-likelihood ratio as the log-likelihood.

2.5. Shared matching pursuit. We revise the prototype algorithm in subsection (2.3)

so that each iteration seeks the maximal increase of the log-likelihood ratio (2.10) instead

of the maximum reduction of the least squares reconstruction error (2.5) as in subsection

(2.3). The revised version of the shared matching pursuit algorithm is as follows.

[0] Initialize i ← 0. For m = 1, ...,M , initialize the response maps Rm(x, α) ←
〈Im, Bx,s,α〉 for all (x, α).

[1] i← i+ 1. Select the next basis function by finding

(xi, αi) = arg max
x,α

M∑

m=1

max
∆x,∆α

h(|Rm(x+ ∆x, α+ ∆α)|2),

where max∆x,∆α is again local maximum pooling.

[2] For m = 1, ...,M , given (xi, αi), infer the perturbations by retrieving the arg-max

in the local maximum pooling of step [1]:

(∆xm,i,∆αm,i) = arg max
∆x,∆α

|Rm(xi + ∆x, αi + ∆α)|2.

Let cm,i ← Rm(xi + ∆xm,i, αi + ∆αm,i), and update Rm(x, α) ← 0 if the correlation

corr[Bx,s,α, Bxi+∆xm,i,s,αi+∆αm,i
] > ε (default setting: ε = .1). Then compute λi by

solving the maximum likelihood equation µ(λi) =
∑M
m=1 h(|cm,i|2)/M .

[3] Stop if i = n, else go back to step [1].

Esimtation of λi. For each candidate (xi, αi), the maximum likelihood equation

µ(λi) =
∑M
m=1 h(|cm,i|2)/M is obtained by taking the derivative of the log-likelihood

ratio, where µ(λi) = Eλi
[h(|c|2)] =

∫
h(|c|2)p(c;λi)dc is the mean parameter, and is a

monotone increasing function of λi > 0. So its inverse µ−1() is also a monotone in-

creasing function. λi is solved so that µ(λi) matches the empirical average of h(|cm,i|2),

m = 1, ...,M . The function µ() can be computed and stored over a discrete set of

equal-spaced values, so that λi can be solved by looking up these values with linear

interpolations between them.

Selection of (xi, αi). Because h() is monotonically increasing, the maximized log-

likelihood ratio is monotone in the estimated λi. The estimated λi is in turn mono-

tone in the
∑M
m=1 h(|cm,i|2)/M . So the maximized log-likelihood ratio is monotone in∑M

m=1 h(|cm,i|2)/M . Therefore, in step [1], (xi, αi) is chosen by maximizing the sum∑M
m=1 max∆x,∆α h(|Rm(x+ ∆x, α+ ∆α)|2) over all possible (x, α).

Arg-max inhibition. In step [2], the arg-max basis function inhibits nearby basis

functions to enforce the approximate orthogonality constraint. The correlation is defined

as the square of the inner product between the basis functions and can be computed and

stored beforehand.

Inference. After learning the template from training images {Im}, we can use the

learned template to detect the object in a testing image I.
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[1] For every pixel X, compute the log-likelihood ratio l(X), which serves as the

template matching score at putative location X:

l(X) =

n∑

i=1

[
λi max

∆x,∆α
h(|〈I, BX+xi+∆x,s,αi+∆α〉|2)− logZ(λi)

]
. (2.11)

[2] Find maximum likelihood location X̂ = arg maxX l(X). For i = 1, ..., n, inferring

perturbations by retrieving the arg-max in the local maximum pooling in step [1]:

(∆xi,∆αi) = arg max
∆x,∆α

|〈I, BX̂+xi+∆x,s,αi+∆α〉|2.

[3] Return the location X̂, and (BX̂+xi+∆xi,s,αi+∆αi
, i = 1, ..., n), which is the trans-

lated and deformed template.

Rotation and multi-resolution. We can rotate the template and scan the template

over multiple resolutions of the original image, to account for uncertainties about the

orientation and scale of the object in the testing image.

3. Compositional sparse code: model and algorithm. In the linear additive

sparse coding model Im =
∑N
i=1 cm,iBi + Um, the coefficients of the basis functions

in the dictionary are assumed to be independent. A natural question is how to cor-

rect this assumption. Since we argue that the Olshausen-Field model with a dictionary

of self-similar basis functions is essentially a spatial point process, we may search for

compositional patterns in the spatial arrangements of the basis functions with non-zero

coefficients.

In this section, we shall specify our compositional sparse coding model where each

representational unit is an active basis model. Then we shall describe the algorithm for

learning dictionaries of active basis models from training images.

3.1. Compositional sparse coding model. We strive to write down our model in an

analogous form as the Olshausen-Field model Im =
∑n
i=1 cm,iBxm,i,sm,i,αm,i + Um, by

making the notation compact.

Compact notation. As the first step, let us slightly generalize the active basis model

by assuming that the template may appear at location Xm in image Im, then we can

write the representation in the following form:

Im =

n∑

i=1

cm,iBXm+xi+∆xm,i,s,αi+∆αm,i + Um

= CmBXm + Um, (3.1)

where BXm = (BXm+xi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n) is the deformed template spatially

translated toXm, Cm = (cm,i, i = 1, ..., n), and CmBXm
=
∑n
i=1 cm,iBXm+xi+∆xm,i,s,αi+∆αm,i

by definition.
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BXm
explains the part of Im that is covered by BXm

. For each image Im and each

Xm, we can define the log-likelihood ratio similar to (2.11):

l(Im | BXm
) = log

p(Im | BXm)

q(Im)

=

n∑

i=1

[
λi max

∆x,∆α
h(|〈Im, BXm+xi+∆x,s,αi+∆α〉|2)− logZ(λi)

]
. (3.2)

Fig. 6. Objects appear at different locations, scales and orientations

in the training images. In each row, the first plot displays the nomi-
nal active basis template. The rest of the row displays some examples

of training images and the suppositions of the spatially translated,

scaled, rotated and deformed versions of the nominal template.

