STATS 232A Project 5: Generator and descriptor

1 Generator: real inference
The model has the following form:

Y = f(Z;W)+e (1)
Z ~ N(0,1;), ¢ ~N(0,0%Ip), d < D. (2)

f(Z; W) maps latent factors into image Y, where W collects all the connection weights
and bias terms of the ConvNet.
Adopting the language of the EM algorithm, the complete data model is given by

logp(Y, Z; W) = log[p(Z)p(Y|Z, W)] (3)
= 5l = (W) = 51120 + const. (@)

The observed-data model is obtained by intergrating out Z: p(Y; W) = [ p(Z)p(Y|Z,W)dZ.
The posterior distribution of Z is given by p(Z|Y, W) = p(Y, Z; W)/p(Y W) p( (Y| Z, W)
as a function of Z.

We want to minimize the observed-data log-likelihood, which is L(W) = """ | logp(Y;; W) =
Sy log [ p(Yi, Z;; W)dZ;. The gradient of L(W) can be calculated according to the fol-
lowing well-known fact that underlies the EM algorithm:
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The expectation with respect to p(Z|Y, W) can be approximated by drawing samples
from p(Z|Y, W) and then compute the Monte Carlo average.
The Langevin dynamics for sampling Z ~ p(Z|Y, W) iterates
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where 7 denotes the time step for the Langevin sampling, § is the step size, and U
denotes a random vector that follows N(0, I).



The stochastic gradient algorithm can be used for learning, where in each iteration,
for each Z;, only a single copy of Z; is sampled from p(Z;|Y;, W) by running a finite
number of steps of Langevin dynamics starting from the current value of Z;, i.e., the
warm start. With {Z;} sampled in this manner, we can update the parameter W based
on the gradient L'(W), whose Monte Carlo approximation is:
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Algorithm [1] describes the details of the learning and sampling algorithm.

Algorithm 1 Generator: real inference
Input:

(1) training examples {Y;,i =1,...,n},
(2) number of Langevin steps [,

(3) number of learning iterations 7.

Output:
(1) learned parameters W,
(2) inferred latent factors {Z;,i = 1,...,n}.

Let t < 0, initialize W.

Initialize Z;, for ¢ =1, ..., n.

repeat
Inference step: For each 4, run [ steps of of Langevin dynamics to sample Z; ~
p(Z;|Y;, W) with warm start, i.e., starting from the current Z;, each step follows
equation [7]

5. Learning step: Update W + W+~ L'(W), where L'(W) is computed according

to equation with learning rate ;.
: Let t < t+1.
7.untilt =T

1.1 TO DO

For the lion-tiger category, learn a model with 2-dim latent factor vector. Fill the blank
part of ./GenNet/GenNet.py. Show:

(1) Reconstructed images of training images, using the inferred z from training im-
ages.



(2) Randomly generated images, using randomly sampled z.

(3) Generated images with linearly interpolated latent factors from (—2,2) to (—2,2).
For example, you inperlolate 8 points from (—2,2) for each dimension of z. Then you
will get a 8 x 8 panel of images. You should be able to seee that tigers slight change to
lion.

(4) Plot of loss over iteration.

2 Descriptor: real sampling

The descriptor model is as follows:

po(Y) = exp [fo(Y)] po(Y), (11)

1
Z(9)
where po(Y) is the reference distribution such as Gaussian white noise

po(Y) o< exp (—[|Y][*/20%) (12)

The scoring function fy(Y') is defined by a bottom-up ConvNet whose parameters are
denoted by 6. The normalizing constant Z(6) = [exp [fp(Y)] po(Y)dY is analytically
intractable. The energy function is

1

E(Y) = 55IVIP = folY). (13)

po(Y') is an exponential tilting of py.

Suppose we observe training examples {Y;,i = 1,...,n} from an unknown data distri-
bution Pyata(Y). The maximum likelihood learning seeks to maximize the log-likelihood
function

L) = 3" logpa(¥). (14)

n
If the sample size n is large, the maximum likelihood estimator minimizes the Kullback-
Leibler divergence KL(Pgatal|pg) from the data distribution Pga¢, to the model distribu-
tion pp. The gradient of L(0) is
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where Eg denotes the expectation with respect to pg(Y'). The key to the above identity
is that 2 log Z(0) = Eg[&; fo(Y)].

The expectation in equation is analytically intractable and has to be approxi-
mated by MCMC, such as Langevin dynamics, which iterates the following step:
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where 7 indexes the time steps of the Langevin dynamics, J is the step size, and U, ~
N(0,I) is Gaussian white noise. The Langevin dynamics relaxes Y; to a low energy
region, while the noise term provides randomness and variability. A Metropolis-Hastings
step may be added to correct for the finite step size . We can also use Hamiltonian
Monte Carlo for sampling the generative ConvNet.
We can run n parallel chains of Langevin dynamics according to to obtain the
synthesized examples {}7;,@ =1,...,7}. The Monte Carlo approximation to L’'(6) is
n n ~
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which is used to update 6.

To make Langevin sampling easier, we use mean images of training images as the
sampling starting point. That is, we down-sampled each training image to a 1 x 1 patch,
and up-sample this patch to the size of training image. We use cold start for Langevin
sampling, i.e., at each iteration, we start sampling from mean images.

Algorithm [2] describes the details of the learning and sampling algorithm.

Algorithm 2 Descriptor: real sampling
Input:

(1) training examples {Y;,i = 1,...,n},
(2) number of Langevin steps [,

(3) number of learning iterations 7.

Output:
(1) estimated parameters ¢,
(2) synthesized examples {Y;,i =1,...,n}.

1: Let t « 0, initialize 6.

2: repeat

3. For i = 1,...,n, initialize ¥; to be the mean image of Y;.

4:  Run [ steps of Langevin dynamics to evolve Y;, each step following equation .

5. Update 011 = 0 +~:L'(0;), with step size ¢, where L'(6;) is computed according
to equation .

6: Let t <+ t+ 1.

7 untilt =T

2.1 TO DO

For the egret category, learn a descriptor model. Fill the blank part of . /DesNet/DesNet . py.
Show:



(1) Synthesized images.
(2) Plot of training loss over iteration.

3 What to submit

Write a report to show your results. And zip the report with your code.
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