
STATS 232A Project 5: Generator and descriptor

1 Generator: real inference

The model has the following form:

Y = f(Z;W) + ε (1)

Z ∼ N(0, Id), ε ∼ N(0, σ2ID), d < D. (2)

f(Z;W) maps latent factors into image Y , where W collects all the connection weights
and bias terms of the ConvNet.

Adopting the language of the EM algorithm, the complete data model is given by

log p(Y, Z;W) = log[p(Z)p(Y |Z,W)] (3)

= − 1

2σ2
||Y − f(Z;W)||2 − 1

2
||Z||2 + const. (4)

The observed-data model is obtained by intergrating out Z: p(Y ;W) =
∫
p(Z)p(Y |Z,W)dZ.

The posterior distribution of Z is given by p(Z|Y,W) = p(Y, Z;W)/p(Y ;W) ∝ p(Z)p(Y |Z,W)
as a function of Z.

We want to minimize the observed-data log-likelihood, which is L(W) =
∑n

i=1 log p(Yi;W) =∑n
i=1 log

∫
p(Yi, Zi;W)dZi. The gradient of L(W) can be calculated according to the fol-

lowing well-known fact that underlies the EM algorithm:

∂

∂W
log p(Y ;W) =

1

P (Y ;W)

∂

∂W

∫
p(Y,Z;W)dZ (5)

= Ep(Z|Y,W)[
∂

∂W
log p(Y,Z;W)]. (6)

The expectation with respect to p(Z|Y,W) can be approximated by drawing samples
from p(Z|Y,W) and then compute the Monte Carlo average.

The Langevin dynamics for sampling Z ∼ p(Z|Y,W) iterates

Zτ+1 = Zτ + δUτ +
δ2

2
[

1

σ2
(Y − f(Zτ ;W))

∂

∂Z
f(Zτ ;W)− Zτ], (7)

where τ denotes the time step for the Langevin sampling, δ is the step size, and Uτ
denotes a random vector that follows N(0, Id).

1

The stochastic gradient algorithm can be used for learning, where in each iteration,
for each Zi, only a single copy of Zi is sampled from p(Zi|Yi,W) by running a finite
number of steps of Langevin dynamics starting from the current value of Zi, i.e., the
warm start. With {Zi} sampled in this manner, we can update the parameter W based
on the gradient L′(W), whose Monte Carlo approximation is:

L′(W) ≈
n∑
i=1

∂

∂W
log p(Yi, Zi;W) (8)

= −
n∑
i=1

∂

∂W

1

2σ2
||Yi − f(Zi;W)||2 (9)

=
n∑
i=1

1

σ2
(Yi − f(Zi;W))

∂

∂W
f(Zi;W). (10)

Algorithm 1 describes the details of the learning and sampling algorithm.

Algorithm 1 Generator: real inference

Input:
(1) training examples {Yi, i = 1, ..., n},
(2) number of Langevin steps l,
(3) number of learning iterations T .

Output:
(1) learned parameters W,
(2) inferred latent factors {Zi, i = 1, ..., n}.

1: Let t← 0, initialize W.
2: Initialize Zi, for i = 1, ..., n.
3: repeat
4: Inference step: For each i, run l steps of of Langevin dynamics to sample Zi ∼

p(Zi|Yi,W) with warm start, i.e., starting from the current Zi, each step follows
equation 7.

5: Learning step: Update W ←W +γtL
′(W), where L′(W) is computed according

to equation 10, with learning rate γt.
6: Let t← t+ 1.
7: until t = T

1.1 TO DO

For the lion-tiger category, learn a model with 2-dim latent factor vector. Fill the blank
part of ./GenNet/GenNet.py. Show:

(1) Reconstructed images of training images, using the inferred z from training im-
ages.

2

(2) Randomly generated images, using randomly sampled z.
(3) Generated images with linearly interpolated latent factors from (−2, 2) to (−2, 2).

For example, you inperlolate 8 points from (−2, 2) for each dimension of z. Then you
will get a 8× 8 panel of images. You should be able to seee that tigers slight change to
lion.

(4) Plot of loss over iteration.