As the next step of this modeling procedure, in addition to spatial translation and

deformation, we can also rotate and scale the template. So a more general version of

(3.1) is

Im = CmBXm,Sm,Am
+ Um, (3.3)

where Xm is the location, Sm is the scale, and Am is the orientation of the translated,

rotated, scaled and deformed template. The scaling of the template is implemented by

changing the resolution of the original image. We adopt the convention that whenever

the notation B appears in image representation, it always means the deformed template,

where the perturbations of the basis functions can be inferred by local max pooling.

The log-likelihood ratio l(Im | BXm,Sm,Am) can be similarly defined as in (3.2). Figure

6 illustrates the basic idea of representation (3.3). In addition to spatial translation,

dilation and rotation of the template, we may also allow mirror reflection as well as the

change of aspect ratio.

Compact representation. Now suppose we have a dictionary of T active basis tem-

plates, {B(t), t = 1, ..., T}, where each B(t) is a compositional pattern of basis functions.

Then we can represent the image Im by Km templates that are spatially translated,



COMPOSITIONAL SPARSE CODE FOR NATURAL IMAGES 15

rotated, scaled and deformed versions of these T templates in the dictionary:

Im =

Km∑

k=1

Cm,kB
(tm,k)
Xm,k,Sm,k,Am,k

+ Um, (3.4)

where each B
(tk)
Xm,k,Sm,k,Am,k

is obtained by translating the template of type tk, i.e., B(tk),

to location Xm,k, scale it to scale Sm,k, rotate it to orientation Am,k, and deform it to

match Im. Note that according to (3.4), the images represented by the dictionary are no

longer assumed to be aligned.

If the Km templates do not overlap with each other, then the log-likelihood ratio is

M∑

m=1

Km∑

k=1

[
l(Im | B(tm,k)

Xm,k,Sm,k,Am,k
)
]
. (3.5)

Packing and unpacking. The above representation is in analogy to model (2.3) in

subsection (2.1), which we copy here: Im =
∑n
i=1 cm,iBxm,i,sm,i,αm,i +Um. The difference

is that each B
(tk)
Xm,k,Sm,k,Am,k

is a composite representational unit, which is itself a group

of basis functions that follow a certain compositional pattern of type tk. Because of

such grouping or packing, the number of templates Km needed to encode Im is expected

to be much smaller than the total number of basis functions needed to represent Im,

thus resulting in sparser representation. Specifically, if each template is a group of g

basis functions, then the number of basis functions in the representation (3.4) is Kmg.

In fact, we can unpack model (3.4) into the representation (2.3). The reason that it is

advantageous to pack the basis functions into groups is that these groups exhibit T types

of frequently occurring spatial grouping patterns, so that when we encode the image Im,

for each selected group B
(tm,k)
Xm,k,Sm,k,Am,k

, we only need to code the overall location, scale,

orientation and type of the group, instead of the locations, scales and orientations of the

individual constituent basis functions.

Limited overlap assumption. It is desirable to allow some limited overlap between

the bounding boxes of the Km templates that encode Im. Even if the bounding boxes

of two templates have some overlap with each other, their constituent basis functions

may not overlap much. If we do not allow any overlap between the bounding boxes

of the templates, some salient structures of Im may fall through the cracks between the

templates. Also, it is possible that the frequently occurring patterns may actually overlap

with each other. For instance, in a string “ABABABA”, the pattern “AB” is frequently

occurring, but at the same time, the pattern “BA” is as frequent as “AB”, and these two

patterns overlap with each other. So it can be desirable to allow some overlap between

the patterns in order to recover all the important recurring patterns. On the other hand,

we do not want to allow excessive overlap between the templates. Otherwise the learned

templates will be too redundant, and we will need a lot of them in order to describe the

training images. In practice, we assume the following limited overlap constraint: For

each template B
(tm,k)
Xm,k,Sm,k,Am,k

centered at Xm,k, let D be the side length of its squared

bounding box, then no other templates are allowed to be centered within a distance of

ρD from Xm,k (default setting: ρ = .4).
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Such an assumption naturally leads to an inhibition step when we use a dictionary

of templates to encode a training or testing image. Specifically, when a template is

chosen to encode an image, this template will prevent overlapping templates from being

selected. The template matching pursuit algorithm to be described below adopts such

an inhibition scheme.

Connection with group Lasso. In the representation (3.4), each B
(tm,k)
Xm,k,Sm,k,Am,k

is a

group of basis functions, and the Km groups are to be selected from the collection of

groups that correspond to all possible translated, rotated, scaled and deformed versions

of the compositional patterns in the dictionary. The situation is very similar to that of

group Lasso [38], which is also about selecting groups of variables from all possible groups.

The selection by group Lasso is accomplished by solving a penalized least squares problem

with a composite penalty based on the group structure. Our work goes beyond the group

Lasso scenario in that the collection of groups is unknown, and we learn a dictionary of

compositional patterns of these groups from training images. This dictionary then defines

a large collection of groups by translation, rotation, scaling and deformation. Our work

is a special case of structured sparsity. We call it compositional sparsity because we learn

compositional patterns in sparse representations.

3.2. Model complexity. Before considering the learning algorithm that seeks to max-

imize the log-likelihood ratio (3.5), we need to resolve two issues regarding model com-

plexity. One is how to choose the number of basis functions n(t) in each template B(t) in

the dictionary. The other is how to choose the number of templates T in the dictionary

{B(t), t = 1, ..., T}.
Determining the number of basis functions in a template in supervised learning. Sup-

pose we are in the supervised learning setting where {Im,m = 1, ...,M} are aligned image

patches, and we want to learn an active basis template B = {Bxi,s,αi
, i = 1, ..., n}. We

employ the following penalized log-likelihood:

M∑

m=1

n∑

i=1

[
λih(〈Im, Bxi+∆xm,i,s,αi+∆αm,i〉)− logZ(λi)− γ

]
, (3.6)

which is the sum of the log-likelihood ratio (2.10) and a penalty term −γ associated with

each basis function. There are two interpretations of γ. One is from the minimum de-

scription length (MDL) [30] perspective, where γ can be interpreted as the cost of coding

the perturbations (∆xm,i,∆αm,i) of Bxi,s,αi
in the encoding of Im. Because there is a

cost associated with each selected basis function Bxi,s,αi , the parameter γ encourages

sparse or parsimonious model. The other interpretation is from the Bayesian informa-

tion criterion (BIC) [31] perspective. From the Bayesian perspective, the perturbations

(∆xm,i,∆αm,i) should be integrated out according to their prior distributions, which are

uniform distributions over the allowed ranges of perturbations. However, in our com-

putation, the perturbations (∆xm,i,∆αm,i) are inferred by local max pooling, i.e., they

are actually maxed out instead of being integrated out. As a result, the resulting log-

likelihood ratio with perturbations maxed out actually over-estimates the log-likelihood

ratio with perturbations integrated out. The term γ may be considered an approximation

to this over-estimation, which should be subtracted from the maxed-out log-likelihood.
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In order to maximize the penalized log-likelihood ratio (3.6), we can continue to use

the shared matching pursuit algorithm in subsection (2.5), except that we should stop

the algorithm once the gain in the average log-likelihood ratio is smaller than γ, i.e.,

λi

M∑

m=1

h(〈Im, Bxi+∆xm,i,s,αi+∆αm,i
〉)/M − logZ(λi) < γ.

This determines n. Currently we set the tuning parameter γ empirically at the default

value of 1.

We can apply the above idea to unsupervised learning of the dictionary {B(t), t =

1, ..., T} from the non-aligned training images {Im}, by maximizing the penalized log-

likelihood ratio
M∑

m=1

Km∑

k=1

[
l(Im | B(tm,k)

Xm,k,Sm,k,Am,k
)− n(tm,k)γ

]
, (3.7)

where n(t) is the number of basis functions in B(t).

Determining the number of templates. The number of templates T in the dictionary

can be selected by an adjusted BIC criterion. The BIC criterion has been advocated by

Fraley and Raftery (2002) [13] for determining the number of clusters in mixture models.

Our model is similar to mixture models or clustering in the sense that the image patches

are clustered into T different clusters. The difference is that these image patches are not

independent examples, nor are they randomly cropped from the training images. Instead,

they are to be cropped from the training images under the limited overlap constraint by

a template matching pursuit algorithm to be described in the next subsection. From

the clustering perspective, our method also bears some similarity to bi-clustering [24]

or co-clustering, where in each cluster, different sets of basis functions are selected for

representation. The difference is that these basis functions are not given variables. They

need to be inferred from the image patches.

Recall that the BIC criterion is of the following form: maximized log-likelihood -

number of parameters × log (number of training examples)/2. We can take (3.7) as the

log-likelihood term, however, we have to correct for the overlap between the templates

that encode the training images. The number of parameters in our model is
∑T
t=1 n

(t),

which is the number of basis functions in the templates in the dictionary. The number

of training examples can be taken as
∑M
m=1Km, which is the number of image patches

that are explained by the templates. So we define our adjusted BIC criterion as:

β

M∑

m=1

Km∑

k=1

[
l(Im | B(tm,k)

Xm,k,Sm,k,Am,k
)− n(tm,k)γ

]
− 1

2

T∑

t=1

n(t) log

M∑

m=1

Km, (3.8)

where β is a ratio that discounts the overlap between the selected templates {B(tm,k)
Xm,k,Sm,k,Am,k

}.
We define β = n1/n2. n1 is the total number of pixels that are actually covered by the

bounding boxes of these templates, where the overlapping pixels are only counted once.

n2 is the sum of the numbers of pixels within the bounding boxes of these templates,

where a pixel is counted multiple times if it is covered by multiple templates. The reason

we discount the overlap between the templates is that an image patch may be explained

by multiple templates, which leads to inflated log-likelihood ratio. Since the BIC is a
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balance between the log-likelihood and the model complexity, we need to avoid such

over-count for a fair BIC.

3.3. Unsupervised learning algorithm. There are two strategies for unsupervised learn-

ing.

Strategy 1: Sparsify and then compose. In order to discover the compositional patterns

of basis functions in the sparse representations of the training images {Im}, it is tempting

to first apply the plain matching pursuit or basis pursuit/Lasso to each training image

Im to obtain the sparse representation

Im =

nm∑

i=1

cm,iBxm,i,sm,i,αm,i
+ Um, (3.9)

and then try to discover frequently occurring compositional patterns in the spatial group-

ing of the selected basis functions {Bxm,i,sm,i,αm,i ,∀i,m}. This was actually the strategy

adopted by Zhu et al. [41] in their work on textons. The problem with such a sparsify-

and-then-compose scheme is that the representation (3.9) produced by the matching pur-

suit or basis pursuit is an early decision or early commitment. Presumably, there may be

many other representations that are no much less sparse than the representation (3.9),

but they may be much more regular in terms of forming recurring compositional pat-

terns. The results from matching pursuit or basis pursuit simply do not account for such

uncertainty. In fact, even if the selected basis functions do form recurring patterns, dis-

covering these patterns requires reasoning the correspondences between different groups

that correspond to the same pattern. This is not an easy task, especially if the numbers

of basis functions in the groups are not very small. The learning algorithm described

below avoids such a sparsify-and-then-compose strategy. Not relying on early decision

on sparse coding or edge detection is a key difference between our learning algorithm and

those of [12] and [40].

Strategy 2: Iterative encoding and re-learning. Our learning algorithm seeks to maxi-

mize the penalized log-likelihood ratio (3.7) subject to the limited overlap constraint. It

is an iterative algorithm where each iteration seeks to maximally increase the penalized

log-likelihood ratio (3.7). Each iteration consists of two steps in the EM-style [7]: (I)

Image encoding. Given the current dictionary {B(t), t = 1, ..., T}, encode each training

image Im by translated, rotated, scaled and deformed versions of the templates in the

dictionary, i.e., {B(tm,k)
Xm,k,Sm,k,Am,k

, k = 1, ...,Km}. (II) Dictionary learning. Given the

current encoding of Im by {B(tm,k)
Xm,k,Sm,k,Am,k

, k = 1, ...,Km}, re-learn each B(t) from the

image patches covered by the translated, rotated, scaled and deformed versions of the

current B(t), i.e., {B(tm,k)
Xm,k,Sm,k,Am,k

, tm,k = t}.
To initialize the algorithm, we first learn the dictionary of active basis templates from

randomly cropped image patches. Specifically, for each B(t), we randomly cropped some

image patches from training images, and then we learn B(t) from these image patches

using the shared matching pursuit algorithm described in subsection (2.5).