2 Descriptor: real sampling

The descriptor model is as follows:

pθ(Y) =
1

Z(θ)
exp [fθ(Y)] p0(Y), (11)

where p0(Y) is the reference distribution such as Gaussian white noise

p0(Y) ∝ exp
(
−‖Y ‖2/2σ2

)
(12)

The scoring function fθ(Y) is defined by a bottom-up ConvNet whose parameters are
denoted by θ. The normalizing constant Z(θ) =

∫
exp [fθ(Y)] p0(Y)dY is analytically

intractable. The energy function is

Eθ(Y) =
1

2σ2
‖Y ‖2 − fθ(Y). (13)

pθ(Y) is an exponential tilting of p0.
Suppose we observe training examples {Yi, i = 1, ..., n} from an unknown data distri-

bution Pdata(Y). The maximum likelihood learning seeks to maximize the log-likelihood
function

L(θ) =
1

n

∑n

i=1
log pθ(Yi). (14)

If the sample size n is large, the maximum likelihood estimator minimizes the Kullback-
Leibler divergence KL(Pdata‖pθ) from the data distribution Pdata to the model distribu-
tion pθ. The gradient of L(θ) is

L′(θ) =
1

n

∑n

i=1

∂

∂θ
fθ(Yi)− Eθ

[
∂

∂θ
fθ(Y)

]
, (15)

where Eθ denotes the expectation with respect to pθ(Y). The key to the above identity
is that ∂

∂θ logZ(θ) = Eθ[
∂
∂θfθ(Y)].

The expectation in equation (15) is analytically intractable and has to be approxi-
mated by MCMC, such as Langevin dynamics, which iterates the following step:

Yτ+1 = Yτ −
δ2

2

∂

∂Y
Eθ(Yτ) + δUτ

= Yτ −
δ2

2

[
Yτ
σ2
− ∂

∂Y
fθ(Yτ)

]
+ δUτ , (16)

3

where τ indexes the time steps of the Langevin dynamics, δ is the step size, and Uτ ∼
N(0, I) is Gaussian white noise. The Langevin dynamics relaxes Yτ to a low energy
region, while the noise term provides randomness and variability. A Metropolis-Hastings
step may be added to correct for the finite step size δ. We can also use Hamiltonian
Monte Carlo for sampling the generative ConvNet.

We can run ñ parallel chains of Langevin dynamics according to (16) to obtain the
synthesized examples {Ỹi, i = 1, ..., ñ}. The Monte Carlo approximation to L′(θ) is

L′(θ) ≈ 1

n

∑n

i=1

∂

∂θ
fθ(Yi)−

1

ñ

∑ñ

i=1

∂

∂θ
fθ(Ỹi) (17)

=
∂

∂θ

[
1

ñ

∑ñ

i=1
Eθ(Ỹi)−

1

n

∑n

i=1
Eθ(Yi)

]
,

which is used to update θ.
To make Langevin sampling easier, we use mean images of training images as the

sampling starting point. That is, we down-sampled each training image to a 1×1 patch,
and up-sample this patch to the size of training image. We use cold start for Langevin
sampling, i.e., at each iteration, we start sampling from mean images.

Algorithm 2 describes the details of the learning and sampling algorithm.

Algorithm 2 Descriptor: real sampling

Input:
(1) training examples {Yi, i = 1, ..., n},
(2) number of Langevin steps l,
(3) number of learning iterations T .

Output:
(1) estimated parameters θ,
(2) synthesized examples {Ỹi, i = 1, ..., n}.

1: Let t← 0, initialize θ.
2: repeat
3: For i = 1, ..., n, initialize Ỹi to be the mean image of Yi.
4: Run l steps of Langevin dynamics to evolve Ỹi, each step following equation (16).

5: Update θt+1 = θt + γtL
′(θt), with step size γt, where L′(θt) is computed according

to equation (17).
6: Let t← t+ 1.
7: until t = T

2.1 TO DO

For the egret category, learn a descriptor model. Fill the blank part of ./DesNet/DesNet.py.
Show:

4

(1) Synthesized images.
(2) Plot of training loss over iteration.

3 What to submit

Write a report to show your results. And zip the report with your code.

5

	Generator: real inference
	TO DO

	Descriptor: real sampling
	TO DO

	What to submit