In the above learning process, we fix the total number of templates in the dictionary,

T . We run the learning process for different values of T . Then we choose T that achieves

the maximum of the adjusted BIC (3.8).

The following are the details of the two steps.
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Step (I): Image encoding by template matching pursuit. Suppose we are given the

current dictionary {B(t), t = 1, ..., T}. Then for each Im, the template matching pursuit

process seeks to represent Im by sequentially selecting a small number of templates from

the dictionary. Each selection seeks to maximally increase the penalized log-likelihood

ratio (3.7).

[I.0] Initialize the maps of template matching scores for all (X,S,A, t):

R(t)
m (X,S,A)← l(Im | B(t)

X,S,A)− n(t)γ,

where n(t) is the number of basis functions in the t-th template in the dictionary and γ is

a constant controling model complexity as explained above. This can be accomplished by

first rotating the template B(t) to orientation A, and then scanning the rotated template

over the image zoomed to the resolution that corresponds to scale S. The larger the S

is, the smaller the resolution is. Initialize k ← 1.

[I.1] Select the translated, rotated, scaled and deformed template by finding the global

maximum of the response maps:

(Xm,k, Sm,k, Am,k, tm,k) = arg max
X,S,A,t

R(t)
m (X,S,A).

[I.2] Let the selected arg-max template inhibit overlapping candidate templates to

enforce limited overlap constraint. Let D be the side length of the bounding box of the

selected template B
(tm,k)
Xm,k,Sm,k,Am,k

, then for all (X,S,A, t), if X is within a distance ρD

from Xm,k, then set the response R
(t)
m (X,S,A)← −∞ (default setting: ρ = .4).

[I.3] Stop if all R
(t)
m (X,S,A, t) < 0. Otherwise let k ← k + 1, and go to [I.1].

The template matching pursuit algorithm implements a hard inhibition to enforce

the limited overlap constraint. In a more rigorous implementation, we may update the

residual image by Um ← Um−CmB
(tm,k)
Xm,k,Sm,k,Am,k

as in the original version of matching

pursuit. But the current simplified version is more efficient.

The regularization parameter γ plays an important role in determining when to stop

the template matching pursuit algorithm in the image encoding step (I). The response

map R
(t)
m (X,S,A) is initialized as l(Im | B(t)

X,S,A)−n(t)γ. If l(Im | B(t)
X,S,A) < n(t)γ, then

the gain in terms of the log-likelihood ratio does not compensate for the cost of coding

the perturbations of the basis elements of the template. So we should stop the template

matching pursuit if this is the case with all the remaining candidate templates.

The computation of the maps of template matching scores R
(t)
m (X,S,A) involves scan-

ning the template B(t) on the image Im over all possible locations, orientations and scales.

At each location X, scale S and orientation A, the computation of R
(t)
m (X,S,A) involves

a linear combination of n(t) local maxima of Gabor filter responses, where n(t) is the

number of basis functions in B(t). The computational burden is about the same as

computing Gabor filter responses at all possible locations, scales and orientations.

Step (II): Dictionary re-learning by shared matching pursuit. For each t = 1, ..., T , we

re-learns B(t) from all the image patches that are currently covered by B(t). Each itera-

tion of the shared matching pursuit process seeks to maximally increase the penalized log-

likelihood ratio (3.7), given the current encoding (tm,k, Xm,k, Sm,k, Am,k, k = 1, ...,Km).
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[II.0] Image patch cropping. For each Im, go through all the selected templates

{B(tm,k)
Xm,k,Sm,k,Am,k

,∀k} that encode Im. If tm,k = t, then crop the image patch of Im
(at the resolution that corresponds to Sm,k) covered by the bounding box of the tem-

plate B
(tm,k)
Xm,k,Sm,k,Am,k

.

[II.1] Template re-learning. Re-learn template B(t) from all the image patches covered

by B(t) that are cropped in [II.0], with their bounding boxes aligned. The learning is

accomplished by the shared matching pursuit algorithm of subsection (2.5).

Figure 7 illustrates the learning of maple leaf template from the training image shown

in Figure 3. Figure 7.(a) traces the template of maple leaf learned over the first 7

iterations of the learning algorithm. (b) shows the process of shared matching pursuit for

learning this template in the last (10th) iteration, where the constituent basis functions

are sequentially added.

(a) (b)

Fig. 7. (a) Template of leaf learned in the first 7 iterations of the

unsupervised learning algorithm. (b) In each of iteration, the shared
matching pursuit process selects wavelet elements sequentially to

form each template. The sequence shows the process selecting 1,

3, 5, 10, 20, 30, 40 wavelets to form the leaf template in the last
(10th) iteration.

This dictionary re-learning step re-learns each compositional pattern from the re-

aligned raw image patches, where the sparse representations and the correspondences

between the selected basis functions are obtained simultaneously by the shared matching

pursuit algorithm, thus avoiding the difficulty faced by the sparsify-and-then-compose

procedure of Strategy I.

Random initialization and polarization. The learning algorithm is initialized by learn-

ing from image patches randomly cropped from the training images. As a result, the

initially learned templates are rather meaningless, but meaningful templates emerge very

quickly after a few iterations. See Figure 7.(a) for an illustration.

During the template matching pursuit process of the first iteration, we continue to

select templates even if the template matching scores are below zero. We stop the

template matching pursuit process for each Im when all the candidate templates are

inhibited on Im. That is because the initial templates in the dictionary are rather random,

so we force them to explain the whole image of Im even if the templates do not match

the image well.

In the beginning, the differences among the initial templates are small. However,

as the algorithm proceeds, the small differences among the initial templates trigger a

polarizing or specializing process, so that the templates become more and more different,

and they specialize in encoding different types of image patches. One may start the

algorithm multiple times and select the dictionary that achieves the maximum of the

log-likelihood ratio (3.7).
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3.4. Notes on the learning algorithm. This subsection consists of some notes on various

subtle aspects of the learning algorithm. More practically minded readers can jump to

the next section for experimental results.

Generalized matching pursuit in both steps. Both the image encoding step (I) and the

dictionary re-learning step (II) are generalizations of the matching pursuit algorithm. In

fact, the whole learning algorithm can be viewed as an encoding algorithm, which seeks

to automatically discover the frequently occurring compositional patterns of the selected

basis functions that are otherwise overlooked by the plain matching pursuit algorithm.

In other words, the algorithm seeks to find a highly patterned sparse coding, where

the selected basis elements are not only sparse but they also form recurring patterns in

their spatial arrangements. The re-learning of each template can be viewed as encoding

multiple image patches by a single template, thus resulting in more efficient encoding

than the plain matching pursuit algorithm.

Relationship with sparse component analysis and K-SVD. As our model is a recursion

of the Olshausen-Field model, our learning algorithm can also be viewed as a recursion

of the learning scheme of Olshausen and Field, which is sometimes called sparse compo-

nent analysis in the literature. In the Olshausen-Field model Im =
∑N
i=1 cm,iBi + Um,

the dictionary of (Bi, i = 1, ..., N) is learned from the training image patches {Im} by

minimizing

M∑

m=1

[
‖Im −

N∑

i=1

cm,iBi‖2 + λ

N∑

i=1

S(cm,i)

]
, (3.10)

over both (cm,i) and (Bi), where S() is a sparsity inducing penalty function, and λ is the

regularization parameter. The learning algorithm iterates the following two steps. (I)

Image encoding. For each Im, update (cm,i,∀i) given (Bi,∀i). (II) Dictionary learning.

Update (Bi) given (cm,i,∀i,m). In Olshausen-Field learning algorithm, both steps are

carried out by gradient descent. In a related learning algorithm called K-SVD [1], (I)

can be accomplished by any pursuit algorithm such as matching pursuit or basis pur-

suit, and (II) is accomplished by SVD. Our algorithm is even more similar to K-SVD

than to the Olshausen-Field algorithm. It is interesting to notice that in both K-SVD

and our algorithm, the updating of each representational unit in step (II) is performed

only on the image patches where this representational unit is currently active, i.e., the

representational unit is re-learned from image patches that is currently encoded by this

unit. Also similar to K-SVD, in our algorithm, the coefficients and the basis functions

are updated together in dictionary re-learning in step (II).

Non-convex objective function. One complication about our learning method is that

the negative log-likelihood ratio is not convex, and our learning algorithm is a greedy

algorithm that is similar to the EM algorithm [7]. In fact, this is also the case with the

objective function (3.10) in Olshausen-Field sparse component analysis, which is non-

convex in the joint domain of the unknown basis functions and their coefficients. This is

the case with many other unsupervised learning methods as well.

Linear subtraction versus occlusion. In both the template matching pursuit in step (I)

and the shared matching pursuit in step (II), the explaining-away inhibition is carried

out by hard inhibition that enforces limited overlap between templates in step (I) and
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the approximated non-overlap between basis functions in step (II). Such hard inhibition

amounts to occlusion, where a selected template or basis function occludes nearby over-

lapping templates or basis functions. A more rigorous explaining-away mechanism in

the context of linear additive structures (2.4) and (3.4) is by linear subtraction, where a

selected template (group of basis functions) or a selected basis function is linearly sub-

tracted from the training images, see (2.7), so that other templates or basis functions

continue to explain the residual images. This linear subtraction scheme can be more

computationally demanding than hard inhibition.

Matching pursuit versus penalized least squares. Both steps (I) and (II) in our learning

algorithm are generalizations of matching pursuit, and both can be replaced by general-

izations of basis pursuit or Lasso. Step (I) can be replaced by group Lasso, where the

groups are the groups of basis functions that correspond to all possible translated, ro-

tated, scaled and deformed versions of the templates in the current dictionary. Step (II)

can be replaced by a different type of group Lasso, where the groups are formed across

the aligned image patches from which we re-learn the template. Specifically, we group

the coefficients of the same basis functions (up to local perturbations) across the aligned

image patches, so that we always select the same set of basis functions for these aligned

image patches. This is sometimes called multi-task learning [20] or support union recov-

ery in multivariate regression [25]. Such penalized least squares schemes can be much

more expensive computationally than the corresponding versions of matching pursuit.

4. Experiments. This section presents experiments based on the unsupervised learn-

ing algorithm in the previous section. The data and code for reproducing the experimen-

tal results reported in this paper can be downloaded from the project page 1.

4.1. Image representation. In order to learn the dictionaries of compositional patterns

from training images, we run the algorithm for 10 iterations. We set n(t) to be a fixed

value (default setting: 40) in the first 9 iterations. In the last iteration, we choose n(t)

using the method described in subsection (3.2), and we use the templates with adaptively

chosen n(t) to represent the training images.

Figure 8 shows an example of selecting the number of templates T in the dictionary.

In each row, the first image is the training image. The remaining four blocks display

the learned dictionaries of compositional patterns of basis functions in the form of active

basis templates, as well as the representations of the training images using the learned

dictionaries. The numbers of templates in the dictionaries are respectively 1, 2, 3, and 4.

It takes about 10 seconds on a current desktop to learn a dictionary for the first image,

which is of size 480× 768, and the running times for the other images are similar. Just

as in Figures 3 and 7, each basis function or wavelet is illustrated by a bar at the same

location and orientation, and with the same length as the corresponding wavelet. All

the templates are of the size 100 × 100. We also display the adjusted BIC criterion for

each learned dictionary. The learned dictionaries are quite meaningful, and they give

meaningful representations of the training images. It is interesting to observe how the

dictionaries with only 1 template strive to represent the images.

1http://www.stat.ucla.edu/∼ywu/ABC/ABC.html
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(a) BIC = 1386 (b) BIC = 1951 (c) BIC = 1832 (d) BIC = 1819

(a) BIC = 725 (b) BIC = 1247 (c) BIC = 1097 (d) BIC = 844

(a) BIC = 1888 (b) BIC = 2839 (c) BIC = 2738 (d) BIC = 2644

Fig. 8. The adjusted BIC computed for different numbers of tem-

plates (1-4) in the dictionaries. The size of templates is 100 × 100.

The allowed range of scale change is {.8, 1, 1.2} of the original image.
The templates are allowed full range of rotation. The maximal num-

ber of basis functions in each template is 40 and the actual number

is automatically determined.

Fig. 9. Maple leaves and lotus. Parameter setting is the same as in
Figure 8.

As to the issue of selecting image resolution, for the example of maple leaves, we

also learn dictionaries of templates at different resolutions of the training image. The

resolution in Figure 8.(b) achieves the maximum BIC per pixel. This is essentially

equivalent to determining the size of templates. However, we feel that instead of selecting
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Fig. 10. Flowers. Parameter setting is the same as in Figure 8. For
the two examples in the middle, the templates consist of more than

one petal. This is due to the fact that the templates are of a squared

shape and are relatively large.

Fig. 11. Ivy, leaves, ivy wall, pavement, and fence. Parameter set-
ting is the same as in Figure 8. For the ivy wall example, the bottom

row contains the testing image and its representation by the dictio-

nary learned from the training image on the top row.

Fig. 12. Peanuts, corn, pineapple, beehives, and grape. Parameter

setting is the same as in Figure 8. For the grape example, the bot-

tom row contains the testing image and its representation by the
dictionary learned from the training image on the top row.

the optimal resolution, it may be more appropriate to learn dictionaries at multiple

resolutions or scales and combine them for image representation and understanding, just

like the multi-resolution analysis in wavelets theory.

The adjusted BIC is useful for determining the number of compositional patterns in

the dictionary. However, it may be more appropriate to use it to determine the rough

range of possible numbers of patterns, instead of using it to pinpoint the exact number.

For instance, in the maple leaves example, the dictionary with 3 patterns also give a
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(a)

(b)

Fig. 13. Seagulls flying (number of training images is 20) and stand-

ing (number of training images is 11). For the standing seagulls

experiment, we learn multi-scale templates at two different scales
(the scale parameters are .7 and 1.4 respectively). We sum the log-

likelihood scores of the templates at the two scales in order to com-

pute the template matching scores in the template matching pursuit
process.

Fig. 14. Cattle (number of training images is 17). Parameter setting

is the same as in Figure 8 except that the allowed range of template
rotation is {−2,−1, 0, 1, 2} × π/16.

very meaningful representation of the training image. For applications such as image

classification, the number of patterns in the dictionary may be determined by cross

validation instead of BIC.

Figures 9 to 17 show more examples of representing natural images. In some of

the images, such as flowers, leaves and brick wall, the compositional patterns repeat

themselves within the same image. For some other images, such as animal bodies and
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Fig. 15. Cat faces (number of training images is 89) and animal

faces (number of training images is 490). Parameter setting is the
same as in Figure 14.

Fig. 16. Horse. Parameter setting is the same as in Figure 8, except
that the allowed range of rotation of the template is {−1, 0, 1}×π/16.

Fig. 17. Cars. Parameter setting is the same as in Figure 14. Num-

ber of training images is 245.

faces, the compositional patterns repeat across different images. For these images, the

learning algorithm does not assume that the images are aligned.
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In the dictionary re-learning step (II), for each entry in the dictionary, we can learn

a multi-scale template from the aligned image patches using wavelets at multiple scales.

A multi-scale template has multiple component templates, each consisting of wavelets

at a single scale. If the gaps between the scales of the wavelets are sufficiently large,

then templates of different scales can be considered independent. Therefore, the learning

of each component template can be done separately at each scale, and in the image

encoding step (I), for each entry in the dictionary, we can combine the log-likelihood

scores of the component templates at multiple scales in order to compute the overall

template matching scores. See the standing seagulls experiment in Figure 13 for an

illustration.

4.2. Better “words” for image classification. The learned compositional patterns can

be used as “words” in the bag-of-word method for image classification. Let {B(t), t =

1, ..., T} be the templates learned from positive training images. For each image Im,

let R
(t)
m (X,S,A) = l(Im | B(t)

X,S,A) be the log-likelihood score of B(t) at location X,

scale S ∈ {.8, 1, 1.2} and orientation A ∈ {±1, 0} × π/16 (see subsection (3.1) and

Equation (3.2)). Let r
(t)
m (A) = max(maxX,SR

(t)
m (X,S,A), 0) be the maximum score

(lower-bounded by 0) at orientation A. Then for each Im, we have a 3T -dimensional

feature vector (r
(t)
m (A), t = 1, ..., T,∀A) (the factor 3 is due to the fact that we keep

the scores of all the 3 orientations). We then train a linear logistic regression on such

3T -dimensional feature vectors (regularized by `2 norm [9]) for image classification.

Table 1. Accuracies (%) on binary classification tasks for 24 cate-

gories from Caltech-101, ETHZ Shape and Graz-02 data sets.

Datasets SIFT+SVM Our method Datasets SIFT+SVM Our method

Watch 90.1± 1.0 91.3± 2.0 Sunflower 76.0± 2.5 92.9± 2.5

Laptop 73.5± 5.3 87.9± 2.2 Chair 62.5± 5.0 89.1± 1.1

Piano 84.5± 4.2 93.4± 3.0 Lamp 61.5± 4.5 81.7± 3.7

Ketch 82.2± 0.8 89.2± 2.4 Dragonfly 66.0± 4.0 87.0± 4.1

Motorbike 93.9± 1.2 93.7± 0.9 Umbrella 73.4± 4.4 89.3± 2.5

Guitar 70.0± 2.4 80.9± 5.1 Cellphone 68.7± 5.1 87.9± 4.2

Schooner 64.3± 2.2 93.8± 2.7 Face 91.8± 2.3 95.8± 2.8

Ibis 67.8± 6.0 83.0± 1.9 Starfish 73.1± 6.7 85.3± 4.7

ETHZ-Bottle 68.6± 3.2 76.1± 3.3 ETHZ-Cup 66.0± 3.3 67.5± 4.4

ETHZ-Swans 64.2± 1.5 82.4± 0.5 ETHZ-Giraffes 61.5± 6.4 71.5± 3.5

ETHZ-Apple 55.0± 1.8 68.3± 5.2 Graz02-Person 70.4± 1.2 73.8± 2.3

Graz02-Car 64.0± 6.7 63.5± 5.1 Graz02-Bike 68.5± 2.8 77.6± 2.3

We evaluate this simple classifier on 16 categories from Caltech-101 [10], all ETHZ

Shape [11] and all Graz-02 [23] data sets, where we test it on binary classification task.

We resize all images to 1502 pixels while maintaining their aspect ratios. We randomly

sample 30 positive and negative images respectively as training data, and leave the rest

as testing data. For Caltech-101 and Graz-02, negative images are from background
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category. For ETHZ, negative examples are from images other than the target category.

For each category, we learn a dictionary of T = 10 templates. Each is of the size 100×100

with n = 30 basis functions.

As a comparison, for each image, we densely extract SIFT features [21] with patch

size 16× 16 and step size 8, from both positive and negative images. We then quantize

them into 50, 100 and 500 words respectively by k-means clustering [5] and feed them

into SVM [34, 2] (linear and histogram intersection kernel [17]). We take the best of

these 6 results (3 numbers of words (50, 100, 500) × 2 types of SVM (linear, kernel)) and

compare it with our method. All experiments are carried out with 5 independent runs

and the 95% confident intervals on accuracies are calculated. Table 1 presents the results.

It shows that our method generally outperforms the popular SIFT + SVM method even

though our method uses a much smaller dictionary of words (10 in our method versus

50, 100, or 500 in SIFT + SVM).

Fig. 18. Learned dictionary of templates from the Caltech-101

dataset in one run of an experiment, with 30 training images from
each category. Template size is 64 × 64. Number of basis functions

in each template is 15.

We also test our method on the whole Caltech-101 data set. We learn T = 200

templates from the training images from all the 101 categories together. In one set of

experiments, 15 training images are randomly sampled from each category in each run.

In another set of experiments, 30 training images are randomly taken from each category

in each run. In each set of experiments, 5 runs are repeated.

Each template is of the size 64× 64 with n = 15 basis functions. During the learning

algorithm, if the number of image patches encoded by a template is less than a threshold,

then this template is eliminated from the dictionary. For 15 training images per category,

the threshold is set at 5. For 30 training images per category, the threshold is set at

10. Figure 18 displays the learned dictionary of templates in one run of experiment with

30 training images per category. They seem to capture the mid-level structures such as

lines, corners and circles etc.

For each image Im, and for each template B(t) at each orientation A, besides the global

maximum r
(t)
m (A), we also divide Im equally into 2×2 sub-regions and take the maximum

within each sub-region. In addition to each maximum, we also take the corresponding

average. So each B(t) extracts 30 features from Im. Thus in total, each Im produces a
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30T -dimensional feature vector. We adopt standard evaluation protocol. For 15 training

images per category, the accuracy of our method is 61.6±2.2% (compared to 57.7±1.5%

in [18]). For 30 training images per category, our result is 68.5 ± 0.9% (compared to

65.4 ± 0.5% in [18]). While more recent papers such as [39] and the references therein

report better performances based on spatial pyramid matching [17], we do not use k-

means to further cluster response maps into another layer of codewords, neither do we

use any kernel.

5. Discussion. In this section, we first discuss the contributions and limitations of

our current work. Then we shall compare our work with related work in the literature.

5.1. Contributions and limitations. The main contribution of this paper to propose a

framework for learning compositional sparse code for representing natural images. We

propose a representational scheme based on composite representational units, which are

groups of basis functions of frequently occurring compositional patterns. We have de-

veloped an unsupervised learning algorithm for learning dictionaries of compositional

patterns from training images, where the compositional patterns arise from seeking com-

monly shared sparse coding of image patches. Our experiments on natural images of

plants and animals etc. show that our method is capable of learning meaningful com-

positional patterns, which lead to meaningful representations of training and testing

images.

Fig. 19. Image scaling and regimes of patterns: As we zoom out the

images, the patterns undergo a transition from low-entropy regime of
geometric structures to mid-entropy regime of object shapes to high-
entropy regime of stochastic textures. Our current method targets

the mid-entropy regime of shape patterns.

In terms of biological plausibility, the Olshausen-Field model is a model for simple V1

cells. The local max pooling of Riesenhuber and Poggio [29] and the arg-max retrieval and

inhibition of the active basis model may be related to complex V1 cells. The dictionaries

of active basis templates learned by our method may be related to V2 cells and beyond.

The following are limitations of our work. First, as illustrated by Figure 19, as we

zoom out the images, the image patterns undergo a transition from low-entropy regime

of geometric structures to mid-entropy regime of object shapes to high-entropy regime

of stochastic textures [36] (patterns such as the brick wall are also textures, but they

are structural textures instead of stochastic textures). Our current model mainly targets

the mid-entropy regime of object shapes and textons. It does not account for stochastic

texture patterns or appearance patterns that are ubiquitous in natural scenes. The
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current model does not account for flatness patterns that are prominent in the low-

entropy regime either. Perhaps one may entertain a Markov random field model of the

form

p(I) =
1

Z(Λ)
exp{

∑

x,s,α

λx,s,α(h(|〈I, Bx,s,α〉|2))}q(I),

for the distribution of the nominal template (before shape deformation), where λx,s,α
can be either positive (for sketch patterns) or negative (for flatness patterns). One can

sparsify λx,s,α by `1 penalized maximum likelihood. For homogeneous λx,s,α, i.e., λx,s,α
is independent of x within a local neighborhood, then p(I) becomes the FRAME (filter,

random field, and maximum entropy) model for textures [43]. Although p(I) seems

to encompass sketch patterns, flatness patterns and stochastic texture patterns, fitting

p(I) in general requires MCMC simulation, which can be expensive. The active basis

model that assumes approximate orthogonality of the selected basis functions and the

independence of their coefficients may be considered an efficient approximation of the

sketch components of p(I).

Another limitation is that the model is still not a fully generative model because we

have not modeled the spatial arrangements of the templates. A third limitation is that

we assume that the dictionary of the basis functions are given as Gabor wavelets. It is

desirable to learn these basis functions from training images.

The active basis models are currently learned by generative approach based on like-

lihood. It may be possible to learn the models discriminatively by regularized logistic

regression after bringing in negative image patches.

5.2. Relations with hierarchical models. AND-OR grammar. Our work connects the

sparsity principle to compositionality principle [15, 42, 16], which holds that the visual

patterns are hierarchical compositions of constituent parts. In particular, in the language

of AND-OR grammar of Zhu and Mumford (2006) [42], the dictionary of the active basis

templates can be considered a big OR node, where each template is a child node of this

OR node, and each template is itself an AND-OR structure, where AND means composi-

tion of the constituent basis functions, and OR means perturbations of the locations and

orientations of the basis functions, as well as variations of their coefficients. The OR-

variations make the composite units invariant to these variations, so that the composite

units are more abstract and generalizable.

In terms of composing Gabor wavelets, our representation is similar to that of [12]

as well as [40]. The difference is that, our method is based on a top-down generative

model, where the compositional patterns are re-learned in each iteration of the learning

algorithm from raw image patches by seeking to maximize the log-likelihood ratio.

Our method may be extended to learn multi-layer compositional sparse coding mod-

els, where each template is a deformable composition of part-templates, and each part-

template itself is a deformable composition of a number of basis functions, i.e., each

part-template is an active basis model, so the whole template may be called a hierar-

chical active basis model. Figure 20 illustrates the basic idea of such hierarchical active

basis models in the setting of supervised learning, where the objects in the images are

roughly aligned. In order to learn a hierarchical active baiss model, we can first learn a

collection of highly overlapping part-templates, where each part-template is allowed to



COMPOSITIONAL SPARSE CODE FOR NATURAL IMAGES 31

4.5 Planned activity 5: hierarchical and spatial modeling

Figure 12: Supervised learning of template of tandem bike. We first learn overlapping part-templates,

and then select some of them (with bounding boxes) according to their log-likelihood scores (indexed by

color).

We can also learn multi-layer compositional sparse coding models, where each template is a
deformable composition of part-templates, and each part-template itself is a deformable composi-
tion of a number of basis functions. Figure 12 illustrates the basic idea of supervised learning. We
can combine it with template matching pursuit for unsupervised learning. We can also modify
the two-way group Lasso objective function in subsection (4.1) or the Bayesian variable selection
model in subsection (4.2) for learning hierarchical structures. For structural texture images, such
as brick wall and ivy leaves, we shall also consider modeling the spatial arrangements of the active
basis templates.

4.6 Planned activity 6: theoretical analysis

We shall study the performance of the two-way group Lasso in subsection (4.1) in terms of
estimation accuracy [3, 5, 73] and more importantly variable selection accuracy [75, 63]. Most
of Lasso analyses assume independent sub-Gaussian errors. We shall study dependent super-
Gaussian errors, which is a more realistic assumption for Um.

In a recent paper by Wei Biao Wu and the PI [66], we analyzed the performance of Lasso under
dependent super-Gaussian errors by generalizing the Nagaev inequality [44] to the dependent case
[65]. The original inequality is as follows. Let X1, ...,Xn be mean 0 independent random variables,
and Sn =

Pn
i=1 Xi. Further assume that Xi has finite q-th moment, i.e., kXikq = [E(|Xi|q]1/q <1,

q > 2, for i = 1, ..., n. Let µn,q =
Pn

i=1 E(|Xi|q). By Corollary 1.7 in Nagaev (1979) [44], for
x > 0, the tail probability

P (|Sn| � x)  (1 + 2/q)qµn,q/xq + 2 exp{�cqx
2/µn,2}, (20)

where cq = 2e�q(q + 2)�2. This is a very sharp inequality under polynomial moment condition.
The PI plans to extend (20) to two-dimensional dependent case and use it to analyze the two-way
group Lasso in subsection (4.1).

4.7 Timeline and reproducible research

Year 1: Finish coding and obtain initial experimental results. Year 2: Conduct extensive experi-
ments on large data sets, and apply the learning results to applications such as object detection,
classification, as well as image compression (due to space limit, we have not discussed these ap-
plications in detail, but we will definitely work on them). Year 3: Further extend the proposed
methods and identify more applications, and try to obtain state of art performances.

The PI has been working hard on reproducible research. The reproducibility webpages contain
a wealth of data and code. The PI will continue to adhere to the principle of reproducible research
[19], by posting all the data, code and results on the reproducibility webpages.

14

Fig. 20. Supervised learning of hierarchical active basis models. We

first learn overlapping part-templates, and then select some of them
(with bounding boxes) according to their log-likelihood scores (in-

dexed by color). The learned models are deformable compositions of

active basis models.

move within a local range, to account for shape deformation. Then we pursue a small

number of part-templates according to their log-likelihood scores (indexed by color in

Figure 20) to enforce that the selected part-templates only have limited overlap. We

may use such hierarchical active basis models as our representational units, and we may

learn a dictionary of such hierarchical active basis models in unsupervised setting. The

recent paper by Si and Zhu (2013) [35] explores the learning of And-Or templates which

include the hierarchical active basis models as special cases.

Deep learning. Our work is related to deep learning with sparsity constraint [18, 39].

The difference is that our representational units are sparse compositions of automatically

selected basis functions, where sparsity is explicitly built into the representational units

by the shared matching pursuit process. The representational units are no longer linear

basis functions on top of the wavelets coefficients or filter responses at the lower layer.

Also, our model is not built on a pre-processed sparse representation, which, as we have

argued in strategy I of subsection (3.3), amounts to early decision. In our learning algo-

rithm, each iteration re-learns each template from raw image patches, where the sparse
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representations, their correspondences, and the template are obtained simultaneously

instead of being obtained one after another.

HMAX model. Our work is related to the HMAX model of [29]. The local max

pooling is employed for inferring the perturbations of the wavelet elements of the active

basis model. In HMAX, the dictionary of the second layer consists of maps of local max

pooling of Gabor responses. In our work, we explicitly learn the recurring compositional

patterns of the wavelets guided by a generative model.
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